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Real-time GAN-based image
enhancement for robust
underwater monocular SLAM
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1Department of Computer Science and Engineering, Hong Kong University of Science and
Technology, Hong Kong, Hong Kong SAR, China, 2Faculty of Information Science and Engineering,
Ocean University of China, Qingdao, China, 3Sanya Oceanographic Institution, Sanya, China
Underwater monocular visual simultaneous localization and mapping (SLAM)

plays a vital role in underwater computer vision and robotic perception fields.

Unlike the autonomous driving or aerial environment, performing robust and

accurate underwater monocular SLAM is tough and challenging due to the

complex aquatic environment and the collected critically degraded image

quality. The underwater images’ poor visibility, low contrast, and color

distortion result in ineffective and insufficient feature matching, leading to the

poor or even failure of the existing SLAM algorithms. To address this issue, we

propose introducing the generative adversarial network (GAN) to perform

effective underwater image enhancement before conducting SLAM.

Considering the inherent real-time requirement of SLAM, we conduct

knowledge distillation to achieve GAN compression to reduce the inference

cost, while achieving high-fidelity underwater image enhancement and real-

time inference. The real-time underwater image enhancement acts as the image

pre-processing to build a robust and accurate underwater monocular SLAM

system. With the introduction of real-time underwater image enhancement, we

can significantly promote underwater SLAM performance. The proposedmethod

is a generic framework, which could be extended to various SLAM systems and

achieve various scales of performance gain.

KEYWORDS

generative adversarial networks, SLAM, knowledge distillation, underwater image
enhancement, real-time, underwater SLAM
1 Introduction

Recently, many vision-based state estimation algorithms have been developed based on

the monocular, stereo, or multi-camera systems in indoor (Garcıá et al., 2016), outdoor

(Mur-Artal and Tardós, 2017; Campos et al., 2021), and underwater environments Rahman

et al. (2018); Rahman et al. (2019b). Underwater SLAM (Simultaneous Localization and

Mapping) is an autonomous navigation technique used by underwater robots to build a

map of an unknown environment and localize the robot within the map. Underwater

SLAM provides a safe, efficient, and cost-effective way to explore and survey unknown
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underwater environments. Specifically, monocular visual SLAM

provides an effective solution to many navigation applications

Bresson et al. (2017), detecting unknown environments and

assisting in decision-making, planning, and obstacle avoidance

based on only a single camera. Monocular cameras are the most

common vision sensors, which are inexpensive and ubiquitous

mobile agents, making them a popular choice of sensor for SLAM.

There has been increasing attention on using an autonomous

underwater vehicle (AUV) or remotely operated underwater vehicle

(ROV) to conduct the monitoring of marine species migration

Buscher et al. (2020) and coral reefs Hoegh-Guldberg et al. (2007),

the inspection of submarine cables and wreckage Carreras et al.

(2018), deep ocean exploration Huvenne et al. (2018) and underwater

cave exploration Rahman et al. (2018); Rahman et al. (2019b). Unlike

atmospheric imaging, the captured underwater images have issues

with low contrast and color distortion due to the strong scattering

and absorption phenomena. In detail, underwater pictures are usually

critically degraded due to large suspended particles, poor visibility,

and under-exposure. Thus it is complex and challenging to detect

robust features to track for visual SLAM systems. As a result, directly

performing the current available vision-based SLAM usually cannot

obtain a satisfactory and robust result.

To address this issue, Cho et al. Cho and Kim (2017) combined

Contrast-limited Adaptive Histogram Equalization (CLAHE) Reza

(2004) to conduct real-time underwater image enhancement to

promote the underwater SLAM performance. Furthermore, Huang

et al. Huang et al. (2019) performed underwater image

enhancement by converting RGB images to HSV space and then

performing color correction based on Retinex theory. Then the

enhanced outputs were applied for downstream underwater SLAM.

However, these methods only achieved marginal improvement and

could not work in highly turbid conditions.
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Generative adversarial networks (GANs) Goodfellow et al.

(2014) had been adopted for underwater image enhancement

Anwar and Li (2020); Islam et al. (2020a) to boost underwater

vision perception. Compared 48 with the model-free enhancement

methods Drews et al. (2013); Huang et al. (2019), GAN-based

image-to image (I2I) translation algorithms could enhance textile

and content representations and generate realistic images with clear

and plausible features Ledig et al. (2017), especially in highly turbid

conditions Han et al. (2020); Islam et al. (2020c). This line of

research has mostly taken place in the computer vision fields, with

the main focus on underwater single image restoration Akkaynak

and Treibitz (2019); Islam et al. (2020b). Benefiting from the

superior performance of GAN-based approaches, some

researchers attempted to use CycleGAN to boost the performance

of ORB-SLAM in an underwater environment Chen et al. (2019).

The experimental results have shown that CycleGAN-based

underwater image enhancement can lead to more matching

points in a turbid environment. However, CycleGAN Zhu et al.

(2017) could not meet the real-time requirement. Nevertheless,

CycleGAN-based underwater image enhancement may also

increase the risk of incorrect matching pairs. Besides, the feature

matching analysis and detailed quantitative SLAM results are

missing in Chen et al. (2019) for discussing the potential of

adopting the underwater enhancement for promoting underwater

SLAM performance in real-world underwater environments. To

address these issues, we aim to comprehensively analyze this point.

In this paper, we target to perform a lightweight GAN-based

image enhancement framework for underwater monocular SLAM

to promote performance. The proposed GAN-based image

enhancement can promote the feature matching performance

(Please refer to section 4.3.2 and Figure 1 for more details), which

can further lead to better and more robust SLAM results. To speed
BA

FIGURE 1

The illustrations of (A) underwater images and (B) the ORB [41] feature-matching under three settings: without any enhancement, with CycleGAN,
and with our method. Blue lines represent correct feature matching pairs and Red lines represent incorrect feature matching pairs. The proposed
underwater enhancement can significantly promote feature-matching performance. Best viewed in color.
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up the underwater image enhancement progress and reduce the risk

of incorrect matching pairs, we propose to perform GAN

compression Li et al. (2020b) to accelerate underwater image

enhancement inference. The knowledge distillation Aguinaldo

et al. (2019) is adopted to reduce the computational costs and the

inference time. We propose a generic robust underwater SLAM

framework shown in Figure 2, which could be extended to various

SLAM systems (e.g., ORB-SLAM2 Mur-Artal and Tardós (2017),

Dual-SLAM Huang et al. (2020) and ORB-SLAM3 Campos et al.

(2021)) and achieve a performance gain with the real-time GAN-

based underwater image enhancement module. The proposed

method performs favorably against state-of-the-art methods in

both position estimation and system stability. To sum up, our

main contributions are listed as follows:
Fron
•We introduce a generic robust underwater monocular SLAM

system, which can be extended to different SLAM

algorithms and achieve a large performance gain.

• To accelerate GAN-based image enhancement, we perform

GAN compression through knowledge distillation for

performing real-time underwater image enhancement as a

compelling image pre-processing module. As a result, we

can obtain more robust, stable, and accurate state

estimation outputs.

•Our method can achieve current state-of-the-art performance

and tailored analysis about 1) underwater image

enhancement, 2) robust and accurate feature matching,

and 3) SLAM performance is included in our paper.
2 Related work

2.1 Underwater image enhancement

The underwater image enhancement algorithms could mainly

fall into three categories: 1) model free Asmare et al. (2015); 2)

model-based Akkaynak and Treibitz (2019) and 3) data-driven Li
tiers in Marine Science 03
et al. (2018); Islam et al. (2020b); Islam et al. (2020c) algorithms.

The representative model-free CLAHE Reza (2004) method could

enhance an underwater image without the image formation process.

Asmare et al. Asmare et al. (2015) converted the images into the

frequency domain and proposed to enhance the high-frequency

component to promote the image quality. Though these model-free

methods could perform image enhancement with a very high speed,

they still heavily suffered from over-enhancement, color distortion,

and low contrast Li et al. (2020a), and they only achieved slight

improvement under highly turbid conditions. Model-based

methods considered the physical parameters and formulated an

explicit image formation process. Drews et al. Drews et al. (2013)

proposed to apply dark channel prior He et al. (2010) in the

underwater setting to perform underwater dehazing. The Sea-

Thru method Akkaynak and Treibitz (2019) firstly proposed to

estimate the backscattering coefficient and then recover the color

information with the known range based on RGB-D images.

However, collecting a large-scale underwater RGB-D image

dataset is expensive and time-consuming. The latter data-driven

underwater image enhancement algorithms Li et al. (2018); Han

et al. (2020); Islam et al. (2020b); Islam et al. (2020c) combined deep

CNNs to conduct underwater image restoration based on large-

scale paired or unpaired data. UWGAN Li et al. (2018) proposed to

combine multi-style underwater image synthesis for the underwater

depth estimation. SpiralGAN Han et al. (2020) proposed a spiral

training strategy to promote image enhancement performance.

FUnIE-GAN Islam et al. (2020c) could perform real-time

underwater image enhancement for underwater object detection.

Unlike this object-level enhancement algorithm, we target to

perform real-time GAN-based underwater image enhancement

for a more challenging underwater SLAM, which requires high-

fidelity pixel correspondences.
2.2 Underwater SLAM

The popular ORB-SLAM Mur-Artal and Tardós (2017); Elvira

et al. (2019) introduced an efficient visual SLAM solution based on
FIGURE 2

The overview framework of the proposed method. The left part on the red dotted line illustrates the GAN-based underwater image enhancement
module. In contrast, the right part shows the downstream underwater monocular SLAM with learned Gs for real-time inference. Gt and Gs indicate

the teacher and student generators, respectively. Given a pre-trained Gt , we aim to conduct GAN compression through knowledge distillation. flngN1
represent the chosen N layers of Gt to compress and fl}ngN1 indicate the compressed layers of Gs . fn indicates the additional convolutional layer to
achieve channel reduction to achieve shape matching between the intermediate layers of Gt and Gs . Ldis is computed to transfer the learned
knowledge of Gt to Gs . We compute pixel-wise loss Lpix , angular loss Langular and conditional GAN loss LcGAN between Gs(x) and y.
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ORB feature descriptor Rublee et al. (2011). VINS Qin et al. (2018);

Qin and Shen (2018) proposed a general monocular framework

with the IMU information. Unlike the aerial setting, underwater is a

typical global positioning system (GPS) denied environment, where

visual information provides valuable navigation queues for robot

navigation. Currently, without the GPS for camera pose ground

truth generation, a recent work Ferrera et al. (2019a) adopted

Colmap Schönberger and Frahm (2016); Schönberger et al. (2016)

to generate relatively precise camera trajectory based on structure-

from-motion (SFM). UW-VO Ferrera et al. (2019b) further adopted

the generated trajectory as ground truth to evaluate the underwater

SLAM performance. Because of the good properties of sound 116

propagation in the water, some sonar-based methods Rahman et al.

(2018); Rahman et al. (2019a; Rahman et al. (2019b) (e.g., SVIN

Rahman et al. (2018) and SVin2 Rahman et al. (2019b)) combined

the additional sparse depth information from the sonar sensor to

perform more accurate position estimation. However, these are

more suited for long-range underwater missions rather than close-

range ones. Besides, the sonar sensor is still expensive, and we target

to propose a general underwater SLAM framework based on the

visual information.
3 Methodology

3.1 Overall framework

We aim to propose a generic robust underwater monocular

SLAM framework, which contains two main procedures: Real-time

GAN-based Underwater Image Enhancement and Downstream

Underwater SLAM based on the enhanced underwater images

generated from the former stage. First, we refer the readers to

check the overall framework in Figure 2. To perform real-time

GAN-based I2I translation for underwater image enhancement, we

adopt the knowledge distillation Aguinaldo et al. (2019)for GAN

compression to achieve better performance-speed tradeoff. The

network parameters and computational costs could be heavily

reduced after compression while achieving comparable or even

better underwater enhancement performance.
3.2 GAN-based underwater
image enhancement

To achieve underwater image enhancement from a source

domain X to a target domain Y (e.g., the source turbid

underwater image domain and another target clear underwater

image domain). The conditional GAN pipeline Mirza and Osindero

(2014) is chosen in our work since it could generate more natural

and realistic image outputs based on full supervision. For generating

reasonable image outputs in the target domain, the adversarial loss

is applied:

LcGAN = Ex,y½log  D(x, y)� + Ex½log  (1 − D(x,Gs(x)))�, (1)
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where x and y are image samples from X and Y, respectively.
The adversarial loss LcGAN Isola et al. 137 (2017) could reduce the

distance between the generated sample distribution and the real

sample distribution. Besides the adversarial loss, the pixel-wise Lpix

is also included to measure the pixel difference (1-norm) between

the generated image output and the corresponding real clear image:

Lpix = ‖Gs(x) − y ‖1; (2)

please note that we compute both Lpix and LcGAN based on the

output of Gs rather than Gt .

Angular loss. To further promote the naturalness of

synthesized outputs, we adopt the angular loss Langular Han et al.

(2020) to obtain better image synthesis:

Laugular = EX,Y½∠ (Gs(x), y)�, (3)

where ∠ indicates the angular distance between Gs(x) and y in

RGB space. It is observed that the used Langular could lead to better

robustness and enhancement outputs to some critical over-under

exposure problems in the underwater images. The color distortion

could be effectively alleviated by Langular . Through the integration of

the above-mentioned loss functions, we could achieve effective and

reasonable underwater image enhancement. However, it cannot

meet the real-time inference requirement in Isola et al. (2017); Han

et al. (2020); Zhu et al. (2017).
3.3 GAN compression through
knowledge distillation

We performGAN compression through knowledge distillation to

save computational costs and achieve the tradeoff between

enhancement performance and inference speed. The detailed

design of the proposed GAN compression module is shown in

Figure 2, which contains the teacher generator Gt , the student

generator Gs, and the discriminator D. In detail, we transfer the

learned knowledge learned from Gt to Gs by matching the

distribution of the feature representations. We initialize the teacher

network Gt with a pre-trained underwater enhancement model and

Gt is frozen during the whole training procedure. The optimized

teacher network could guide the student network on extracting

effective feature representations and achieving better enhancement

performance. The distillation objective can be formulated as:

Ldis = o
N

n=1
‖ fn(Gn

s (x)) − Gn
t (x) ‖2, (4)

where Gn
s (x) and Gn

t (x) (with channel number c = 16) are the

intermediate feature representations of the n-th selected feature

layer in Gs and Gt , andN denotes the number of selected layers. fn is

the convolutional layer with 1� 1 kernel to achieve channel

reduction, which will not introduce many training parameters. In

our experiments, we set N = 6 and select the middle intermediate

feature representations. Different from Li et al. (2020b), we do not

perform a neural architecture search (NAS) considering its huge

time consumption. The channel number in Gs is set to 16. More
frontiersin.org
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ablation studies about the channel number c selection can be found

in Sec. 4.4.
3.4 Full objective function

We update the final objective function of the proposed method as:

L = LcGAN + Ldis + Langular + lLpix , (5)

where l is a hyper-parameter to balance the loss component.

We set l = 10 in our experiments following the setup in Isola et al.

(2017) to better balance the contribution of pixel-wise supervision

and other components in the proposed method.
3.5 Downstream underwater SLAM

For the downstreammonocular SLAMmodule, we have explored

different in-air SLAM systems: ORB-SLAM2, Dual-SLAM and

ORB-SLAM3 to perform state estimation based on the enhanced

underwater images after the image resizing for obtaining the

approximate image inputs. To be noted, the two modules are

optimized separately and the SLAM system is running in a hard-

core engineering manner. The in-air visual SLAM algorithms

underperform in the aquatic environment as the critical image

degradation. With the real-time GAN-based underwater image

enhancement module, the model could better model the complex

marine environment and find robust features to track from the

enhanced underwater images, which leads to more stable and

continuous SLAM results. Besides, the proposed framework could

be extended to various SLAM systems to achieve performance gain.
4 Experiments

In this section, we first provide the implementation details of

the proposed method and review the experimental setup. Then we

report the inference speed comparison of different underwater

image enhancement algorithms, followed by the detailed

performance comparison of different algorithms. Next, we target

to analyze the underwater SLAM performance from three aspects:

1) underwater image enhancement performance, 2) feature

matching analysis, and 3) qualitative and quantitative underwater

SLAM performance of different SLAM baselines under various

settings. Finally, we provide ablation studies to explore the

tradeoff between the underwater enhancement performance and

the inference speed.
4.1 Implementation details and
experimental setup

4.1.1 Implementation details
To obtain a lightweight and practical underwater enhancement

module, we perform the knowledge distillation to compress the
Frontiers in Marine Science 05
enhancement module to meet the real-time inference requirement.

The trained SpiralGAN model (also other GAN models) is chosen

as the teacher model Gt to stabilize the whole training procedure

and speed up the convergence. It is worth noting that Gt is frozen

when performing the knowledge distillation. The image resolution

of underwater enhancement is set to 256� 256, and we perform

upsampling to resize the enhanced image outputs to 640� 480

based on bilinear interpolation for further SLAM. The

hyperparameter c for selected feature layers is set to 16, and we

include the discussion about choices of c in our ablation studies. For

optimizer, we choose Adam optimizer Kingma and Ba (2014) in all

our experiments and set the initial learning rate to 0:0002.
4.1.2 Datasets
4.1.2.1 Training datasets for underwater
image enhancement

We adopt the training dataset from the previous work Fabbri

et al. (2018), which contains 6,128 paired underwater turbid-clear

images synthesized from CycleGAN Zhu et al. (2017). The

proposed method has been only trained with one underwater

dataset and can be extended to different unseen underwater

image sequences for performing underwater image enhancement.
4.1.2.2 Datasets for underwater SLAM

URPC dataset contains a monocular video sequence collected

by the ROV in a real aquaculture farm. The ROV navigates at a

water depth of about 5 meters. Operating ROV collected a total of

190 seconds of a video sequence with an acquisition frequency

24Hz. A total of 4,538 frames of RGB images (640� 352 image

resolution) were obtained. The collected video sequence has large

scene changes and low water turbidity. The image suffers severe

distortion, and the watercolor is bluish-green. Considering the first

2,000 consecutive images do not contain meaningful objects, we

remove them and only choose the last 2,538 images for

experimental testing. We choose the open-source offline SFM

library Colmap Schönberger and Frahm (2016); Schönberger et al.

(2016) to generate the camera pose trajectory for evaluating the

underwater SLAM performance. OUC fisheye Zhang et al. (2020)

dataset is a monocular dataset collected by the fisheye camera in a

highly turbid underwater environment. It provides 10 image

sequences from three water turbidity: 1) slight water turbidity

with about 6m visibility; 2) middle water turbidity with about 4m

visibility and 3) high water turbidity with about 2m visibility. The

image sequences are collected with the acquisition frequency of

30Hz and each sequence lasts about 45 seconds. In our experiments,

we evaluate an image sequence containing 1,316 frames

(1, 920� 1, 080 image resolution) with high water turbidity. The

severe distortion and heavy backscattering lead to a significant

influence on feature tracking. The trajectory is also generated from

Colmap Schönberger and Frahm (2016); Schönberger et al. (2016).

4.1.3 SLAM baselines
We chose three baselines: ORB-SLAM2, Dual-SLAM and ORB-

SLAM3 for comparison:
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• ORB-SLAM2 Mur-Artal and Tardós (2017) is a complete

SLAM system for monocular, stereo, and RGB-D cameras.

The adopted ORB-SLAM2 system has various applications

for indoor and outdoor environments. We choose it as the

baseline for performing underwater mapping and

reconstruction.

• Dual-SLAM Huang et al. (2020) extended ORB-SLAM2 to

save the current map and activate two new SLAM threads:

one is to process the incoming frames for creating a new

map and another is to link the created new map and older

maps together for building a robust and accurate system.

• ORB-SLAM3 Campos et al. (2021) perform visual, visual-

inertial, and multi-map SLAM based on monocular, stereo,

and RGB-D cameras, which has achieved current state-of-

the-art performance and provided a more comprehensive

analysis system.
4.1.4 Evaluation metric for SLAM
To measure the SLAM performance, we choose 1) Absolute

Trajectory Error (ATE), 2) Root Mean Square Error (RMSE), and 3)

Initialization performance for evaluation. ATE directly calculates the

difference between the camera pose ground truth and the estimated

trajectory from SLAM. RMSE can describe the rotation and

translation errors of the two trajectories. The smaller the RMSE is,

the better the system trajectory fits. The initialization performance

indicates the number of frames to perform the underwater SLAM

initialization. The lower the initialization frames, the better SLAM

performance, and more stable and continuous outputs. To make a

fair comparison, we repeat the underwater SLAM experiments 5

times to obtain the best result for all methods.
4.2 Inference speed comparison

In this section, we target to provide the inference speed

comparison of different underwater image enhancement methods

under the same experimental setting. For underwater image

enhancement methods, we choose CLAHE Reza (2004), UDCP

Drews et al. (2013) and FUnIE-GAN Islam et al. (2020c) for

underwater image enhancement comparison. To measure the

frames per second (FPS) for different methods, we test the speed of
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various methods on the practical Jetson AGX Xavier, which is widely

equipped on underwater ROVs and AUVs. The detailed FPS and

memory access cost (MAC) comparison is shown in Table 1 (the

testing image resolution is set to 640� 480 (default image resolution

of ORB-SLAM2 and ORB-SLAM3) for all methods to make a fair

comparison). Compared with the default image resolution

(256� 256) adopted in FUnIE-GAN, the proposed FPS

computation setting is more practical and can lead to more

reasonable and accurate translated outputs. As reported, UDCP has

a very low underwater image enhancement speed, and it costs several

seconds to process only one image. Besides, SpiralGAN and FUnIE-

GAN cannot perform real-time (e.g., ≥ 30) underwater image

enhancement. Our method has fewer network parameters and can

achieve real-time GAN-based underwater image enhancement.
4.3 Performance comparison

4.3.1 Underwater image enhancement results
Firstly, we target to demonstrate that the proposed method

could generate high-quality image synthesis outputs after the

underwater image enhancement module. We have provided a

direct comparison with the model-free image enhancement

algorithms (CLAHE and UDCP) and GAN-based image

enhancement method (FUnIE-GAN) in Figure 3 on the URPC

dataset. Compared with the previous model-free image

enhancement methods, the proposed method could enhance the

content representations of the objects. The synthesis image by

FUnIE-GAN has visible visual artifacts. In contrast, the proposed

GAN-based image enhancement method could achieve better

results with more reasonable outputs. To be noted, the proposed

method has been only trained on one underwater dataset and can be

extended to different unseen underwater image sequences for

testing. The strong generalization ability could alleviate the efforts

of the model-based algorithms to change the physical parameters,

which is also time-consuming. The GAN-based image

enhancement module has shown powerful effectiveness and

achieved better results. We provide more underwater image

enhancement result comparisons in our supplementary.

4.3.2 Feature matching analysis
We have designed comprehensive feature-matching experiments

to reveal whether the proposed underwater image enhancement
TABLE 1 Quantitative FPS, MACs(G) and Parameter(M) comparison of various methods.

Method FPS ↑ MACs (G) ↓ Parameter(M) ↓

CLAHE 260.0 – –

UDCP 0.041 – –

FUnIE-GAN 7.36 47.96 7.02

CycleGAN 3.25 266.40 11.38

SpiralGAN 17.63 34.75 4.99

Proposed 31.83 8.81 1.28
The image resolution is set to 640� 480 for evaluation based on practical Jetson AGX Xaviver. ↑ ( ↓) indicates that the larger (smaller) the value is, the better the performance.
The best results are in bold. "-" means not applicable.
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could promote the feature-matching performance for SLAM. First,

following the experimental setup in Cho and Kim (2017), we report

the ORB, SIFT, and SURF feature-matching results. For a fair

comparison, 500 same image pairs are chosen for performing

feature matching based on various feature descriptors with two

different frame intervals: 20 and 30. If the matching points number

is larger than 50, we regard the matching as successful and report the

successful matching rate. The detailed results are illustrated in

Figure 4. Besides, we also provide the average number of matching

points of different feature descriptors. Compared with feature

matching performance conducted on the original images, UDCP

Drews et al. (2013) could only lead tomarginal improvement or slight

degradation. FUnIE-GAN Islam et al. (2020c) failed to generate

reasonable enhanced image outputs with plausible textile
Frontiers in Marine Science 07
information. There is an observable performance degradation

compared with the “original” setting. In contrast, the proposed

method can improve performance under all settings.

Furthermore, to verify that the yielded feature matching points

are valid interior points, we conduct feature point matching

evaluation through reprojection. In detail, the feature points

extracted from the current frame are reprojected to the previous

20th image frame. We obtain the ground truth feature matching

based on Structure-from-Motion. For defining accurate feature

matching points; we choose a 3� 3 pixel area:
• When the distance between the projected point (computed

based on the estimated transformation matrix H and the

intrinsic camera parameter K) and the detected feature
FIGURE 4

The qualitative feature matching results of various methods based on different feature descriptors. The lines and the bars indicate the feature
matching success rates and average matching points based on various feature descriptors, respectively.
FIGURE 3

The qualitative results of different underwater image enhancement methods. Best viewed in color.
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Fron
point is less than 3, such detected feature matching points

are marked as tbfInner points (denoted as Pi),

• Other detected feature points are falsely matched as Outlier

points (denoted as Ps).
We have provided the qualitative feature matching performance

under three settings: 1) w/o underwater enhancement, 2)

enhancement by CycleGAN, and 3) our method in Figure 1. As

reported, CycleGAN adopted in Chen et al. (2019) a as a pre-

processing module could increase the number of correct matching

pairs. However, the number of incorrect matching pairs also

increased. The proposed method can significantly increase the

number of correct matching pairs with few errors.

For the quantitative comparison, we compute the error rate

statistically based on 100 pairs as follows:

Err : =
Po

Pi + Po
: (6)

The proposed method could achieve a matching error rate of

1.2%, significantly outperforming the error rate of 11.5% achieved

by CycleGAN. The error rate of 10.1% under the setting without

underwater enhancement is also reported for better comparison. As

reported, the proposed method could effectively promote the

feature matching performance. Finally, it is worth noting that

Chen et al. (2019) did not conduct feature matching

accuracy analysis.
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4.3.3 Qualitative and quantitative results
In this section, we aim to provide both qualitative and

quantitative underwater SLAM performance comparisons using

real-world underwater datasets. Similarly, the qualitative image

enhancement results on both URPC and OUC fisheye datasets

are reported in Figure 5. Our method could effectively alleviate the

over-under exposure problem and increases contrast and

brightness. Besides, our enhancement module could render more

details and utilize previous content representations from the

original input images. We combine different image enhancement

methods with ORB-SLAM2 to explore the improvement of

underwater SLAM performance on the URPC dataset. Due to the

fact that it is time-consuming to perform UDCP, we do not perform

UDCP for the downstream underwater SLAM. The quantitative

SLAM performance comparison can be found in Table 2. The

proposed GAN-based underwater image enhancement method

could heavily promote underwater SLAM performance with a

real-time processing inference time. On the other hand, the

FUnIE-GAN cannot synthesize enhanced outputs and there is a

performance degradation compared to the SLAM performance

conducted on the original underwater images.

Furthermore, we combine the GAN-based underwater image

enhancement module with two SLAM systems: Dual-SLAM and

ORB-SLAM3. The quantitative results are shown in Table 3. The

estimated camera pose trajectory is more stable and the initial

performance has been promoted heavily. The reasonable image
FIGURE 5

The qualitative results of our GAN-based underwater image enhancement on (A) URPC dataset and (B) OUC fisheye dataset. Best viewed in color.
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enhancement could result in more reliable feature matching so that

our method could achieve more stable and accurate outputs. The

image enhancement module could promote the underwater SLAM

performance in all metrics. Besides, the qualitative trajectory results

are also included in Figure 6. The proposed framework

outperforms current SLAM methods in both qualitative and

quantitative evaluations.

4.3.4 Highly turbid setting
Comprehensive experiments have demonstrated that the

proposed method can generate realistic enhanced images with

high fidelity and image quality, which can be applied to promote

underwater monocular SLAM performance. To further

demonstrate the effectiveness and the generalization performance

of the proposed framework, we perform experiments on OUC

fisheye dataset Zhang et al. (2020). For better illustration, we

provide the original underwater image and the enhanced output

image in Figure 5B. Similarly, the quantitative and qualitative

results under various settings are reported in Table 4 and

Figure 7, respectively. The proposed framework can also promote

SLAM performance under various challenging settings.
4.4 Ablation studies

4.4.1 Tradeoff between enhancement
performance and inference speed

To better explore the performance-computation tradeoff, we

have conducted experiments using different values of cin Gs. We
Frontiers in Marine Science 09
report the computational costs, inference time, and SLAM results in

Table 5. SpiralGAN Han et al. (2020) sets c = 32 and the proposed

compressed method (c = 16) has achieved comparable or even

better performance with higher speed. When c = 8, though it

could perform real-time underwater image enhancement with a

very high inference speed (FPS=47.54), there is a noticeable

enhancement performance drop compared with the proposed

method (c = 16).
5 Discussions

In this work, the GAN-based image enhancement module and

the downstream visual SLAM are optimized separately. The image

enhancement is only adopted as an effective image pre-processing

module. We assume that the enhanced image could have higher

image quality. However, if the GAN-based module cannot generate

reasonable images, there would be performance degradation for the

SLAM system. The wrong enhanced underwater outputs could lead

to error accumulation. We target to optimize the two modules in a

multi-task learning manner. The two modules could be mutually

beneficial. Besides, we target to build a general open-source

underwater SLAM framework which is robust to various

underwater conditions. Furthermore, we also target integrating

visual-inertial global odometry to combine the scale information

into our system. We leave these as our future work.

Furthermore, we adopted the camera pose estimation results

from the 3D reconstruction as the pseudo ground truth to evaluate
TABLE 3 Quantization error of different SLAM methods under two settings: 1) without and 2) with the proposed GAN-based underwater image
enhancement on the URPC dataset.

Method ATE ↓ RMSE ↓ Initialization ↓

ORB-SLAM2 w/o 1.418 1.484 84

ORB-SLAM2 w/ 1.344 1.447 23

Dual-SLAM w/o 1.438 1.502 49

Dual-SLAM w/ 1.350 1.444 6

ORB-SLAM3 w/o 1.405 1.472 69

ORB-SLAM3 w/ 1.332 1.433 3
The best results are in bold.
TABLE 2 Quantization error ORB-SLAM2 baseline with different enhancement methods on the URPC dataset.

Method ATE ↓ RMSE ↓ Initialization ↓

ORB-SLAM2 w/o 1.418 1.484 84

ORB-SLAM2 CLAHE 1.397 1.468 61

ORB-SLAM2 FUnIE-GAN 1.474 1.505 136

ORB-SLAM2 CycleGAN 1.501 1.565 159

ORB-SLAM2 SpiralGAN 1.348 1.446 24

ORB-SLAM2 Proposed 1.344 1.447 23
The best results are in bold.
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SLAM performance since it is very challenging and difficult to

obtain absolutely accurate ground truth in the underwater setting.

To alleviate the ground truth acquisition, we utilize the Structure-

from-Motion technique for more robust pose estimation

Schönberger and Frahm (2016) in an offline manner since it

combines the global bundle adjustment (BA) and pose-graph
Frontiers in Marine Science 10
optimization for more effective and accurate state estimation.

The SIFT feature point adopted in Schönberger and Frahm

(2016) ¨ 354; Schönberger et al. (2016) is also more accurate

than ORB which is widely used in SLAM systems. However, the

reconstructed camera poses through 3D reconstruction may still

have errors and cannot work under some adverse underwater
FIGURE 7

The qualitative results of different SLAM methods on the OUC fisheye dataset under two settings: 1) without and 2) with the proposed GAN-based
underwater image enhancement.
FIGURE 6

The qualitative results of different SLAM methods on URPC dataset under two settings: 1) without and 2) with the proposed GAN-based underwater
image enhancement.
TABLE 4 Quantization error of different SLAM methods under two settings: 1) without and 2) with the proposed GAN-based underwater image
enhancement on the OUC fisheye dataset.

Method ATE ↓ RMSE ↓ Initialization ↓

ORB-SLAM2 w/o 2.655 2.700 153

ORB-SLAM2 w/ 2.410 2.450 10

Dual-SLAM w/o 2.676 2.688 59

Dual-SLAM w/ 2.586 2.520 1

ORB-SLAM3 w/o 2.654 2.667 33

ORB-SLAM3 w/ 2.559 2.561 2
The best results are in bold.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1161399
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zheng et al. 10.3389/fmars.2023.1161399
environments (e.g., motion blur, camera shaking, an extensive

range of rotation, and etc.).
6 Conclusion

This paper has proposed a generic and practical framework to

perform robust and accurate underwater SLAM. We have designed

a real-time GAN-based image enhancement module through

knowledge dist i l lat ion to promote underwater SLAM

performance. With the adaptation of an effective underwater

image enhancement as a pre-processing image module, we could

synthesize enhanced underwater images with high fidelity for

further underwater SLAM, leading to observable performance

gains. The proposed framework can work effectively in an

extensible way, in which external modifications can plug in the

underwater monocular SLAM algorithms.
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