
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Wei Huang,
Ministry of Natural Resources, China

REVIEWED BY

Min Li,
Chinese Academy of Fishery Sciences
(CAFS), China
Ioannis A. Giantsis,
University of Western Macedonia, Greece

*CORRESPONDENCE

Wei Xu

xwsc23@163.com

RECEIVED 04 February 2023

ACCEPTED 02 May 2023

PUBLISHED 16 May 2023

CITATION

Wei H, Geng L, Shang X, Li L, Ma B,
Zhang Y, Li W and Xu W (2023)
Comparison genetic diversity and
population structure of
four Pseudaspius leptocephalus
populations in Heilongjiang River Basin
based on mitochondrial COI gene.
Front. Mar. Sci. 10:1158845.
doi: 10.3389/fmars.2023.1158845

COPYRIGHT

© 2023 Wei, Geng, Shang, Li, Ma, Zhang, Li
and Xu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 16 May 2023

DOI 10.3389/fmars.2023.1158845
Comparison genetic diversity
and population structure of
four Pseudaspius leptocephalus
populations in Heilongjiang River
Basin based on mitochondrial
COI gene

Haijun Wei1,2, Longwu Geng1,2, Xinchi Shang1,2, Lei Li1, Bo Ma1,
Yuyong Zhang1, Wang Li1 and Wei Xu1,2*

1Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,
2Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang
Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences,
Harbin, China
The Pseudaspius leptocephalus is a unique fish in the Heilongjiang River Basin

and has important economic and ecological value. In the present study, the

complete mitochondrial genome of P. leptocephalus were determined, and COI

partial sequences of 85 individuals from Erguna river (EH), Mohe (MH), Fuyuan

(FY), Hulan (HL) were used to evaluated the genetic diversity of four populations

of P. leptocephalus in Heilongjiang River Basin. The mitogenome is 16,607 bp in

length and contained one D-loop, 2 rRNA, 13 PCG, and 22 tRNA. 4 variable sites

and 5 haplotypes were detected in 705 bp COI, and 705 bp COI exhibited a lower

content of C + G (45.95%) than A + T (54.05%). The nucleotide diversity (p) and
haplotype diversity (h) indices ranged from 0.00027 (HL) to 0.00065 (EH and FY)

and from 0.192 (HL) to 0.462 (EH), respectively. The genetic distance within the

population and between populations ranged from 0.0006554 to 0.0002728 and

from 0.0003541 to 0.0006974, respectively. Pairwise values of FST and Nm

showed that there was moderate genetic differentiation between EH population

and other populations and individuals between EH population and other

populations can mate randomly (0.15 > FST > 0.05, Nm > 4). Significant

negative values of neutrality tests (P < 0.05) indicated that MH and FY

populations may had experienced population expansion, but mismatch

distribution analysis suggested that all populations have remained basically

stable. These results provide strong basis for the protection and utilization of

P. leptocephalus germplasm resources, and provide valuable information for the

population structure and genetic diversity of P. leptocephalus.
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Introduction

The Pseudaspius leptocephalus (Cypriniformes, Leuciscidae,

Pseudapius) is a unique fish in the Heilongjiang River Basin

(Amur River Basin) of China, Russia and Mongolia, and the P.

leptocephalus is mainly distributed in Heilongjiang, Wusuli and

Songhua Rivers in China (Petr, 1991; Semenchenko and

Ostrovskaya, 2020; Bao et al., 2021; Yang et al., 2021). In recent

years, due to the overfishing and environmental damage, the wild

populations of P. leptocephalus has continued to decline, and there

is an urgent need to carry out conservation research on the P.

leptocephalus (Yang et al., 2021). Since 2015, the team of the

Heilongjiang River Fisheries Research Institute, Chinese Academy

of Fishery Sciences has preliminarily completed the wild resource

survey of the P. leptocephalus in the waters of Heilongjiang and

Wusuli Rivers in China, and successfully overcome the technical

difficulties of artificial spawning, seedling breeding and pond

culturing of P. leptocephalus (Yang et al., 2021). In addition, our

team has also carried out the proliferation and release of P.

leptocephalus (local populations) in waters such as the Songhua

River. These efforts of our team are of great significance to the

protection and restoration of wild resources of the P. leptocephalus,

but they are not enough. Currently, the related researches on P.

leptocephalus mainly focus on the karyotype (Petr, 1991),

Phylogeny (Semina et al., 2007), resource survey (Bao et al., 2021;

Xu et al., 2021), Reproductive biology (Semenchenko and

Ostrovskaya, 2020), embryonic development (Yang et al., 2021),

and growth (Semenchenko, 2020; Yang et al., 2021) et al. However,

there are still gaps in the genetic diversity and population structure

of different populations in the P. leptocephalus.

Mitochondrial DNA (mtDNA) is an important genetic

information system of eukaryotic cells, and has a closed circular

double-stranded structure and self-replicates semi-conservatively

(Paz et al., 2014). mtDNA is a relatively independent replication

unit characterized by rapid evolutionary rate, maternal inheritance,

small genome size, limited recombination, and simple structure etc.

(Javonillo et al., 2010; Lei et al., 2010; Zhang et al., 2015). Therefore,

mtDNA is widely used in various research fields, such as DNA

structure and gene expression (Yang et al., 2022), taxonomic

resolution and species identification (Krzywinski et al., 2011; Zhu

et al., 2017), species evolution and phylogenetic distribution

(Sharma et al., 2020; Sun CH et al., 2021; Staden et al., 2022;

Yang et al., 2022), and population genetics (Gissi et al., 2008; Fang

et al., 2021; Zhang et al., 2022). To date, the classification about P.

leptocephalus is still disputed. Sasaki et al. (2007) pointed out that P.

leptocephalus should be reclassified into the same genes of the

Tribolodon species based on the phylogenetic tree generated based

on Cyt-b gene and D-loop sequence, but Batishcheva et al. (2011)

showed that P. leptocephalus represented a different branch from

Tribolodon species based on the COI gene sequence. In addition, a

better understanding of Leuciscidae mtDNAs requires expanded

taxon sampling, so it is necessary to determine the mitochondrial

genome of the P. leptocephalus and confirm the taxonomic position

of P. leptocephalus.

Mitochondrial markers are important indicators of species

structure and genetic diversity, and are widely used in genetic
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relationship analysis, germplasm identification, and population

genetic structure analysis (Liu et al., 2021; Pan et al., 2021;

Emelianova et al., 2022; Sultana et al., 2022; Zhang et al., 2022).

Among the most common mitochondrial genes used in detecting

genetic diversity and population structure, the mtDNA cytochrome

c oxidase subunit I (COI) gene represent useful genetic marker and

its easily amplified (Folmer et al., 1994). mtDNA COI gene

sequence polymorphisms serve as “barcodes” to assess cryptic

diversity and germplasm identification, and variation in COI gene

sequence has been used for population studies of genetic diversity

and structure in many fish such as Nibea albiflora (Xu et al., 2012),

Schilbe intermedius (Nneji et al., 2020), Konosirus punctatus (Liu

et al., 2020), Hygophum benoiti (Sarropoulou et al., 2022),

Maurolicus muelleri (Sarropoulou et al., 2022), Benthosema

glaciale (Sarropoulou et al., 2022) etc. So far in P. leptocephalus,

mtDNA COI is mainly used for species identification and

phylogeny (Batishcheva et al., 2011), and there have been no

reports about genetic diversity and population structure of P.

leptocephalus populations based on COI gene. In addition, no

other molecular markers have been used in the genetic diversity

analysis of different populations of P. leptocephalus. The studies of

population genetic structure and genetic diversity are necessary for

evaluating its breeding potential and understanding current

population germplasm resources (Alal et al., 2021), which could

provide guidance for the establishment of fishing quotas to prevent

overharvesting and provide a basis for the selection of breeding

populations (Zhao et al., 2019). Therefore, there is an urgent need to

carry out genetic diversity analysis of different populations of

P. leptocephalus.

In the present study, we have sequenced the whole

mitochondrial genome of the artificial population of P.

leptocephalus, and employed partial mtDNA COI gene sequences

to assess the genetic diversity and intraspecific population

differentiation of 4 P. leptocephalus populations [Erguna river

(EH), Mohe (MH), Fuyuan (FY), Hulan (HL)] in the

Heilongjiang River Basin. The study provides the characteristic

features of the P. leptocephalus mitochondrial genome and the

information on genetic diversity and population structure of P.

leptocephalus. Those are critical for phylogenetic relationships,

resource conversation and fisheries management for this species.
Materials and methods

Samples collection and DNA extraction

A total of 86 P. leptocephalus samples were collected from four

sites (Figure 1) in Heilongjiang River Basin, Northeast China, and

grouped according to their geographic origin. The collected fishes

were as follows: 13 fishes from Erguna river (EH; 118°0′ E, 49°27′ N),
30 from Mohe (MH; 122°32′ E, 52°58′ N), 13 from Fuyuan (FY; 134°

18′ E, 48°21′N), 30 fromHulan (HL; 126°37′ E, 45°58′N). It is worth
noting that the HL samples were taken from the cultured population

in Hulan Fisheries Test Field, Heilongjiang River Fisheries Research

Institute, Chinese Academy of Fishery Sciences, while the other

samples were all from the wild populations. Tissue (fin) samples
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from each individual were preserved in 95% ethanol until genomic

DNA preparation. The total DNA was isolated from the tissue

samples using a DNA kit (Tiangen, Beijing, China) according to

the manufacturer’s instructions. DNA integrity were examined by

1.0% agarose gel electrophoresis and the concentration of DNA was

measured by Qubit® DNA Assay Kit in Qubit® 3.0 Flurometer

(Invitrogen, USA).
Mitochondrial genome sequencing

Sequencing library was generated using NEB Next® Ultra™

DNA Library Prep Kit for Illumina (NEB, USA) following

manufacturer’s recommendations and index codes were added to

each sample. Briefly, genomic DNA sample (one of HL groups) was

fragmented by sonication to a size of 350 bp. Then DNA fragments

were end polished, A-tailed, and ligated with the full-length adapter

for Illumina sequencing, followed by further PCR amplification.

After PCR products were purified by AMPure XP system (Beckman

Coulter, Beverly, USA), DNA concentration was measured by

Qubit®3.0 Flurometer (Invitrogen, USA), libraries were analyzed

for size distribution by NGS3K/Caliper and quantified by real-time

PCR (3 nM). The clustering of the index-coded samples was

performed on a cBot Cluster Generation System using Illumina

PE Cluster Kit (Illumina, USA) according to the manufacturer’s

instructions. After cluster generation, the DNA libraries were

sequenced on Illumina Novaseq 6000 platform.
COI gene amplification and genotyping

The mitochondrial COI gene for 85 P. leptocephalus samples

were amplified using the primers R: 5′- CAGGAAACAGCTATGA
CTAGACTTCTGGGTGGCCAAAGAATCA-3′ and F: 5′-
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GTAAAACGACGGCCAGTCAACCAACCACAAAGACA

TTGGCAC-3′ designed by Primer 5 based on the results of the

mitochondrial genome. PCR were conducted using a 30-µL reaction

system containing 1 µL DNA template (20 ng/µL), 1 µL each primer

(10 µM), 15 µL 2 × Taq PCR Master Mix, and 12µL ddH2O. The

PCR amplification reaction was run on a 96-well thermal cycler in

the following program: an initial denaturation at 95°C for 5 min,

followed by 35 cycles of denaturation at 95°C for 30 s, annealing at

58°C for 30 s, extending at 72°C for 45 s, finally an extra extension at

72°C for 5 mins. The PCR products were detected by 1% agarose gel

electrophoresis and the purified PCR products were sequenced by

ABI3730xl DNA Analyzer sequencer (Invitrogen Biotechnology

Co., Ltd, USA).
Data analysis

Raw sequence reads of mitochondria genome were edited using

NGS QC Tool kit (Patel and Jain, 2012), and high-quality reads

were assembled into mitochondrial genome using de novo

assembler SPAdes v.3.14.1 software (Bankevich et al., 2012).

Finally, the assembled complete mitochondria genome was

annotated by MITOS (http://mitos.bioinf.uni-leipzig.de/index.py;

Bernt et al., 2013), and the circular of P. leptocephalus

mitochondria genome map was drawn using Organellar Genome

DRAW v1.2.

The 85 P. leptocephalus mitochondrial COI sequences were

edited and aligned by MEGA 11. In addition, MEGA 11 were also

used for constructing the Maximum-Likelihood phylogenetic tree

(ML, 1000 bootstrap replications), and estimating the genetic

distances within and among the populations. (Kimura, 1980;

Kumar et al., 2016). The basic nucleotide configurations,

nucleotide diversity (p), haplotype diversity (h), haplotype

number, fixation index (FST, 100 permutations for significance,

and 1000 permutations for mantel test), gene flow [Nm, calculated

by the formula Nm = (1-FST)/2FST], Tajima’s D and Fu’s Fs test

values were analyzed by Arlequin 3.5 (Tajima, 1989; Fu, 1997;

Excoffier and Lischer, 2010). The mismatch-distribution analysis

was performed by DnaSP v5 with model of constant population size

(Librado and Rozas, 2009).
Results

Complete mitochondrial genome
of P. leptocephalus

The complete mitochondrial genome of P. leptocephalus was

16,607 bp in length and contained a putative displacement loop (D-

loop) locus, 2 ribosomal RNA genes (rRNA), 13 protein coding genes

(PCG), and 22 transfer RNA genes (tRNA) (Figure 2; Table 1). Its GC

ratio is 46.09%, and the overall nucleotide composition was 18.45%

for G, 27.64% for C, 25.86% for T, and 28.05% for A, respectively. To

determine the phylogenetic relationship of P. leptocephalus in the

subfamily Pseudaspininae, we selected the mitogenome from 12

Leuciscidae species, and use Leuciscus waleckii as an outgroup. As
FIGURE 1

Sample locations of 4 Pseudaspius leptocephalus populations.
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shown in Figure 3, P. leptocephalus and other four Tribolodon were

clustered into one branch with a high nodal support value.

Additionally, the genomic sequence has been deposited into

GenBank under accession OQ389592.
COI sequence variation and
genetic diversity

In this study, 705 base pair sequences of the COI gene were

obtained for downstream analysis. Figure 4 showed the base radio of

the four P. leptocephalus populations are similar, and the total base

composition was as follows: T = 28.11%, C = 27.23%, A = 25.94%,

and G = 18.72%. In all sequences, the GC radio (45.95%) was lower

than the AT radio (54.05%). Table 2 showed the size and genetic

diversity of 4 P. leptocephalus populations based on COI sequence.

In 85 individuals of 4 population, 4 polymorphic sites with 2

parsimony informative sites were detected. A total of 5 haplotypes

were detected, and the number of haplotypes ranged from 2 to 4 for

each sampled population. In addition, the nucleotide diversity (p) of
the 4 populations ranged from 0.00027 (HL) to 0.00065 (EH &

MH), the haplotype diversity (h) of 4 populations ranged from

0.192 (HL) to 0.462 (EH), and the total haplotype and nucleotide

diversity of 85 individuals was 0.308 and 0.00046, respectively.

Table 2 also showed the haplotype distributions of the 4
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populations. It is worth noting that there were 2 unique

haplotypes (Hap 3 and Hap 5), and 3 shared haplotypes were

detected: Hap 1 and Hap 2 shared by all the populations, Hap 4

shared by MH and FY.
Population genetic diversity

Table 3 showed the Pairwise values of genetic distance within

and between populations. The genetic distance within the

population ranged from 0.0006554 to 0.0002728, and were ranked

as follows: 0.0006554 (FY) > 0.0006553 (EH) > 0.0004537 (MH) >

0.0002728 (HL). For the genetic distance between populations, the

genetic distance between EH and FY populations were highest

(0.0006974), whereas the lowest value were confirmed between

MH and HL populations (0.0003541).

The FST values among the four studied populations ranged

from -0.0298 to 0.0885 (Table 4, below diagonal), and the results

showed that there were no significant were detected (P > 0.05).

Additionally, the gene flow from EH population to all other

populations were very high, which ranged from 5.1476 (between

EH and HL) to 7.0939 (between EH and MH). AMOVA analysis

(Table 5) showed that the total variability observed within

populations was 98.282%, whereas 1.718% of variation was found

between different populations.
FIGURE 2

Gene map of the Pseudaspius leptocephalus complete mitochondrial genome Genes encoded on the H-strand and L-strand are shown outside and
inside the circular map of the mitogenome, respectively.
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TABLE 1 Organization of the Pseudaspius leptocephalus mitochondrial genome.

Gene Position (bp) Size (bp) Strand Start codon End codon Anticodon Intergenic length (bp)

tRNA-Phe 1-69 69 H GAA 0

12S rRNA 70-1026 957 H 0

tRNA-Val 1027-1098 72 H TAC 0

16S rRNA 1099-2786 1688 H 0

tRNA-Leu 2787-2862 76 H TAA 0

ND1 2864-3838 975 H ATG TAA 1

tRNA-Ile 3842-3913 72 H GAT 3

tRNA-Gln 3912-3982 71 L TTG -2

tRNA-Met 3984-4052 69 H CAT 1

ND2 4053-5097 1045 H ATG T– 0

tRNA-Trp 5098-5168 71 H TCA 0

tRNA-Ala 51705238 69 L TGC 1

tRNA-Asn 5240-5312 73 L GTT 1

tRNA-Cys 5344-5412 69 L GCA 31

tRNA-Tyr 5414-5484 71 L GTA 1

COI 5486-7036 1551 H GTG TAA 1

tRNA-Ser 7037-7107 71 L TGA 0

tRNA-Asp 7111-7184 74 H GTC 3

COII 7198-7888 691 H ATG T– 13

tRNA-Lys 7889-7964 76 H TTT 0

ATP8 7966-8133 168 H ATG TAA 1

ATP6 8124-8806 683 H ATG TA- -10

COIII 8807-9590 784 H ATG T– 0

tRNA-Gly 9591-9661 71 H TCC 0

ND3 9662-10010 349 H ATG T– 0

tRNA-Arg 10011-10080 70 H TCG 0

ND4L 10081-10377 297 H ATG TAA 0

ND4 10371-11752 1382 H ATG TA- -7

tRNA-His 11753-11821 69 H GTG 0

tRNA-Ser 11822-11890 69 H GCT 0

tRNA-Leu 11892-11964 73 H TAG 1

ND5 11965-13800 1836 H ATG TAA 0

ND6 13797-14318 522 L ATG TAA -4

tRNA-Glu 14319-14386 68 L TTC 0

CYTB 14390-15530 1141 H ATG T– 3

tRNA-Thr 15531-15602 72 H TGT 0

tRNA-Pro 15602-15671 70 L TGG -1

D-loop 15672-16607 936 H 0
F
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Phylogenetic analysis and population
genetic structure

The ML tree and the network between haplotypes revealed that

there was no significant genealogical differentiation between the 4 P.

leptocephalus populations (Figure 5). The ML tree constructed from

the 5 haplotypes showed that there were only one main branches

(Figure 5A), which was similar to the aggregation of the overall

network haplotype distribution (Figure 5B). The median-joining

network showed that the 5 haplotypes exhibited a star-like topology,

and have clearly defined 3 shared haplotypes (Hap1, Hap 2, and

Hap 4). In addition, as most haplotypes surrounding Hap 1,

suggesting that Hap 1 may be the maternal ancestral haplotype of

P. leptocephalus populations in Heilongjiang River Basin.
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Population expansion

The results of Tajima’s D and Fu’s Fs tests were showed at

Table 6. Fs test values for EH and HL population were positive,

whereas the most D test values were negative except for HL

population, and most of which didn’t reached a significant level

(P > 0.05). The results for MH and FY population were found to be

significant for both tests (P < 0.05), which indicated that MH and

FY population may deviated from mutation-drift equilibrium and

potential population demographic expansion. However, the results

of mismatch distribution showed that all the populations are in line

with the hypothesis of constant populations (Figure 6).
Discussion

The P. leptocephalus mitochondrial genome (16607) consists of

a D-loop, 2 rRNA, 22 tRNA, and 13 PCGs, and most genes are

heavy (H) strand except for the nine light (L) genes (tRNA-Gln,

tRNA-Ala, tRNA-Asn, tRNA-Cys, tRNA-Tyr, tRNA-Ser, tRNA-

Glu, tRNA-Pro and ND6). These showed that the mitochondrial

genome of P. leptocephalus conforms to a typical teleost

mitochondrial order, and is consistent with the mitochondrial

genome of Phoxinus cf. Phoxinus (Cheng et al., 2022), Barilius

malabaricus (Prabhu et al., 2020),Hemigrammus erythrozonus (Sun

CH et al., 2021), Hyphessobrycon amandae (Sun CH et al., 2021),

and Channa siamensis (Li et al., 2018). This further shows that the

mitochondrial genomes are quite conserved across teleost (Wen

et al., 2017; Zou et al., 2017; Sun CH et al., 2021). In addition,

phylogenetic analyses in the present study indicated that P.

leptocephalus and Tribolodon species should be reclassified into

the same genus, which was similar to the results of Sasaki et al.

(2007). In this study, we report the whole mitochondrial genome of

P. leptocephalus, which could help human to better understand the

taxonomic status of P. leptocephalus and provide some new

perspectives on the evolutionary mechanism of the Leuciscidae

mitochondrial genome.

Genetic diversity is an important basis for the evaluation of

population germplasm resources (Zhang et al., 2022). Further,

genetic diversity is the basis of species adaptability and evolution,

and there is a positive linear relationship between intraspecific

genetic diversity and the adaptability of the species to the

environment (Cruz et al., 2013). Nucleotide diversity and

haplotype diversity are important indicators in terms of revealing

mtDNA genetic variation in populations (Liu and Zhang, 2009;

Jiang et al., 2019). The total length of the COI sequence of the P.

leptocephalus is 155,1 bp, and 705 bp partial fragment of mtDNA

COI gene was used to evaluate the genetic diversity of the

P. leptocephalus.

The results showed that there was low genetic diversity in the P.

leptocephalus populations around Heilongjiang River Basin (h < 0.5,

p < 0.005) (Grant and Bowen, 1998), indicating that measures

should be taken to protect the resources of the P. leptocephalus in

the Heilongjiang River basin, such as prohibiting fishing,

establishing protected areas, and proliferating and releasing. In

the four P. leptocephalus population, the genetic diversity of HL
FIGURE 3

Maximum Likelihood mitogenomic phylogeny based on the
mitogenome. The numbers in front of the species are GenBank
accession numbers, the scale bar indicates 0.05 base substitutions
per site.
FIGURE 4

Base ratio of 4 Pseudaspius leptocephalus populations.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1158845
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wei et al. 10.3389/fmars.2023.1158845
population is the lowest (h = 0.192; p = 0.00027), this may be

because the HL population is a farmed population, caused by

limited number of effective parents, genetic drift, and the

relatively closed culture environment. It is recommended to

introduce wild populations with high genetic diversity to enrich

the genetic diversity of HL populations. In this study, we found that

EH (h = 0.462; p = 0.00065) and FY (h = 0.423; p = 0.00065)

populations have higher genetic diversity, and these two

populations can be used as introduced wild populations. The

results of genetic distance within the population also supported

this proposal. It is worth noting that studies have shown that genetic

diversity indices between different genetic markers were not

consistent (Duong et al., 2019; Liu et al., 2020; Pan et al., 2021;

Sarropoulou et al., 2022), indicating the potential inaccuracy of

using only one marker in genetic diversity analysis, and suggesting
Frontiers in Marine Science 07
in future studies, the genetic diversity analysis of other genetic

markers should be supplemented.

As the divergence within the species is usually < 0.2 (Thorp,

1982), and we found that the genetic distance was 0.0003541-

0.0006974 between different P. leptocephalus populations,

indicated that P. leptocephalus populations were closely

populations, and were not diverged at subspecies level but the

population level (Tsipas et al., 2009). In addition, the limited

distribution, the small population size, and the lack of strict

isolation between P. leptocephalus populations also determine that

it is difficult to develop subspecies. FST values of 0.05-0.15 indicate

moderate genetic differentiation, and Nm > 4 indicates that

individuals among populations can mate randomly (Wright,

1931; Weir and Cockerham, 1996; Wang et al., 2021). In this

study, the values of FST between EH population and other
TABLE 2 Summary statistics for COI polymorphisms of 4 Pseudaspius leptocephalus populations.

Population Sample
size

Variable
sites

Haplotypes (Number of individuals) Haplotypes diversity
(h)

Nucleotide diversity
(p)

EH 13 1 Hap1(9), Hap2(4) 0.462 ± 0.110 0.00065 ± 0.00016

MH 30 3 Hap1(25), Hap2(3), Hap4(1), Hap5(1) 0.303 ± 0.104 0.00045 ± 0.00017

FY 13 3 Hap1(10), Hap2(1), Hap3(1), Hap4(1) 0.423 ± 0.164 0.00065 ± 0.00028

HL 29 1 Hap1 (26), Hap2 (3) 0.192 ± 0.090 0.00027 ± 0.00013

Total 85 4
Hap1(70), Hap2(11), Hap3(1), Hap4(2), Hap5
(1)

0.308 ± 0.060 0.00046 ± 0.00009
TABLE 3 Pairwise values of genetic distance between populations (below diagonal) and within population (on diagonal).

EH MH FY HL

EH 0.0006553

MH 0.0005862 0.0004537

FY 0.0006974 0.0005352 0.0006554

HL 0.0004933 0.0003541 0.0004520 0.0002728
TABLE 4 Pairwise values of FST (below diagonal) and Nm (above diagonal) between populations.

EH MH FY HL

EH 7.0939 7.8000 5.1476

MH 0.0658 Inf Inf

FY 0.0602 -0.0298 Inf

HL 0.0885 -0.0259 -0.0099
TABLE 5 Analysis of molecular variance (AMOVA) among 4 populations of Pseudaspius leptocephalus..

Source of variation df Sum of squares Variance components Percentage of vari-
ation

Among populations 3 0.644 0.003 1.718

Within populations 81 12.861 0.159 98.282

Total 84 13.506 0.162

Fixation index FST 0.017 (P > 0.05)
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populations ranged from 0.0658 to 0.0885, and Nm values between

EH population and other populations ranged from 5.1476 to 7.8000,

indicated EH population and other populations were moderate

genetic differentiation and individuals between EH population and

other populations can mate randomly. This may be because there is

no effective geographic isolation between the water systems in the

Heilongjiang Basin, and the time for the establishment of farmed

population (HL) is relatively short, so they might share the same

ancestors. It should be noted that the FST values are not significant,

so further research and investigation are needed to explain. The

AMOVA analyses revealed that the variation within the populations

was the primarily source of the total variation, showed identical

structure of four P. leptocephalus populations in this study, which is

similar to the previous studies (Duong et al., 2019; Zhang et al.,

2020; Fang et al., 2021; Pan et al., 2021).

Studies have shown that the close geographic relationships of

freshwater fish were usually revealed by phylogeographical patterns

(Granado et al., 2021; Sun N et al., 2021). The Maximum-

Likelihood (ML) tree (A) and median-joining network of COI

haplotypes showed a single lineage for all P. leptocephalus

populations in the Heilongjiang River Basin, suggesting that there

was no deep divergence of lineages and all populations were linked

(Zhang et al., 2022). These results echoing the results of low genetic

differentiation. In this study, 5 haplotypes were found at all P.

leptocephalus populations, which was much less than that in

Konosirus punctatus (Liu et al., 2020) and Schilbe intermedius

(Nneji et al., 2020). This may be due to the differences in species,

COI sequencing length, sample size, population number, etc., but
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the most important reason should be the lack of resources, and low

genetic diversity of the P. leptocephalus. Among the 5 haplotypes of

P. leptocephalus, Hap 1 and Hap 2 are the haplotypes shared by all

populations, and Hap 1 were found in 82.4% (70/85) of all

individuals, indicating that Hap 1 is primitive, adaptable to the

external environment and can stably exist in the P. leptocephalus

population (Liu et al., 2021; Zhao et al., 2021).

The population historical evolution is usually detected by

Neutrality tests (Tajima’D and Fu ’s Fs) and mismatch

distribution analysis (Zhao et al., 2021; Zhang et al., 2022). Zhang

et al. (2022) pointed out that the obvious unimodal curve in

mismatch distribution analysis and negative and significantly

different of Tajima’s D and Fu’s Fs values are considered as the

history of population expansion. In this study, significant negative

values of Tajima’s D and Fu’s Fs tests (P < 0.05) indicated that MH

and FY populations may had experienced population expansion in

the recent historical period. Grant and Bowen (1998) described that

rapid population expansion after low population size would

enhances the retention of new mutations. This is consistent with

the results of this study that found a large number of haplotypes (4

haplotypes) and unique haplotype in FY (Hap 3) population. Which

indicated that FY populations experienced the population

expansion caused by large scale breeding after a sharp decline in

population size. On the contrary, the results of mismatch

distribution analysis showed that all populations have remained

basically stable. Additionally, all the P. leptocephalus populations in

this study showed low diversity parameters (h < 0.5, p < 0.005),

indicating that P. leptocephalus populations may have recently
BA

FIGURE 5

Maximum-Likelihood (ML) tree (A) and median-joining network (B) based on COI haplotypes. Circle sizes indicate the number of individuals in the
haplotypes. Different colored in the circles indicate the distribution in different populations, and each line represents a single mutational change.
TABLE 6 Neutrality tests for the genetic populations of Pseudaspius leptocephalus.

Population Tajima’s D
test

P Fu’s Fs test P

EH 0.951 0.871 0.976 0.576

MH -1.360 0.041 -2.243 0.024

FY -1.652 0.028 -2.206 0.006

HL -0.387 0.282 0.067 0.267
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experienced minority populations (Grant and Bowen, 1998).

Therefore, the historical dynamics of the P. leptocephalus

populations need more evidence and further research to verify.
Conclusions

In this study, we have sequenced the whole mitochondrial

genome of P. leptocephalus, and partial mtDNA COI gene

sequences (705 bp) were used to assess the genetic diversity and

intraspecific population differentiation of 4 P. leptocephalus

populations in the Heilongjiang River Basin. Our results showed

that complete mitochondrial genome of P. leptocephalus was 16,607

bp in length, and 4 P. leptocephalus populations in the Heilongjiang

River Basin had low genetic diversity and genetic variation.

Therefore, it is necessary to strengthen the systematic research

and maintenance of the genetic diversity of P. leptocephalus

populations in Heilongjiang River Basin. In addition, farmed HL

population had the lowest genetic diversity, indicating that there has

been germplasm degradation in cultured P. leptocephalus

population. The FY populations had higher genetic diversity,

indicating that FY populations are potential breeding resources to

improve the genetic diversity of farmed population. But, if possible,

other wild populations with much higher genetic diversity should be
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actively developed and introduced. Thus, the results obtained in this

study provide a strong basis for the genetic breeding and protection

of P. leptocephalus germplasm resources, and provide valuable

information for future study of the population structure and

genetic diversity of P. leptocephalus.
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