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Nowadays, most fishing vessels are equipped with high-resolution commercial

echo sounders. However, many instruments cannot be calibrated andmissing data

occur frequently. These problems impede the collection of acoustic data by

commercial fishing vessels, which are necessary for species classification and

stock assessment. In this study, an automatic detection and classification model

for echo traces of the Pacific saury (Cololabis saira) was trained based on the

algorithm YOLO v5m. The in situ measurement value of the Pacific saury was

measured using single fish echo trace. Rapid calibration of the commercial echo

sounder was achieved based on the living fish calibration method. According to

the results, the maximum precision, recall, and average precision values of the

trained model were 0.79, 0.68, and 0.71, respectively. The maximum F1 score of

the model was 0.66 at a confidence level of 0.454. The living fish calibration offset

values obtained at two sites in the field were 116.30 dB and 118.19 dB. The sphere

calibration offset value obtained in the laboratory using the standard sphere

method was 117.65 dB. The differences between in situ and laboratory

calibrations were 1.35 dB and 0.54 dB, both ofwhichwerewithin the normal range.

KEYWORDS

fishing vessel, automatic detection, commercial echosounder calibration, Cololabis
saira, deep learning, single fish detection
1 Introduction

As an important method for fishery resource surveys, hydroacoustic technology

enables fast and independent testing, that is both harmless for the resources and

accurate. Moreover, underwater acoustic spatial information with time series can be

obtained (Foote and Rothschild, 2009; Haris et al., 2021). Hydroacoustic detection
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technology plays an important role in analyzing fish migration

paths (Martignac et al., 2015; Gjøsæter et al., 2017), fish habitat

distribution (Slotte et al., 2004; O'Donncha et al., 2021), and fish

resource changes (Melvin et al., 2016; Aranis et al., 2022). It also

allows to study zooplankton sound scattering layers (Boswell et al.,

2020; Xue et al., 2021). The acoustic characteristics of a single

organism or a biotic aggregate are defined as echo traces (Reid,

2000). The SHAPES theory (Coetzee, 2000) was published to

provide a method of analyzing fish populations based on these

echo traces. The main parameters the theory uses are the

morphology and echo strength distribution of echo traces. Based

on the above theory of fish echo trace analysis, the distributions of

adult and juvenile sardine aggregation were found to be significantly

different in the Mediterranean region (Tsagarakis et al., 2012).

Swarms of anchovy (Engraulis ringens), common sardine

(Sardinops sagax), and Pacific jack mackerel (Trachurus

symmetricus) were identified by the SHAPES theory in northern

and south-central Chilean waters. This analysis innovatively uses a

statistical model to automate the classification of large quantities of

fish echo traces (Robotham et al., 2010). The above studies

demonstrate the feasibility of distinguishing species and age

groups by features of fish school echo traces. However, the echo

traces that emerge in response to discrete single fish situated around

the school were often ignored. The echo traces of discrete

individuals are usually inverted ‘V’-shaped or lightning-shaped

(Reid, 2000). In previous studies (Boyra et al., 2019; Julie et al.,

2020; Khodabandeloo et al., 2021), single fish echo traces were the

main data source for measuring the in situ target strength values of

different fish species. These single fish echo traces are important for

fish species classification. Different fish species (Sawada et al., 2009),

swimming tilt angles (Fernandes et al., 2016; Tong et al., 2022),

swimming speeds (Lee et al., 2010), and fish swim bladder sizes

(Sobradillo et al., 2019) affect the magnitude of fish target strength

values. Because of dense fish aggregation during fishing activities,

there are numerous targets on the echogram, making the detection

and extraction of single fish echo images more challenging because

of interference of environmental and instrument noises. Thus, most

current in situ target strength measurement applications still

require rigorous equipment and environmental conditions, while

having limited application scope for measured target

strength values.

Previous studies predicted the categories of echo trace and

large-scale automatic classification using the calculation power of

computers. Initially, statistical models were used to classify

morphological parameters of the acoustic image measurements

and echo strength values (LeFeuvre et al., 2000). These models

include supervised machine learning models, such as classification

tree (Fernandes, 2009), random forest (Fallon et al., 2016), support

vector machine (Robotham et al., 2010), as well as unsupervised

machine learning models such as K-means (Ito et al., 2013),

Gaussian mixture models (Robotham et al., 2010), and principal

component analysis (Lawson et al., 2001). However, statistical

models are dependent. Digital image processing techniques and

related acoustic methods are required to capture and enhance the

echo trace features and infer the variability between feature

parameters to complete the automatic identification process. Basic
Frontiers in Marine Science 02
hypotheses are established based on feature values and variability to

guide model training, which increases the difficulty and time

consumption of data processing.

Deep learning techniques have been employed to develop a

number of available network frameworks (Wang et al., 2022; Wang

et al., 2023a). These frameworks and the modules that are based on

them have been widely applied for underwater image enhancement

(Wang et al., 2023b; Wang et al., 2023c) and noise control (Wang

et al., 2023d). Among them, convolutional neural network (CNN) is

one of the more widely used network architectures. The advent of

CNN has increased the freedom of machine self-learning (Rathi

et al., 2017; Albawi et al., 2018; Gu et al., 2018) while providing

more possibilities for the identification of fish echo traces.

Currently, target detection algorithms based on CNN can be

classified into two-stage algorithms represented by Faster R-CNN

(Li et al., 2015) and one-stage algorithms represented by YOLO

(You Only Look Once) (Jalal et al., 2020). The two-stage algorithms

mainly include two stages of interest region extraction and image

detection, and can achieve higher recognition accuracy than single-

stage algorithms. The increased computational power obtained by

the region of interest extraction stage also limits the speed with

which the algorithm can detect the target. Compared with a two-

stage algorithm, the YOLO algorithm-based single-stage algorithm

implements target detection and bounding box regression

operations directly on the image, thus achieving a higher target

detection speed. However, its recognition accuracy is slightly lower

than that of the two-stage algorithmmodel. In a recent study, a deep

learning-based target detection algorithm was applied to the target

detection of underwater fish optical images. Li et al. (2015) and Li

et al., (2016) captured underwater acoustic images and achieved

recognition of fish in images by the faster R-CNN algorithm.

Wageeh et al. (Wageeh et al., 2021) used a YOLO model with the

introduction of an image enhancement algorithm to achieve

automatic detection and counting of fish at a fish farm. Wang

et al. (Wang et al., 2021) established a basic line for underwater

object detection based on the YOLO v5 algorithm, which facilitated

subsequent research on the detection of underwater objects. Jalal

et al. (Jalal et al., 2020) proposed a method for detecting and

identifying fish in complex underwater environments by combining

a Gaussian mixture model, an optical flow module to detect the

temporal information of fish swimming in the video, and a YOLO

target recognition module to improve the comprehensive accuracy

of video target detection. Acoustic images are usually captured in

the form of one-channel graphing, which contains less information

than optical images, usually containing three channels. This is

challenging for acoustic image recognition using the YOLO

model. The YOLO model is still valid for small target echo target

recognition in the presence of noise in acoustic images (Fang and

Wang, 2021).

In this study, the acoustic data collected by commercial Pacific

saury (Cololabis saira) fishing vessels were used as original dataset

to train the YOLO model. The pre-processing module of the

acoustic data was established using image processing. Based on

the YOLO v5 algorithm, the automatic target detection model was

constructed to complete the automatic detection and target

identification of single fish and fish schools in the echograms.
frontiersin.org
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Finally, echo traces extracted from the target recognition were used

to identify single fish and calibrate the echosounder of the

commercial fishing vessel.
2 Materials and methods

2.1 Acoustic data collection

The fishing platform is the ocean-going Pacific saury fishing

vessel FV ‘Ming Hua,’ with a total length of 73.98 m and a draft of

5 m. The vessel entered the fishing grounds on May 13, 2021, and

carried out the fishing of Pacific saury and squid (Todarodes

pacificus). In this study, the data collected at the time of catching

Pacific saury were used as the original dataset. The main area of the

Pacific saury is the high seas region of the northwest Pacific Ocean

(41°–48° N, 166°–172° E) (Figure 1), using a stick-held dipnet for

fishing. The acoustic instrument used for acoustic data collection

was a Hondex HE-1500Di (The Honda Electronics Co., Ltd.,

Toyohashi, Japan) single-beam commercial echo sounder. The

basic parameters of the echo sounder are shown in Table 1. The

commercial echo sounder was modified to save the raw echo level

data collected by the transducer directly and combine it with both

GPS data and time series. Then, the data were stored on a flash

memory card. The detecting depth of the echo sounder was 300 m,

and each memory card could collect 6.8 h of acoustic data.
2.2 Processing algorithm

2.2.1 Acoustic data pre-processing
The acoustic echograms obtained from the original acoustic

dataset contain electromagnetic pulse noise from other fishing

vessel equipment, environmental noise, and zooplankton
Frontiers in Marine Science 03
reverberation. These noises can be a great obstacle for the

identification and labeling of fish schools and single fish, as well

as a challenge for learning single fish and fish school features during

the model training process. In this study, an acoustic data pre-

processing algorithm is proposed based on digital image processing

technology to remove both noise and reverberation. The algorithm

flow is shown in Figure 2.

The echo level value in the acoustic data was first converted to

sound backscattering strength values. The conversion formula is

shown in Equation (1):

Sv = EL + 20 log (r) + 2ar − 10 log (j� ct
2
) − K0 (1)

where EL is the received echo level (dB re 1 mV); a is the sound

absorption coefficient; r is the depth value; j is the equivalent beam

angle; c is the sound speed in water; and t is the pulse length. K0 is a

transmitting and receiving factor, which is determined by the

sphere calibration (dB) according to Equation (7). The data

within 5 m of the sea surface of the acoustic data were removed

according to the draft depth of the fishing vessel to avoid

interference of the data by bubbles generated by the vessel and

the movement of the surf. The integration threshold range of the

acoustic data is set, and the part outside the integration threshold is

removed to avoid the disturbance of the echo data by zooplankton

and large predators. The integration threshold was set to range from

− 20 dB to   64 dB according to the integration settings in previous

small pelagic fish resource surveys (Axenrot et al., 2004;

Trumpickas et al., 2020). The small discrete noise generated by

bubbles and the high-frequency impulse noise caused by

instruments were removed using the open-close operation and

the 3*3 median filter, respectively. The edge detection algorithm

was used to detect the edge of the echo trace. The morphology,

depth, and scattering strength of the echo trace are measured using

the regionprops function. To prepare the echogram data for the
FIGURE 1

The black frame in the left figure panel indicates the range of acoustic monitoring; the black dots in the right figure panel indicate acoustic
monitoring data sampling sites; the black triangles indicate acoustic and biological sampling sites.
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process of target detection by YOLO v5, the grayscale image was

transformed by the first-order numerical matrix. Each value in the

matrix is mapped to the set colormap, the colors in the colormap are

all RGB colors, and each color is a double float value in the interval

[0,1]. The data of the matrix is normalized to correspond with the

color value, and different values represent different colors. Thus, the

indexed image using RGB color is formed. At this stage, the acoustic

data preprocessing is complete. The specific process of pre-

processing is detailed in Appendix A.

2.2.2 Echo trace classification and labeling
After pre-processing and morphological measurements, the

echo traces that remained on the 50-kHz echograms were filtered.

The location of the Pacific saury school was approximately

determined by comparing the time of each catch in the fishing

logbook for further filtering. The method of determining whether

an echo trace is a single fish by analyzing the echo trace height

related to pulse length has been applied to in situ target strength
Frontiers in Marine Science 04
measurements (Didrikas and Hansson, 2004; Sawada et al., 1993).

In this study, the above method was used to filter and separate single

fish echo traces. The fish school was filtered with reference to the

SHAPES algorithm (Coetzee, 2000). Echo traces with a height larger

than 1 m and a length longer than 5 m were classified as fish

schools. The remaining echo traces were classified as multiple fish.

The three types of echo traces were labeled as “0” for single fish, “1”

for multiple fish, and “2” for fish schools.
2.3 YOLO v5 model

2.3.1 Model structure
The YOLO v5 model is one of the representative models of one-

stage target detection models based on deep learning. The four main

versions in the existing YOLO v5 series are named YOLO v5s,

YOLO v5m, YOLO v5l, and YOLO v5x. The differences between

these four versions are the depth and width of the model network.

Different network depths determine the number of convolutional

layers, and different network widths determine the number of

convolutional kernels in one convolutional layer. The network

depth and width of these four versions of the model increase

sequentially. An increase in the number of convolutional kernels

and convolutional layers represents an enhancement in the

recognition accuracy of the model, but also increases the size of

model. To run the model on devices with low computing power

while ensuring the detection accuracy, YOLO v5m was used as the

base training model for the automatic detection experiments.

YOLO v5m has a smaller model complexity compared to YOLO

v5l and YOLO v5x, thus enabling model training on lower-

computing devices. YOLO v5m also has a better small target

detection capability compared to YOLO v5s. The main network

structure of the model is shown in Figure 3. Its structure consists of

four parts: Input, Backbone, Neck, and Prediction.

The size of the imported RGB images in three channels set at the

input side was 640 by 640 pixels When importing the images from

the dataset into the model for training, the model automatically

scaled the image size to the set size using the adaptive image scaling

module. The Mosaic data enhancement algorithm and adaptive

anchor frame calculation method were used at the input side to

enhance the generalization ability of the model.

The backbone network part of the model mainly includes the

four modules of focus, CBL, CSP, and SPPF. Among them, the focus

module is used for downsampling, slicing, and convolution.

Adjacent pixels in the image were first sampled using the down

sampling and slicing method. After this operation, an image was

divided into four feature maps, thus the number of channels is

expanded four times without loss of information, and the size of the

obtained feature maps was 320*320*12. Then, the image was

convoluted by using convolutional kernel, and the final feature

maps were also 320*320*32. Compared with common down

sampling, the focus module completes image down sampling

without loss of information. The CBL module contains

convolution (conv), batch normalization (BN), and Leaky Relu,

which serve to convolve the input data. The CSP module contains

the CBL module and its components, with the addition of a residual
FIGURE 2

The architecture of the developed acoustic data pre-processing
algorithm.
TABLE 1 Main parameters of the Hondex HE-1500Di echo sounder.

Parameters Values

Frequency 50 kHz

Transducer type TD-47

Beam type Single beam

Pulse length (ms) 1.7

Pulse interval (s) 1

Transmit power (w) 1000

Absorption coefficient (dB/m) 0.0129

Equivalent beam angle (dB re 1 Str) -13.79
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component to avoid network degradation caused by gradient

disappearance. The CSP module enables the model to learn more

features. The SPPF module converts feature maps of arbitrary size

into feature vectors of fixed size via the CBL module and

maxpooling. The image was sliced and convolved into a

320*320*32 feature map by the focus module, convolved, and the

residual features of the image were extracted by the CBL module.

The number of network channels was expended through the SPPF

module after earning the residual image features with the

CSP module.

2.3.2 Model training
Model training was conducted using an Intel (R) Core (TM) i7-

10875H CPU @ 2.30 GHz, GPU selected NVIDIA Geforce

GTX1650 with 4 GB of video memory, using PyTorch 1.13 as the

deep learning framework. The number of epochs was set to 300 in

model training, and the batch size was set to 16.

2.3.3 Model evaluation indicators
Precision (P), recall (R), mean average precision (mAP), and

F1-Score were used as indicators to evaluate the performance of the

echo trace target detection model. P represents the precision and

accuracy of the model, while R represents its recall and

completeness. Formulas of P and R are shown in Equations (2)

and (3):

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

where TP is truly positive, indicating that prediction and actual

exist at the same time; FP is false positive, indicating that actually

does not exist but prediction does; FN is a false negative, indicating

that actual exists, but prediction does not. While mAP represents

the average accuracy of all target categories detected by the model,

the formula is obtained by averaging the average precision (AP)

values of all targets. The F1-score represents the summed average of
Frontiers in Marine Science 05
precision and recall with a maximum value of 1 and a minimum

value of 0. This parameter allows for a more intuitive representation

of the detection accuracy of the model. AP and mAP could be

calculated using Equations (4) and (5):

AP = o
n−1

i=1
(ri+1 − ri) ∗ Pinter(ri + 1) (4)

mAP = o
k
i=1APi
k

(5)

where ri+1 − riri is the amount of change in recall and Pinter(ri +

1) is the precision of the interpolation segment when the recall is ri.

The F1-Score is calculated according to Equation (6):

F1score = 2*
P*R
P + R

(6)
2.4 Living fish calibration for the
commercial echo sounder

When acoustic surveys are conducted using fishing vessels, the

lack of sufficient time for standard process instrument calibration of

echo sounder indicates the need to evaluate instrument

performance using a simplified method. In previous studies,

certain calibration methods using objects with known physical

properties have been used to calibrate the echosounder, including

the calibration sphere method (Knudsen, 2009), the natural seafloor

calibration method (Eleftherakis et al., 2018), and the living fish

calibration method (Johannesson and Losse, 1977). Of these, the

natural seafloor calibration method and the living fish calibration

method (both relative calibration methods) can test the

performance of the echo sounder within a short period, and are

thus suitable for the calibration of acoustic instruments on

commercial fishing vessels. The acoustic data collected in this

study were not detected at the sea bottom because the area is

located in the deep sea. Hence, the living fish calibration method

was used for commercial echo sounder calibration.
FIGURE 3

The main architecture of the YOLO v5m model.
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The instrument calibration of the commercial echo sounder was

performed in a laboratory pool before the fishing vessel was put to

sea. The sphere calibration offset K0 was obtained in a standard

sphere calibration process. The formula for sphere calibration offset

is shown in Equation (7):

K0 = EL + 40 log (r) + 2ar − TS (7)

where r is the distance between the target and transducer; a is

the hydroacoustic absorption coefficient; TS is the target strength of

the calibration sphere; EL is the echo level (dB re 1mV) of the

calibration sphere on the beam axis. The YOLO v5 model was used

to detect single fish echo traces, and the max echo level values of the

echo trace in the bounding box were extracted for calculating the

on-axis measurement value (MV) (dB).MV is calculated according

to Equation (8):

MV = EL + 40 log (r) + 2ar − 2D (8)

where D is the directivity of the transducer. This study used a

single-beam transducer to measure the target echo level value.

When the target is directly below the transducer, D is 0, and the

target echo level value reaches the maximum at this time. The

prolate spheroidal model (PSM) was used to simulate the target

strength of the Pacific saury, and the catches caught during the

acoustic monitoring were sampled to obtain 100 fish from two

sampling sites. The total length and fork length of the Pacific saury

were measured on board. The correlation coefficient Asoft   was

calculated based on the swim bladder fish model, as shown in

Equation (9):

Asoft = 20 log (
F
2a

) + 20 log (
Lb
L
) − 40 (9)

where F is defined as the absolute value of the backscattering

amplitude from the fish in the far field region; a is half of the fork

length; Lb is the length of the swim bladder, and L is the fork length

of the fish. For the ratio of the length of the swim bladder to the fork

length of the fish in Equation (9), a typical value of 0.34 is assumed

based on the research of Furukawa (Furusawa, 1988). The TSmodel is

calculated based on Equation (9), as shown in Equation (10):

TSmodel = Asoft + 20 log (L) (10)

The living fish calibration offset K is obtained by subtracting the

in situ MV from the TSmodel , as shown in Equation (11):

K = MV − TSmodel (11)
3 Results

3.1 Pre-processing algorithm experiment

The raw acoustic data were collected over 7 d of fishing. During

the catching process, the number of Pacific sauries in the total catch

was highest, which shows that when fishing with the collector light,

the fish that rise to the sea surface are mainly saury; furthermore,

the fish that are attracted by the beam emitted by the transducer are

saury. An example original acoustic echogram obtained during the
Frontiers in Marine Science 06
fishing process is shown in Figure 4. The fish gradually concentrated

within the water layer about 30 m from the sea surface when the fish

trap light was turned on. The echo data within 30 m intercepted

from Figure 4 are shown in Figure 5, where Figure 5A shows the fish

underwater during the search process. Figures 5B, C show the

underwater fish when the fish trap light is turned on. The fish

gradually gathered in the water layer around 20 m and formed a

dense cluster. Figure 5D shows the fish underwater during the

fishing process. The fish were mainly concentrated in the water

layer of 20–30 m depth, while the fish within 20 m were relatively

discrete. Many bubbles and noise signals were generated by the

fishing vessel in the above images, and reverberant signals were

generated by plankton, which is the main prey of the Pacific saury.

The acoustic echogram after pre-processing using the algorithm

and labeling is shown in Figure 6. The echograms of the echo trace

of Pacific saury were separated, and the noise and reverberation

generated by the plankton were removed. The depth and

morphology of fish could be seen more clearly in the echograms.

The isolated echo traces were boxed out using the red bounding

box. The parameters obtained from the measurements were used to

classify the echo trace as “0” for single fish, “1” for multiple fish, and

“2” for schools. The labeled results are located in the upper left

corner of the red bounding box.
3.2 Dataset construction

The pre-processed echograms are used as automatic recognition

model training dataset. The duration of each pre-processed

echogram was 30 min, and the depth of the echogram was 30 m.

According to the size of imported images (640*640*3), the resolution

in the vertical direction was 4.6 cm and the resolution in the

horizontal direction was 2.81 sec. Because the speed of the fishing

vessel was not constant during the fishing process, the horizontal

resolution of each data is different. See Appendix B for details. A total

of 91 echograms were finally available in the dataset. A total of

10,710 echo traces were extracted from the echograms, including

7,725 single-fish echo traces, 2,346 multiple-fish echo traces, and 639

echo traces of the school. The dataset was randomly divided into a

training set (85%), a validation set (5%), and a test set (15%).
FIGURE 4

Example of an original acoustic echogram associated with Pacific
saury during the search and catch period.
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3.3 Model training results

Table 2 presents the evaluation metrics of the observation used

to test the effectiveness of the trained model. The recall of the model

reached a maximum of 0.68 when the number of training epochs

was 211. The precision and mAP_0.5 reached maximum values of

0.79 and 0.71, respectively, when the number of epochs was 281.

The mAP_0.5:0.95 reached a maximum of 0.43 when the number of

epochs was 300. The curve of the F1-score related to the confidence

level is shown in Figure 7. The F1-score for all classes at a

confidence level of 45.4% reached a maximum value of 0.66. At a

confidence level of about 55%, the F1-score remained above 0.6,

then decreased rapidly until it reached zero. The echograms from

the test set were imported into the trained model. Detection results

are shown in Figure 8.
3.4 Calibration of the commercial
echo sounder

Figure 9 shows the in situ MV histograms for two sampling sites

with biological sampling. The maximum value of the in situ MV

observed on June 4, 2021, was 94.35 dB, and the minimum value

was 54.93 dB. The maximum value observed on July 5 was 95.58 dB,

and the minimum value was 55.13 dB. The difference between the

two maximum values was 1.23 dB, and the difference between the

two minimum values was 0.2 dB.

The average, standard deviation, maximum, and minimum

values of the measured body lengths of the Pacific saury samples

collected at the two stations are presented in Table 3. The histogram

of the TSmodel calculated from the measured body lengths is shown

in Figure 10. The in situ MVand TSmodel measurements are averaged

and differenced to obtain the value of living fish calibration offset K .
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The calculated living fish calibration parameters are shown

in Table 4.

The data in Table 4 show that the mean in situ MV measured on

Jun 4, 2021, was 70.48 dB and 73.85 dB on Jul 5, 2021. The mean

values of the correlation coefficients Asoft for the two sites measured

by the model method were -95.29 and -92.47, respectively, and the

calculated TSmodel values were -45.82 dB and -44.34 dB, respectively.

The living fish calibration offset K values were 116.30 dB and 118.19

dB, respectively. Compared with the K0 measured from the

standard sphere method calibration, the differences between K

and K0 were 1.35 dB and 0.54 dB, respectively.
4 Discussion

4.1 Automatic echo trace detection

In this study, no training set of echo traces was available to pre-

train the model. Therefore, a training set was created to train the

automatic detection model for subsequent automatic detection of

echo traces. The training set was created using the integral threshold

setting method, median filter, and open-close operation to remove

noise and reverberation from images. In the actual experiment,

the noise and reverberation that were present in the original

echograms (Figure 5) were removed. At the same time, the echo

traces of single fish, multiple fish, and schools of fish were retained

more completely (Figure 6). The method used in this study is

simpler than denoising using the dB difference method (Fernandes,

2009; Brautaset et al., 2020). The reason for its simplicity is the

overwhelming dominance of Pacific saury in the detected

echograms and the fact that the used instrument is a single-beam

with a single-frequency echo sounder.

The adopted YOLO v5 deep learning automatic detection

model has a maximum value of 0.71 for mAP at intersection over
FIGURE 5

Acoustic echograms associated with Pacific saury in the surface layer (5–30 m) during the searching the catching periods. (A) The swarm during the
searching process. (B) The swarm when the fish collector light was turned on. (C) The swarm after a period of illumination of the water surface by
the collector light. (D) The swarm during the catching process.
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union (IOU) thresholds (Redmon and Farhadi, 2018) of 0.5 and

0.43 at an IOU threshold of 0.5:0.95 after 300 rounds of training.

These values indicate that the prediction accuracy is low when the

set prediction box and the actual box have an overlap of 50–95%,

and most targets at the set prediction box and the actual box at 50%
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overlap are accurately predicted. The identification accuracy of the

model is higher for larger objects in the echogram and lower for

smaller objects in the echogram, which is also consistent with the F1

score curve for evaluating model performance (Figure 7). The

maximum F1 score of the trained automatic detection model is
TABLE 2 The main results of model training.

Parameter Precision (P) Recall (R) mAP_0.5 mAP_0.5:0.95

Result 0.79 0.68 0.71 0.43

Epoch 280 210 280 299
FIGURE 6

Results of echogram pre-processing and echo trace labeling. The figure panels of (A–D) correspond to the original echo images in Figure 5. The
small pink numbers represent single fish (“0”), multiple fish (“1”), and fish groups (“2”).
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0.66, which still represents a large advantage. The number of images

in the training set and the resolution of the images are essential

factors affecting the F1 score of the model (Chicco and Jurman,

2020; Jalal et al., 2020; Fourure et al., 2021). The single-beam
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echograms are sparse and contain less information in one echo

trace. Therefore, more samples are needed to improve the F1 score

of the trained model.

4.2 Calibration of the commercial
echo sounder

The measured in situ MV histogram curves were similar to

those obtained by Sawada et al. (Sawada et al., 2011) when

measuring the in situ target strength of Diaphus theta, in which

the distribution of the value at site Jul 5, 2021, had a larger interval

and a higher mean value than that at site Jun 04, 2021, and the

distribution at site Jun 04, 2021, was more concentrated. The

distribution of TSmodel measured from the fork length at the site

sampled by the PSM method was similar to the distribution of

measurement values obtained in situ. The distribution of TSmodel on

Jun 4, 2021, was mainly concentrated between -45 dB and -46.5 dB,

while the distribution on Jul 5, 2021, was in the range of -42 dB to

-47 dB, which is largely different from the in situ MV distribution

characteristics. The mean TSmodel at the two sites were -45.82 dB and

-44.34 dB, respectively, while the mean target strength of the Pacific
FIGURE 7

Curves of F1 scores related to the confidence level. The thinner
three lines indicate the F1 scores for each class. The thick line
indicates the F1 score for all classes.
FIGURE 8

Automatic annotation of test set echograms.
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saury calculated by PSM by Sawada et al. (Sawada et al., 2009) was

-39.9 dB. A gap exists between the target strength calculated by the

developed model and that calculated by Sawada et al. This may be

caused by the following reasons: First, Sawada et al. used fewer

samples for their calculations, all of which were based on “bird

sampled”. This makes the target strength value selective and leads to

a smaller interval distribution. Second, the frequency they used was

70 kHz, and the frequency used in the present study was 50 kHz.

The target strength values of fish were different at different

frequencies. In PSM calculations, the angle of inclination of the

swim bladder is another important factor that affects the target

strength value of fish. In this study, the typical swim bladder length

to fork length ratio was substituted into the PSM model for

calculations. The size of the swim bladder tilt angle was not

adequately considered. Measurements of the tilt angle distribution

of swim bladder are necessary in further studies.

The living fish calibration offset K calculated by in situ MV   and

TSmodel   for the two sites differed by 1.35 dB and 0.54 dB, respectively,

compared to the K0 calibrated in the laboratory using the standard

sphere method. According to the standard deviation threshold of 2 dB

given by the Biosonics instrument calibration manual (Biosonics, 2004),

the values obtained in the present study were within the standard range.

The shipboard commercial echo sounder can carry out scientific

acoustic survey work. As a rapid acoustic instrument performance

testing method, the living fish calibration method is also feasible to a

certain degree. The calibration method for rapid instrument

performance testing can efficiently obtain more accurate acoustic

survey data to expand the coverage area of fish resources. However,

compared to the calibration of acoustic instruments using the standard

calibration sphere method, there are still certain deviations, which

mostly originate from the swimming behavior of fish and physical

changes in the marine environment (Simmonds andMaclennan, 2008).

4.3 Fishing vessel acoustic monitoring

Commercial fishing vessels worldwide are commonly equipped

with echo sounders for vertical detection of underwater

information. However, current acoustic monitoring of fishery

resources still relies on research vessels. In most cases, the

underwater information detected by commercial echo sounders is

not collected and analyzed. The main reasons for this situation

include the absence of information such as geographic information

location and time series associated with the echo intensity level;

moreover, the echo sounders are often not calibrated when using

fishing vessels for acoustic monitoring (Haris et al., 2021). These

reasons result in the acoustic data collected by commercial fishing

vessels remaining unutilized, as these data cannot be applied to

classify fish species and assess resources.
FIGURE 9

Observed in situ MV histograms of Pacific saury from two sampling sites
(Jun 4, 2021, and Jul 5, 2021.) The solid blue line was sampled on Jun
4, 2021, and the dashed orange line was sampled on Jul 5, 2021.
TABLE 3 Average, standard deviation, maximum, and minimum fork
length of Pacific saury at two sampling sites, which had synchronized
acoustic data and biological sampling data.

Sampling sites

Jun 4, 2021 Jul 5, 2021

Number 50 50

Avg. (mm) 282.84 242.04

S.D. (mm) 8.01 30.92

Max (mm) 305 301

Min (mm) 267 192
FIGURE 10

The TSmodel of Pacific saury measured using the prolate spheroidal
model. The solid blue line was sampled on Jun 4, and the dashed
orange line was sampled on Jul 5.
TABLE 4 Mean values of in situ MV, TSmodel, Asoft, and K of the Pacific saury measured at two sampling sites on Jun 4 and Jul 5; the value of K0 is
measured from the standard sphere calibration process.

Sampling site MV  (dB) TSmodel(dB) Asoft K(dB) K0(dB)

Jun 4 70.48 -45.82 -95.29 116.30
117.65

Jul 5 73.85 -44.34 -92.47 118.19
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The most important work of this study was the combination of

the automatic detection model and the living fish calibration method

to propose an echo sounder calibration method that is suitable for

commercial fishing vessels. The developed method uses a deep

learning target recognition method (YOLO v5) to quickly identify

single fish echo traces in the echogram without the need to extract

feature parameters by a manual operation before identification.

Identification is based on the absolute dominance of the target fish

species in the fishing process. The ease of access to target biological

samples during fishing operations enables the measurement of model

target strength values in a short period of time using the PSMmethod.

The performance of the shipboard echo sounder is tested by

comparing it with the in situ measurement value and deriving the

offset of the acoustic data. The method can be used without impacting

fishing operations. The offset is removed in a subsequent pre-

processing step to make the data available for scientific research.

The single-beam acoustic data used in this study are commonly

available on commercial fishing vessels. The sparse nature of the

single-beam data enables the acquisition of more acoustic detection

areas with less storage space. The species classification results

obtained by identifying single-beam data can be used for resource

assessments and can aid fishing staff. For multi-species mixed

fisheries, the method still needs further verification. With the

development of fish detection technology, echo sounders equipped

with multi-beam and broadband transducers are gradually used on

fishing vessels. Of these, the broadband acoustic technique can obtain

continuous echo features over the entire frequency band range, obtain

a spectrogram of target echo intensity with frequency, and increase

the amount of information on an individual echo trace (Xue et al.,

2021). When using deep learning methods for target recognition, the

developed method increases the training accuracy of the model and

improves the success rate of target detection. Applying this method to

broadband acoustic data is an important direction for future research.
5 Conclusions

Fishing vessels equipped with echosounders provide unique

opportunities for the monitoring and assessment of fishery

resources. A key challenge in the use of echo data collected from

commercial echosounders is data calibration. This paper presents a

deep learning method for the automatic detection of single fish echo

traces. The results demonstrated that by combining the detected single

fish echo traces with fishing samples, the echo data could be calibrated

to a level similar to that of scientific echosounders, which aids scientific

interpretation of these data. However, the current calibration method

is still at a relatively moderate level, and traditional calibration with a

standard sphere should be conducted whenever an opportunity arises.
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