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Simultaneous restoration and
super-resolution GAN for
underwater image enhancement

Huiqiang Wang, Guoqiang Zhong*, Jinxuan Sun, Yang Chen,
Yuxiao Zhao, Shu Li and Dong Wang*

College of Computer Science and Technology, Ocean University of China, Qingdao, China
Underwater images are generally of low quality, limiting the performance of

subsequent perceptual tasks, such as underwater object detection and

recognition. However, only a few methods can improve the quality of

underwater images by simultaneously restoring and super-resolving underwater

images. In this paper, we propose an end-to-end trainable model based on

generative adversarial networks (GANs) called Simultaneous Restoration and

Super-Resolution GAN (SRSRGAN) to obtain clear super-resolution underwater

images automatically. In particular, our model leverages a cascaded architecture

with two stages of carefully designed generative adversarial networks to restore

and super-resolve corrupted underwater images in a coarse-to-fine manner. The

major advantages of SRSRGAN are twofold. First, it is a unified solution that can

simultaneously restore and super-resolve images. Second, SRSRGAN is not limited

by the prior experience of the types and levels of underwater degraded images but

can perform the inference using only observed corrupted images. These two

advantages enable SRSRGAN to enjoy better flexibility and higher practicability in

realistic underwater scenarios. Extensive experimental results demonstrate the

superiority of SRSRGAN in underwater image restoration, super-resolution, and

simultaneous restoration and super-resolution.

KEYWORDS

image enhancement, generative adversarial network, simultaneous restoration and
super-resolution, deep learning, underwater images
1 Introduction

With 70% of the earth’s surface covered by water, there is great potential for exploiting

underwater resources. The underwater environment offers numerous valuable resources,

such as marine biology, mineral resources, and tidal energy. However, there is a wide gap

between the plentiful marine resources and their exploitation. To this end, various kinds of

methods have been proposed to obtain information about the underwater environment to

promote the use of marine resources. Among others, a crucial way to obtain information

from the underwater environment is image understanding, while the images captured in
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realistic underwater scenarios usually have severe defects, such as

blurriness, noise, and color distortion (Soni and Kumare, 2020).

Specifically, underwater image defects are caused by various

factors. Light rays exponentially decay as the underwater depth

increases, which makes underwater images of low contrast and

darkness (Ancuti et al., 2018). Furthermore, lights of different colors

have different absorption rates underwater, depending on the

wavelengths, which results in color distortion of underwater

images (Chiang and Chen, 2012). In addition, bubbles and

suspended particles in water may cause noise in underwater

images (Lu et al., 2017b). Hence, the poor visibility of underwater

images seriously affects the exploration of the underwater

environment. On the other hand, high-resolution images are

essential in many realistic underwater applications, such as

marine animal recognition (Chen et al., 2021; Wang et al.,

2023b), seabed detection, and deep ocean resources exploration

(Lu et al., 2017a). Therefore, the critical tasks for underwater image

enhancement are eliminating defects and obtaining super-

resolution (SR) images.

To the best of our knowledge, only a few approaches can

simultaneously restore and super-resolve underwater images. In

particular, Cheng et al. (2018) propose a method that restores

underwater images by the white balance (Liu et al., 1995) with the

contrast limited adaptive histogram equalization (CLAHE) (Reza,

2004) and super-resolves the restored image by a super-resolution

generative adversarial network (GAN) (Ledig et al., 2017). However,

due to the fact that this method only utilizes traditional color

correction as a preprocessing step for the input image of the super-

resolution model during the restoration stage, it limits its ability to

remove other types of degradation features. Recently, Islam et al.
Frontiers in Marine Science 02
(2020a) also introduce an approach to learning enhanced super-

resolution underwater images. However, their proposed method is

limited in its ability to model complex degradation features due to

its lack of consideration for capturing multi-scale features in the

network architecture design. Due to these limitations, these

methods are difficult to generate high-fidelity and high-quality

super-resolution images in underwater image enhancement in

real-world scenarios.

To address the above issues, we propose simultaneous

restoration and super-resolution GAN (SRSRGAN) to obtain

underwater images of high visual quality, which is an end-to-end

trainable model based on GAN. With a two-stage design,

SRSRGAN captures underwater degradation information and

fine-grained high-frequency information in the restoration stage

and the super-resolution stage, respectively. In the restoration stage,

benefiting from the superior structure of the proposed multi-level

degradation restoration generator (MLDRG), our model leverages

degradation information among different scales, positions, and

channels to transform degraded images to clean images. In the

super-resolution stage, the high frequency learning module

(HFLM) excavates fine-grained high-frequency information to

super-resolve clean images. In addition, we adopt a relativistic

discriminator to further enhance the quality of our generated

underwater images. Thanks to the corporation of the restoration

stage and the super-resolution stage, SRSRGAN enjoys two highly

expected merits, i.e., i) it provides a unified solution for

simultaneous underwater image restoration and super-resolution

reconstruction; ii) it is free from the prior of the underwater

corruption types and ratios. Extensive experimental results show

that SRSRGAN is superior to the state-of-the-art (SOTA) methods
FIGURE 1

The proposed SRSRGAN model provides realistic underwater image enhancement results through an effective inference. The first and second rows,
from left to right, are the original underwater image, the bicubic interpolation enhanced image, and the image enhanced by our method.
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in underwater image restoration/enhancement, single image super-

resolution (SISR), and simultaneous restoration and super-

resolution. The qualitative enhancement effect of SRSRGAN is

shown in Figure 1.

In summary, our main contributions are as follows:
Fron
• We propose a new underwater image enhancement model

for simultaneous restoration and super-resolution of

underwater images, called SRSRGAN, which does not

require any prior image degradation information to

perform inference in advance. Therefore, it can flexibly

deal with complex underwater scenarios.

• We design a two-stage framework to process underwater

images. In the restoration stage, the proposed MLDRG

leverages degradation information from different scales,

posit ions, and channels to transform degraded

underwater images to clean images. Moreover, the super-

reso lu t ion s tage i s presented to enhance the

representational ability of high-frequency features for

underwater image super-resolution. In addition, this

staged design improves the flexibility of the network model.

• Qualitative and quantitative comparisons among

SRSRGAN, underwater image restoration/enhancement

methods, SISR methods, and existing simultaneous

restoration and super-resolution methods show the

superiority of SRSRGAN.
2 Related work

In the existing work, few methods are available for simultaneous

restoration and super-resolution of underwater images, except the

ones mentioned in Section 1 (Ledig et al., 2017; Cheng et al., 2018).

Therefore, in this section, we mainly review the research progress of

underwater image restoration/enhancement and SISR.
2.1 Underwater image restoration/
enhancement

Traditional underwater image restoration/enhancement

algorithms aim to recover a clean image from the degraded

observation, including automatic white balance (Liu et al., 1995),

histogram equalization (Hummel, 1977), and CLAHE (Reza, 2004).

Although these methods improve the quality of underwater images

to a certain extent, there are still various problems, such as color

deviation, artificial artifacts, and noise amplification. Inspired by the

morphology and function of the teleost fish retina, Gao et al. (2019)

propose an underwater image enhancement model to solve the

problems of blurring and nonuniform color biasing in underwater

images. Moreover, several methods are proposed inspired by the

dark channel prior (He et al., 2011). Particularly, Drews et al. (2013)

consider underwater images’ blue and green channels as underwater

visual information sources, and apply a dark channel method to

process underwater visual information. Galdran et al. (2015)
tiers in Marine Science 03
propose a dark channel variant called the red channel method to

restore the lost contrast and colors associated to short wavelengths

in underwater images. Recently, Li et al. (2022) propose a

framework called ACCE-D that uses multiple filters and adaptive

color and contrast enhancement strategies to enhance underwater

images. In addition, Alenezi et al. (2022) propose a method to

enhance underwater images by estimating global background light

and transmission maps. However, these methods have a common

limitation in that the prior assumptions may be invalid with the

changes in environmental status.

As convolutional neural networks develop rapidly, some deep

networks are used to establish mapping relationships from an

underwater image to the clear one (Hou et al., 2018; Lu et al.,

2018). In particular, Li et al. (2020) give an overview of the previous

work for underwater image restoration and establish a CNN model

named Water-Net to get restored underwater images. Additionally,

the emergence of GAN (Goodfellow et al., 2014) provides more

chances for underwater image restoration. For example, Li et al.

(2018) propose WaterGAN to generate underwater images from in-

air images, which uses two fully convolutional networks to estimate

the depth of the generated underwater images and correct their

color, respectively. Different from it, UGAN uses two GAN-based

models for underwater image generation and color correction,

respectively (Fabbri et al., 2018). In recent work, Underwater

GAN (Yu et al., 2019) uses Wasserstein GAN-GP (Gulrajani

et al., 2017) as the network’s backbone for underwater image

restoration. Additionally, Guo et al. (2020) propose a multi-scale

dense GAN (UWGAN) for underwater image enhancement. These

methods improve the quality of underwater images to a certain

extent. However, they only focus on restoring the color contrast and

color distortion of underwater images and do not further improve

the image quality by improving the image resolution. Liu et al.

(2022) propose a twin adversarial contrastive learning method to

enhance the visual quality of underwater images. Many previous

underwater image enhancement methods have only focused on

restoring the color contrast and color distortion of underwater

images. However, their method has limited ability to remove noise

in underwater images. Therefore, Wang et al. (2023a) propose an

end-to-end underwater attention generative adversarial network to

alleviate the influence of underwater noise problem. These methods

improve the quality of underwater images to some extent.
2.2 Single image super-resolution

In some early survey papers on image super-resolution

(Nasrollahi and Moeslund, 2014; Köhler et al., 2017; Yang et al.,

2019), there are two principal categories of image super-resolution:

multiple image super-resolution (MISR) (Tsai, 1984; Capel and

Zisserman, 2001; Caner et al., 2003; Farsiu et al., 2004; Harmeling

et al., 2010) and SISR (Storkey, 2002; Lian, 2006; Yang et al., 2008;

Yang et al., 2010; Dong et al., 2016). Here, we mainly introduce

SISR, as the number of underwater images is still very small

in general.

Interpolation-based SR methods are typically used to increase

the resolution of an image, such as bicubic interpolation (Keys,
frontiersin.org

https://doi.org/10.3389/fmars.2023.1162295
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2023.1162295
1982) and Lanczos filtering (Duchon, 1979). The reconstructed

edges are generally blurred in the super-resolution images obtained

by these methods. These methods obtain the SR image, while the

reconstructed edges are generally blurry. Subsequent methods focus

on matching the edges of the low-resolution (LR) and high-

resolution (HR) images (Li and Orchard, 2000; Muresan, 2005).

However, the HR images they generate still suffer from blurring

and artifacts.

Sparse representation SR methods are based on the sparse signal

representation and compressed sensing theory. Yang et al. (Yang

et al., 2008; Yang et al., 2010) train two dictionaries for LR and HR

patches jointly. They consider the sparse representations of LR and

HR images and utilize the spare representations of the LR images to

obtain the HR images. Moreover, the natural image prior

framework is added to guide the sparse representation SR method

(Kim and Kwon, 2010). However, such an SR method based on the

spare representation needs a long time to train the sparse coding

dictionary. More recently, Timofte et al. (Timofte et al., 2013;

Timofte et al. , 2014) improve the efficiency of sparse

representation SR methods using anchored neighborhood

regression on the LR patch in the dictionary. Nevertheless, the

texture details are generally absent from the generated SR images.

With the rapid development of deep learning, many SR

methods based on deep learning have emerged and achieved

excellent performance in recent years. Dong et al. (Dong et al.,

2014; Dong et al., 2016) propose a fully convolutional network to

establish a mapping between the LR and HR images, which has

great superiority over the previous approaches. Later, Shi et al.

(2016) propose a sub-pixel convolutional neural network, which

expands the channels of output features by the convolutional layers

and then rearranges the tensor to obtain the HR images. With the

depth of neural networks increasing, Kim et al. (2016) use a deep

neural network similar to VGG-net to generate SR images. In

addition, some researchers propose to utilize the residual

networks to achieve an excellent SR effect (Lim et al., 2017;

Zhang et al., 2018b; Zhang et al., 2018c; Chen et al., 2019).

Furthermore, with the flourishing of GAN-based models, recent
Frontiers in Marine Science 04
work has shown great success in SISR. Ledig et al. (2017) propose a

super-resolution generative adversarial network (SRGAN) to

recover SR images from LR images. Wang et al. (2018) enhance

SRGAN by modifying the generator with residual in-residual dense

blocks, which can generate realistic images with natural textures.

Unfortunately, these methods are only suitable for images taken in

the air but cannot perform well on underwater images.

At present, a few researchers are involved in the field of

underwater image super-resolution. Particularly, Lu et al. (2017a)

propose a two-step method for underwater image super-resolution.

Firstly, they obtain a scattered HR image and a descattered HR

image by self-similarity SR methods; secondly, they fuse the two HR

images to obtain the final image. More recently, Islam et al. (2020b)

propose a fully convolutional neural network using residual

learning for underwater SISR, called super-resolution using deep

residual multipliers (SRDRM). In addition, they also formulate an

adversarial training pipeline (SRDRM-GAN). However, the

generated images by these methods have limited image quality

and visual perception. In this paper, we propose an end-to-end

trainable GAN-based model called SRSRGAN, which can

simultaneously restore and super-resolve underwater images.
3 The proposed model

SRSRGAN aims to build an effective simultaneous restoration

and super-resolution model for underwater image enhancement,

which obtains an input underwater image IU and outputs a clear

super-resolution image ISR.

In this section, we elaborate on the proposed end-to-end

trainable model SRSRGAN, which consists of a restoration stage

(Rstage, fR( · )) and a super-resolution stage (SRstage, fSR( · )), as

shown in Figure 2.

In brief, SRSRGAN first feeds it into fR( · ) to learn the clear

image IR for a given degraded image IU . Then, IR is further passed

through fSR( · ) to obtain the super-resolution image ISR. In the

following part, we first illustrate the restoration stage in Section 3.1.
FIGURE 2

The overall network architecture of SRSRGAN.
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Then, we describe the super-resolution stage in Section 3.2. Finally,

we introduce our end-to-end trainable framework of SRSRGAN in

Section 3.3.
3.1 Restoration stage

The light passing through the water attenuates as the depth

increases, and the background light will also affect the underwater

images. In order to restore a clear image IR from an underwater

image IU containing noise and distortion, we propose a GAN-based

model in the restoration stage. Mathematically,

min
GR

 max
DR

V(GR,DR) = EIT∼pdata(IT )½log  DR(I
T )�+

EIU∼pG(IU )½log  (1 − DR(GR(I
U )))�, (1)

where IUand IT denote the image to be restored and the ground-

truth image, respectively.

3.1.1 Network architecture
The overall network architecture of our proposed restoration

model is shown in Figure 3, which is designed to restore the clear
Frontiers in Marine Science 05
image IR from the noisy and distorted underwater image IU . To

make SRSRGAN better deal with underwater degradation, we

carefully design a multi-level degradation restoration generator

(MLDRG) consisting of an encoder and a decoder.

3.1.1.1 Multi-level degradation restoration generator

Our MLDRG focuses on dealing with noise and color

degradation because color degradation and noise degradation are

frequent in underwater images.

Specifically, color distortion is an extremely important issue

when processing underwater images. Due to the unique properties

of the underwater environment, color distortion in underwater

images is even more severe, which has an adverse impact on the

quality and usability of the images. To address this issue, we utilize

the channel attention blocks (CAB) (Hu et al., 2018) to enhance the

network’s focus on color information, thereby improving the

network’s color restoration capability. To better handle the color

restoration of shallow feature colors, we place the CAB in the first

and last part of the decoder. The role of the CAB is to enhance the

network’s focus on shallow features, thereby improving the

network’s color restoration capability. In the first part of the

decoder, the CAB can assist the network in better capturing the

color information of shallow features, providing a better foundation
FIGURE 3

The network architecture of the restoration stage.
FIGURE 4

The patch discriminator of the restoration stage.
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for subsequent color restoration. In the last part of the decoder, the

CAB can further enhance the network’s focus on shallow features,

thereby improving the network’s color restoration capability.

On the other hand, due to the random, irregular, and uneven

distribution of noise in images, the presence of noise can increase

the difficulty of model restoration and negatively impact image

quality. Therefore, we implement a self-attention block (SAB)

(Vaswani et al., 2017) in front of the decoder to remove the noise

with different characteristics in underwater images. Specifically,

SAB can determine the weight of each pixel by calculating its

similarity with other pixels, allowing the network to focus more

on the contextual information related to the current pixel. This can

help the network better understand the structural information in

the image and remove the random and irregular noise. Hence, the

generator has the capacity to better handle the noise of underwater

images than that without the attention block. For implementation

details, the global feature maps are coded into queries, keys, and

values in dq, dk, and dv dimensions, respectively. The attention

function is defined as:

Attention(Q,K ,V) = softmax(
QKTffiffiffiffiffi

dk
p )V , (2)

where Q is a matrix for queries, K and V are matrices for keys and

values, respectively.

In addition, we implement the spectral normalization (SN)

(Miyato et al., 2018) after each convolutional layer in MLDRG.

SN layers control the Lipschitz constant of MLDRG by constraining

the spectral norm (s(W) = 1) of each layer. In particular, the

Lipschitz constant describes the intensity of the output as it

changes with the input. For the Lipschitz continuous function f,
if it satisfies

jjf(x0
) − f(x)jj22

jjx0
− xjj22

≤ k, (3)

then k (k ≥ 0) is called the Lipschitz constant. In other words,

MLDRG is insensitive to the perturbation of the inputs. Hence, it

can better handle noisy underwater images than that without the SN

layer. This discovery has the same viewpoint as (Lin et al., 2019) that

the Lipschitz continuity is effective for image-denoising tasks.

Ideally, the generator should be able to retain more multi-scale

information and spatial context information while providing

flexibility for the super-resolution stage. To this end, we employ

the residual block with the SN layer to extract features at 5 scales. In

order to switch scales in our restoration framework, we use a 3� 3

convolutional layer with stride 2 for downsampling and a bilinear

interpolation algorithm for upsampling after a 3� 3 convolutional

layer with stride 1. Considering the intrinsic information loss in

downsampling and upsampling, we add a residual block at each sale

to fuse useful information from the encoder to the decoder.

3.1.1.2 Restoration discriminator

Figure 4 shows the discriminator of the restoration stage. The

discriminator DR distinguishes the ground-truth image IT from the

generated image IR at the level of image patches. Specifically, given

an input image Id to be discriminated, it first extracts the shallow
Frontiers in Marine Science 06
features F0 of the discriminated image by a 3� 3 convolutional

layer. Mathematically,

F0 = Conv(Id) : (4)

Since the extraction of deep features is essential to discriminate

the images, we design 4 convolutional blocks, each containing a 3�
3 convolutional layer with stride 1 and a 3� 3 convolutional layer

with stride 2. In addition, considering the Lipschitz continuity of the

discriminator, we add an SN layer and a Leaky ReLu function after

each convolutional layer to stabilize its network training. Therefore,

we feed the previously extracted shallow feature F0 into 4 designed

convolutional blocks to further excavate the deep features of the

input image. Mathematically,

Fi = HBlocki (Fi−1), i = 1, 2,…,N , (5)

where HBlocki denotes the i-th convolutional block in the path

discriminator, and N denotes the number of convolutional blocks.

Hence, FN is the final output of the patch discriminator, and F1 ∼
FN−1 are intermediate feature maps extracted from our

convolutional blocks.

Finally, we utilize a 3� 3 convolutional layer to predict a 16�
16 probability matrix Poutput for image patch discrimination.

Through the probabil ity matrix, we can increase the

discriminator’s sensitivity to image patch detail discrimination,

thus forcing MLDRG to generate more realistic details.

Mathematically,

Poutput = Conv(FN ) : (6)

Moreover, the discriminator loss in the restoration stage can be

defined as:

LRD = −EIT∼pdata(IT )½log  DR(I
T )�+

EIU∼pG(IU )½log  (DR(GR(I
U )))� : (7)
3.1.2 Loss function
To remove the corruption from the observed underwater

images, we formulate some objective functions. First, the

adversarial loss for MLDRG can be formulated as:

LRAdv = −EIU∼pG(IU )½log  (DR(GR(I
U )))� : (8)

In the restoration stage, we define the mean absolute error

(MAE) loss to measure the pixel gap between the generated images

and the target images. Mathematically,

LRMAE =
1

WHo
W
i=1oH

j=1 ITi,j − GR(I
U )i,j

�� �� : (9)

Moreover, in order to enhance the human visual quality of

reconstructed images, we formulate a perceptual loss to measure the

distance between the restored images and the ground-truth images

on the perceptual feature space. It can be formulated as:

LRPerceptual =
1

WHo
W
i=1oH

j=1 fx,y(I
T )i,j − fx,y(GR(I

U ))i,j
�� ��, (10)
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where fx,y symbol denotes a pre-trained VGG-net feature extractor,

which can obtain the feature map of the y-th convolutional layer

before the x-th max-pooling layer (Simonyan and Zisserman, 2015),

while W and H symbols denote the width and height of the

obtained corresponding feature map, respectively.
3.2 Super-resolution stage

SISR is aimed at generating the high-resolution image ISR from

the low-resolution image ILR. Generally, the degradation process

from IHR to ILR is unknown and can be affected by various factors,

such as defocusing and noise. Following the common practice

(Zhang et al., 2017; Zhang et al., 2018a; Liang et al., 2022), we

obtain ILR by a downsampling operation with the scaling factor r.

For an image with C channels, the ILR and ISR are described as a

C �W � H tensor and a C � rW � rH tensor, respectively.

To add the texture details to the restored image IR fed from the

restoration stage, we propose another GAN-based model, which is

aimed at generating the corresponding super-resolution image ISR

from the restored image IR. The objective function of the super-

resolution stage is formulated as:

min
GSR

 max
DSR

V(GSR,DSR) = EIHR∼pdata(IHR)½log  DSR(I
HR)�+

EILR∼pG(ILR)½log  (1 − DSR(GSR(I
LR)))�, (11)

where ILR and IHR symbols denote the corresponding high-

resolution and low-resolution images, respectively.

3.2.1 Network architecture
The generator of the super-resolution stage is illustrated in

Figure 5, which consists of a high frequency learning module

(HFLM) and an upsampling module (UM). Due to the effective

collaboration of HFLM and UM, our super-resolution stage can

restore many high-frequency details from low-resolution

underwater images.
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3.2.1.1 High frequency learning module

After obtaining the restored images after the restoration stage,

we further seek to excavate the high-frequency information of

underwater images. High-frequency information can be described

as Figure 6, where ILR is obtained by bicubic interpolation of the

restored image, and IHR is the high-resolution ground truth image.

Our task in the super-resolution stage is to learn these high-

frequency information. The task of our high-frequency feature

learning module is to learn these high-frequency information. To

this end, HFLM first directly transmits the low frequency

information of the low resolution image to the upsampling

module through a connection, and then learns the high frequency

information of the image through 16 residual-in-residual blocks

(Wang et al., 2018). In each dense block, it captures and transmits

high frequency information by establishing dense residual

connections in the network. Specifically, each layer is connected

to all previous layers, making it easier for high frequency features to

propagate throughout the network and be better captured and

represented. Mathematically,

FH
i =

r · HDi
(ILR) + ILR,  i = 1;

r · HDi
(Fi−1) + FH

i−1, i = 2,…,N ,

(
(12)

where ILR and r denote the output of the restoration stage and the

residual scaling parameter, respectively, HDi
represents the i-th

dense block, N represents the number of the dense blocks, and

FH
i represents the i-th intermediate high-frequency feature.

Specifically, we set r and N to 0:2 and 16, respectively.

Furthermore, we add an SN layer after each convolutional layer

to constrain the Lipschitz continuity of HFLM, and the leak rate of

the Leaky Relu activation function is set to 0:2.
3.2.1.2 Upsampling module

After obtaining the high-frequency information provided FH
N by

the HFLM, we adopt a pixshuffle layer for upsampling, passing the

FH
N through convolutional layers and inter-channel recombination

to obtain a high-resolution feature map ISR. Similar to HFLM, we
X16

⊕⊕⊕

Dense 
Block

X0.2

Dense 
Block

X0.2

Dense 
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X0.2
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FIGURE 5

The generator of the super-resolution stage.
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add an SN layer after each convolutional layer to constrain the

Lipschitz continuity of UM and stabilize the network training.

Mathematically,

ISR = UM↑(F
H
N + ILR) : (13)
3.2.1.3 Super-resolution discriminator

The architecture of the super-resolution stage’s discriminator is

similar to that of the restoration stage. However, for image super-

resolution, we expect the output by its discriminator to be the

probability that the real image IHR is relatively more realistic than

the fake image ISR. To this end, we use a relativistic discriminator

(Jolicoeur-Martineau, 2018), which is defined as:

DSR(I
HR, ISR) = s (PSR(I

HR) − E½PSR(ISR)�), (14)

DSR(I
SR, IHR) = s (PSR(I

SR) − E½PSR(IHR)�), (15)

where ISR denotes the output of the generator in the super-

resolution stage, PSR(I) denotes the probability output of the

patch discriminator, E½·� represents the operation of taking the

average probability output obtained from mini-batch images, and s
denotes the sigmoid activation function. Then, we formulate the

discriminator loss as follows:

LSRD = −EIHR∼pdata(IHR)½log  DSR(I
HR,GSR(I

LR))�+

− EILR∼pG(ILR)½log  (1 − DSR(GSR(I
LR), IHR))� : (16)
3.2.2 Loss function
Similar to the restoration stage, The MAE loss and perception

loss are both used to optimize its generator in the super-resolution

stage for a better reconstruction effect. Mathematically,

LSRMAE =
1

r2WHo
rW
i=1orH

j=1 IHRi,j − GSR(I
LR)i,j

�� ��, (17)
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LSRPerceptual =
1

WHo
W
i=1oH

j=1 fx,y(I
HR)i,j − fx,y(GSR(I

LR))i,j
�� �� : (18)

In addition, we formulate the adversarial loss for the generator

as follows:

LSRAdv = −EIHR∼pdata(IHR)½log  (1 − DSR(I
HR,GSR(I

LR)))�+

− EILR∼pG(ILR)½log  DSR(GSR(I
LR), IHR)� : (19)

It can be clearly seen that the adversarial loss in our super-

resolution stage includes both IHR and ISR = GSR(I
LR). Hence, the

gradient of the generator in the super-resolution stage benefits from

both the generated images and the ground-truth images. In

contrast, the gradient of the generator in the previous stage only

benefits from the generated images.
3.3 SRSRGAN

SRSRGAN combines the restoration stage and the super-

resolution stage into an end-to-end trainable model. Concretely,

the generator of SRSRGAN combines generators of the restoration

stage and the super-resolution stage. For training, we adopt a two-

stage training strategy. In the first stage, we use a restoration

discriminator to supervise the restoration stage generator’s

training, which serves as a pre-training for the restoration stage

generating adversarial network. In the second stage, we directly use

the super-resolution stage discriminator to supervise the entire

SRSRGAN model’s training. Finally, we can train SRSRGAN as

an end-to-end GAN-based model.

During inference, by feeding degraded underwater images into

the SRSRGAN model, we can obtain clean high-resolution

underwater images end-to-end.

In addition, by doing so, SRSRGAN has the following

advantages in addition to the benefits brought by its well-

designed model structure:
FIGURE 6

The representation of high frequency information.
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Fron
• Removing noise from images will generally introduce

artifacts to the images, while the devised super resolution

stage in SRSRGAN can generate texture details to avoid the

artifacts.

• The generator of SRSRGAN benefits from both the image

restoration and image super-resolution tasks, leading to

better performance than using the restoration stage and

super-resolution stage sequentially.

• During inference, degraded images only require one

forward pass through the network to complete both

image restoration and super-resolution reconstruction.
4 Experiments

We applied our SRSRGAN to underwater image restoration/

enhancement, SISR, and simultaneous restoration and super-

resolution. We also made a comparison with the state-of-the-art

(SOTA) methods for underwater images.

We took the underwater image IU as input in the restoration

stage and the ground-truth image IT for model training. IR was the

restored image generated in the restoration stage. In the super-

resolution stage, we downsampled IR (IHR) with a scaling factor r =

2 to get ILR. ISR was the super-resolved image generated in the

super-resolution stage.

We conducted experiments in PyTorch on NVIDIA GeForce

RTX 3090 GPUs. To optimize SRSRGAN, we employed the Adam

(Kingma and Ba, 2014) optimizer to perform global iterative

learning with b1 = 0:9 and b2 = 0:999, and its learning rate was

set to 2� 10−4. Considering the model depth, we adopted the

warming-up strategy (He et al., 2016) to improve the learning

rate gradually.
4.1 Data and metrics

4.1.1 Dataset
We used 790 images from the UIEBD (Li et al., 2020) dataset

and 1500 images from the UFO-120 (Islam et al., 2020a) dataset to

train SRSRGAN and the compared methods, except Gao et al.

(2019) and SESR (Islam et al., 2020a). For Gao et al. (2019)’s

method, we downloaded the results from the author’s GitHub

webpage; for SESR, we downloaded the released well-trained

model from the author’s GitHub webpage. In addition, we

employed various datasets to test them, including the other 100

images in the UIEBD dataset with the corresponding reference

images, 120 images in the UFO-120 dataset with the corresponding

reference images, the same underwater scene shot by seven different

professional cameras (Ancuti et al., 2018), 248 images in the USR-

248 (Islam et al., 2020b) dataset, 25 images previously used for the

evaluation in related papers (Emberton et al., 2015; Galdran et al.,

2015; Ancuti et al., 2018; Guo et al., 2020), and 19 real underwater

images we collected from the Internet.
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4.1.2 Full-reference metrics
We performed a full-reference evaluation of underwater images

with widely used metrics, i.e., peak signal to noise ratio (PSNR) and

structural similarity index (SSIM) (Wang et al., 2004). We treated

the clear HR image as the ground-truth image. The higher the

PSNR value is, the closer the enhanced image is to the ground-truth

image in terms of image content. Similarly, the higher the SSIM

value is, the closer the enhanced image is to the ground-truth image

in terms of image texture and structure.

4.1.3 Non-reference metrics
We adopted two commonly used non-reference metrics for

underwater image quality evaluation, i.e., UCIQE (Yang and

Sowmya, 2015) and UIQM (Panetta et al., 2016). A higher

UCIQE score indicates that the enhanced image has less color

cast, less blur, and better contrast. Meanwhile, a higher UIQM score

indicates that the enhanced image is more in line with

human perception.
4.2 Evaluation on underwater
image restoration

We first qualitatively compared SRSRGAN with several SOTA

underwater image restoration/enhancement methods. As Figure 7

illustrates, FUnIE-GAN (Islam et al., 2020c), CycleGAN (Zhu et al.,

2017), and Gao et al. (2019)’s method have limited positive effects

on the greenish water image, while FUnIE-GAN (Islam et al.,

2020c) has a less positive effect on the bluish water image.

Pix2Pix (Isola et al., 2017) has an obvious reddish color shift.

UGAN (Fabbri et al., 2018) and Gao et al. (2019)’s method

aggravate the noise effect that introduces light spots in the first

image. In addition, TACL (Liu et al., 2022)’s ability to correct the

green and blue tones of underwater images is limited. In contrast,

SRSRGAN can rectify the greenish and bluish hue of the images,

and eliminate the blurring and noise on the images.

In addition, Figure 8 shows that images contain the standard

Macbeth Color Checker taken by seven different professional

cameras, i.e., Panasonic TS1, Pentax W80, Olympus Tough 8000,

Pentax W60, Olympus Tough 6000, FujiFilm Z33, and Canon D10.

The images processed by Gao et al. (2019)’s method still suffer from

obvious color distortion. FUnIE-GAN (Islam et al., 2020c) deals

well with the bluish color deviation but produces a reddish color

shift when handling the dark image. On the contrary, SRSRGAN

obtains the best color correction for different cameras.

The performance of SRSRGAN and its comparison methods is

quantitatively evaluated in terms of the full-reference and non-

reference metrics, as shown in Table 1. For the full-reference

evaluation, the results are obtained by comparing the results of

each method with the corresponding ground truth (reference)

images. It can be seen that SRSRGAN achieves the highest PSNR

and SSIM value, which means that the images generated by

SRSRGAN have the closest content and structure to the ground-

truth images. Moreover, SRSRGAN obtains the highest UCIQE and
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UIQM score, which indicates that the images generated by

SRSRGAN have the best color and human visual perception.
4.3 Evaluation on underwater image
super-resolution

Following the same procedure, we evaluated the qualitative and

quantitative SR performance of SRSRGAN, respectively. In

Particular, we took the existing underwater SISR methods for

comparison, i.e., SRDRM (Islam et al., 2020b) and SRDRM-GAN

(Islam et al., 2020b). In addition, we compared SRSRGAN with

some SOTA SISR methods (for images taken in the air), including
Frontiers in Marine Science 10
VDSR (Kim et al., 2016), EDSR (Lim et al., 2017), DBPN (Haris

et al., 2018), SRCNN (Dong et al., 2016), SRGAN (Ledig et al.,

2017), and ESRGAN (Wang et al., 2018). From Figure 9, we can find

that ESRGAN achieves the best results among the SISR methods for

images taken in the air, while SRDRM and SRDRM-GAN can better

handle underwater images than ESRGAN. In contrast, SRSRGAN

generates clear super-resolution images with the correct color and

sharp texture details.

Table 2 illustrates the quantitative evaluation on SRSRGAN and

the compared methods. It is obvious that SRSRGAN obtains the

highest score for both PSNR and SSIM, which indicates that the

images generated by SRSRGAN have the highest pixel similarity

and structure consistent with the ground-truth images.
FIGURE 7

Qualitative comparison between SRSRGAN and the SOTA restoration/enhancement methods. From left to right are the original underwater images,
the results of UGAN (Fabbri et al., 2018), Pix2Pix (Isola et al., 2017), CycleGAN (Zhu et al., 2017), Gao et al. (2019)’s method, TACL (Liu et al., 2022),
FUnIE-GAN (Islam et al., 2020c), and SRSRGAN. Our sample image is sourced from the public dataset UIEBD (Li et al., 2020).
FIGURE 8

The results of SRSRGAN and the compared methods on a set of underwater images taken by different professional cameras, which contain the
standard Macbeth Color Checker (Ancuti et al., 2018). The names of the cameras used to take the photos are listed at the top of each column. From
top to bottom are original underwater images, the results of the Gao et al. (2019)’s method, FUnIE-GAN (Islam et al., 2020c), and SRSRGAN,
respectively. Our sample image is sourced from publicly available image data in the paper (Ancuti et al., 2018). Our sample image is sourced from
the public dataset UIEBD (Li et al., 2020).
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4.4 Evaluation on simultaneous restoration
and super-resolution

In this experiment, we compared SRSRGANwith existingmethods

for simultaneous restoration and super-resolution of underwater

images, i.e., Cheng et al. (2018)’s method and SESR (Islam et al.,

2020a). The results of the qualitative comparison are shown in

Figure 10. It can be seen that Cheng et al. (2018)’s method increases

the contrast and brightness of underwater images while the images still

have a bluish shift in some patches. It can also be seen from Figure 10

that SESR (Islam et al., 2020a) tends to produce artifacts on the

enhanced images. SRSRGAN is more effective in restoring the colors
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and increasing the resolution of underwater images. This is because the

end-to-end trainable model forces the generator of SRSRGAN to

complete the ultimate task that restores and super-resolves

underwater images simultaneously. In other words, the generator of

SRSRGAN benefits from both the restoration stage and the super-

resolution stage, so that it can better adapt to the simultaneous

restoration and super-resolution task for underwater images.

The quantitative evaluation of SRSRGAN and its comparison

methods are shown in Tables 3 and 4. It is obvious that SRSRGAN

is effective for color correction, deblurring, and contrast restoration,

with the highest scores. In addition, SRSRGAN delivers sharpness

and fine-grained texture details with the highest PSNR and SSIM.
TABLE 1 Quantitative evaluation on the restored images generated by SRSRGAN and the compared methods on the UIEBD dataset.

Method PSNR/SSIM UCIQE UIQM

UGAN (Fabbri et al., 2018) 19.79/0.7108 0.6299 3.3218

Pix2Pix (Isola et al., 2017) 20.02/0.7230 0.5941 3.1349

CycleGAN (Zhu et al., 2017) 18.71/0.7547 0.5941 3.0144

Water-Net (Li et al., 2020) 19.13/0.7471 0.5721 3.0593

FUnIE-GAN (Islam et al., 2020c) 20.44/0.7257 0.5541 3.1255

Shallow-UWnet (Naik et al., 2021) 20.11/0.728 0.5123 3.0730

TACL (Liu et al., 2022) 20.41/0.733 0.5447 3.168

SRSRGAN 20.92/0.7731 0.6453 3.3467
The best results are shown in boldface.
FIGURE 9

Visual comparison with several SOTA SISR methods, including SRDRM (Islam et al., 2020b), SRDRM-GAN (Islam et al., 2020b), VDSR (Kim et al.,
2016), EDSR (Lim et al., 2017), DBPN (Haris et al., 2018), SRCNN (Dong et al., 2016), SRGAN (Ledig et al., 2017), and ESRGAN (Wang et al., 2018). Our
sample image is sourced from the public dataset UIEBD (Li et al., 2020).
TABLE 2 Quantitative evaluation on the underwater image super-resolution on the UIEBD dataset.

Method PSNR SSIM Method PSNR SSIM

SRDRM (Islam et al., 2020b) 18.85 0.7102 SRDRM-GAN (Islam et al., 2020b) 18.93 0.7210

VDSR (Kim et al., 2016) 18.36 0.6440 EDSR (Lim et al., 2017) 18.83 0.7166

SRCNN (Dong et al., 2016) 18.78 0.7197 SRGAN (Ledig et al., 2017) 18.54 0.7159

ESRGAN (Wang et al., 2018) 18.22 0.6462 SRSRGAN 20.92 0.7731
frontie
The best results are shown in boldface.
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4.5 Ablation study

For the proposed SRSRGAN, we added a self-attention block

(SAB) to the generator of the restoration stage to learn the

important parts of the global features. Meanwhile, we used the

spectral normalization (SN) to constrain the Lipschitz continuity of

the generators and the discriminators. Furthermore, in the super-

resolution stage, we employed the high frequency learning module

(HFLM) to excavate fine-grained features from the input LR images.

To test the effects of these components in SRSRGAN, we conducted

an ablation study to verify their effectiveness.

Table 5 illustrates the performance of SRSRGAN and its

variants with different components in terms of PSNR and SSIM.

We can see that SAB makes a slight improvement to the

performance of SRSRGAN than that without SAB. This is due to

the fact that the attention block learns the important parts of the

underwater images. Hence, the generator can make more efforts to

restore the important parts. In addition, we can see that removing

SN from SRSRGAN greatly degrades the performance of

SRSRGAN. The reason behind this is that SN effectively

guarantees the Lipschitz continuity of SRSRGAN. To be specific,
Frontiers in Marine Science 12
SN stabilizes the training of SRSRGAN by constraining the

Lipschitz continuity of its generator and discriminator.

Last but not least, HFLM plays an important role in SRSRGAN,

and the variant without HFLM gets the lowest score for both PSNR

and SSIM. This can be attributed to the fact that HFLM effectively

extracts features of the input images. As a result, with the valid

extraction features, the generator of the super-resolution stage can

accurately increase the resolution of the images.
5 Conclusion

In this paper, we propose an end-to-end trainable model called

SRSRGAN, which is free from the prior of corruption types and

levels of underwater images. Meanwhile, SRSRGAN is a unified

solution for simultaneous restoration and super-resolution of

underwater images. Specifically, it captures underwater

degradation information and fine-grained high-frequency

information in two stages. Moreover, benefiting from the superior

structure of the proposed MLDRG, our model leverages

degradation information among different scales, positions, and
FIGURE 10

Visual comparison between SRSRGAN and several SOTA methods on simultaneous restoration and super-resolution of underwater images, i.e.,
Cheng et al. (2018) and SESR (Islam et al., 2020a).
TABLE 3 Quantitative evaluation of SRSRGAN and the compared methods on the UFO-120 and USR-248 datasets.

Method UFO-120 USR-248

PSNR SSIM PSNR SSIM

Cheng et al. (2018) 26.03 0.77 27.23 0.81

SESR (Islam et al., 2020a) 27.17 0.77 26.16 0.77

SRSRGAN 28.08 0.78 29.13 0.85
frontie
The best results are shown in boldface.
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channels in the restoration stage to transform degraded images to

clean images. Besides, the HFLM excavates fine-grained high-

frequency information to super-resolve clean images. Extensive

experimental results demonstrate the superiority of SRSRGAN in

underwater image restoration, super-resolution, and simultaneous

restoration and super-resolution.
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TABLE 5 Comparisons of the performance of SRSRGAN and its variants with different components on the UIEBD dataset.

Method PSNR SSIM

SRSRGAN without SAB and SN 19.29dB 0.7204

SRSRGAN without SAB 19.96dB 0.7528

SRSRGAN without SN 19.75dB 0.7335

SRSRGAN without HFLM 18.79dB 0.7153

SRSRGAN 20.92dB 0.7731
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The best results are shown in boldface.
TABLE 4 Quantitative evaluation of SRSRGAN and the compared methods on the UIEBD dataset.

Method PSNR/SSIM UCIQE UIQM

Cheng et al. (2018) 19.92/0.7381 0.5792 2.7404

SESR (Islam et al., 2020a) 18.19/0.6917 0.5385 2.7064

MLDRG 18.55/0.6698 0.5389 2.5356

MLDRG+SRGAN 18.36/0.6592 0.5185 2.6286

SRSRGAN 20.92/0.7731 0.6453 3.3467
The best results are shown in boldface.
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