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Microalgae-mediated tandem
culture of shrimp and bivalve: an
environmental and health co-
benefits solution for phosphorus
recovery and emission reduction

Shuonan Ma, Xumeng Dong, Cheng Luo, Chunpu Zhao
and Jilin Xu*

School of Marine Science, Ningbo University, Ningbo, China
Phosphorus (P) accumulation in aquaculture systems is damaging our

environment beyond acceptable levels. Devising strategies to potentially

recover P from aquaculture systems in a reusable bioresource form is

paramount and aligns with circular economy policies. In this study, we

constructed two culture models, monoculture (Mon) and tandem culture (Tan),

using Exopalaemon carinicauda and Mercenaria mercenaria. By monitoring the

performance of rearing organisms, P dynamic patterns, and pollutant emissions,

we found that: i) Compared to the Mon system, the Tan system demonstrated no

differences in the performance of E. carinicauda and M. mercenaria, suggesting

that the Tan model was viable in terms of fishery yield; ii) P in the Tan system

could be efficiently recovered and removed from water and sediment, as

indicated by the lower phosphate concentration in water (0.01 mg L−1), and the

decrease in labile P in surface sediment (from 0.04 to 0.02mg L−1). A combination

of assimilatory and dissimilatory processes, mediated by phototrophic (bait-

microalgae) and heterotrophic organisms (bivalves), appeared to be the primary

mechanism for P utilization and removal; iii) The Tan system reduced pollutant

emissions four times lower than the Mon system due to its minimal tailwater

discharge (10%, 230 L). The emissions of total P, phosphate, total organic carbon,

ammonium, and chemical oxygen demand from the Tan systems were 19 mg

m−2 d−1, 2 mg m−2 d−1, 2 g m−2 d−1, 38 mg m−2 d−1, and 11 g m−2 d−1, respectively,

1.3, 1.7, 1.4, 1.3, and 1.2 times lower than those from the Mon systems. The eco-

friendly Tan culture model fully exploited the resources of pond culture, a

solution with environmental and health co-benefits for P recovery and

emission reduction.
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1 Introduction

The increasing global demand for aquatic animal proteins has

led to a rapid expansion of aquaculture, with production growing

from 59.0 million tons in 2010 to 122.6 million tons in 2020 (FAO,

2022). Although beneficial from a production point of view, this

expansion is inevitably coupled with a myriad of negative

environmental implications, especially concerning nitrogen (N)

and phosphorus (P) emissions. Due to low assimilation efficiency,

only 10%–33% of the P added as fertilizer, feed, and food additives

was assimilated by organisms in mariculture (Bouwman et al.,

2013). The remaining portion was accumulated in sediments or

discharged to neighboring areas, accelerating water degradation and

restricting the sustainable development of aquaculture (Hicks et al.,

2019). Therefore, reconciling the exploitation of fishery resources

with water protection is one of the major challenges that we must

address judiciously and cautiously.

The expansion of aquaculture toward sustainability necessitates

technologies that focus on the recycling of matter and energy

(Jegatheesan et al., 2011). Numerous technological approaches are

in practice, such as microalgal/macroalgal biofiltration,

recirculating aquaculture systems (RAS), and integrated multi-

trophic aquaculture (IMTA) (Dalsgaard et al., 2013; Paolacci

et al., 2022; Mishra et al., 2023; Nissar et al., 2023). Microalgal

biofiltration is important for wastewater remediation by removing

carbon, N, and P from the aquaculture system (El-Maghrabi et al.,

2022; Mishra et al., 2023). For example, Andreotti et al. (2017)

reported that 90% of N and 79% of P were removed from fishery

wastewater by using Isochrysis galbana, Tetraselmis suecica, and

Dunaliella tertiolecta. RAS, typically used for intensive shrimp and

fish production, have the merits of high-density culture without

being limited by season and water availability (Dalsgaard et al.,

2013; Xiao et al., 2019). IMTA has been most popular in recent

decades because it supports the farming of aquatic species belonging

to different trophic levels in the same space in such a manner that

the waste, by-products, or uneaten feed of one species is reutilized

by another crop (as energy, fertilizer, or feed), thereby addressing

the main plights of aquaculture pollution, feed inputs, and paucity

of space (Omont et al., 2020; Nissar et al., 2023). For example, the

co-culture of Gracilaria lemaneiformis and Chlamys farreri can

remove 83.75% of ammonium and 70.4% of phosphorus (Mao et al.,

2009). The extraction rates of N and P were 1112.45 and 134.69 mg

thallus-1 in the co-culture system of Sargassum hemiphyllum and

oyster (Yu et al., 2016). Although the above approaches are

promising for improving nutrient utilization efficiency, the

inability to maintain the desired algal species during microalgal

biofiltration, the high cost of RAS operation, and the rapid disease

transmission in IMTA systems are recognized as non-negligible

drawbacks (Dalsgaard et al., 2013; Dong et al., 2022; Mishra et al.,

2023). Therefore, new avenues in aquaculture are urgently needed

to recover nutrients from aquaculture systems into reusable

bioresources to help close the nutrient cycle and make fishery

production more sustainable.

We propose an advanced solution for the microalgae-mediated

tandem culture of shrimp and bivalve shellfish (hereafter referred to

as shellfish) based on a combination of assimilatory and
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dissimilatory processes, in which the excess nutrients from the

shrimp feed are used to produce a crop of microalgae, the

microalgae are fed to the shellfish by passing the algae-laden

water through the shellfish pond, and the water is then returned

to the shrimp pond, allowing for efficient nutrient recovery and

utilization. Although a similar conceptual design has been proposed

in previous pioneering studies (Wang, 2003), no other relevant

work has comprehensively reported the nutrient turnover of such a

design. Thus, we experimented with comparing tandem and

traditional monoculture shrimp and shellfish cultures.

Exopalaemon carinicauda and Mercenaria mercenaria species,

which are widely cultured in China, were selected as the cultured

organisms (Lin et al., 2008; Zhang et al., 2014). This study aims to

guide pond aquaculture engineering and achieve environmental

and economic sustainability by assessing nutrient recovery and

pollutant emissions from the tandem culture system.
2 Materials and methods

2.1 Experimental system setup

The feeding trial (from 10 November to 4 December 2021) with

tandem culture and monoculture models was conducted in 16

cement ponds (1.6 m×1.8 m×1.0 m) at the Chunlin Aquaculture

Farm, Ningbo, China (29°70′71” N, 121°84′61” E). We introduced

sediment into the cement ponds to make the culture conditions

more similar to those in the natural earthen ponds surrounding

Ningbo. Sediment (total nitrogen: 0.7 mg g-1 dw; total phosphorus:

0.5 mg g-1 dw; organic matter: 27.3 mg g-1 dw) was collected from

Xiangshan Bay (29°41′18″ N, 121°50′30″ E) and subsequently

passed through a sieve (0.5 cm mesh size), mixed, and added to

each pond to obtain a sediment layer of 5 cm. Afterward, these

cement ponds were filled with 2300 L of brackish water (salinity:

14.23 ppt) from an adjacent estuary using a submerged pump, and

the water depth was maintained at 80 cm. Meanwhile, sufficient

seawater was stored in a pond (1000 m2) covered with a thermally

insulated shed for water replenishment and exchange during

farming. Daily water exchange was applied by regulating

individual valves in each cement pond, and the water level was

maintained at 80 cm above the sediment surface during

the experiment.
2.2 Experimental design

Two treatments with four replicates were established: shrimp–

shellfish tandem culture (coded as Tan) and shrimp–shellfish

monoculture (Mon;Figure 1). In the Tan model (Figure 1A), the

shrimp pond (coded as ShrimpTan) and the shellfish pond

(ShellfishTan) were connected once a day using a water pump

(running for 2 hours) during daily water changes. The bait-

microalgae, which provides food for the shellfish, was added to

the ShrimpTan ponds first, which were able to use the residual bait

and nutrients in the ShrimpTan ponds to maintain a stable

community. Then, 20% (460 L) of the ShrimpTan pond water
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containing abundant microalgae was pumped into the ShellfishTan
pond and 10% (230 L) was reflowed after filter-feeding by the

shellfish. To maintain a stable water level of 0.8 m, 10% of the water

loss in the ShrimpTan pond was replenished using the stored water.

The extra 10% of water in the ShellfishTan pond was discharged

directly. In contrast, in the Mon model (Figure 1B), the shrimp

pond (coded as ShrimpMon) and the shellfish pond (ShellfishMon)

were independent of each other, and there was no water exchange

between them during the farming period. Bait-microalgae was

added directly to the ShellfishMon ponds. Approximately 20%

(460 L) of the wastewater was discharged daily from the

ShrimpMon and ShellfishMon ponds. The water loss was

compensated using stored seawater. The mass of daily water

inflow and discharge is shown in Table 1.

In this study, E. carinicauda andM. mercenaria were selected as

the cultivated species. On 5 November 2021, E. carinicauda was

collected from the nearby earthen ponds. Similar-sized shrimp

(body length: 4.05 ± 0.2 cm; body weight: 2.82 ± 0.18 g) with

better vitality were selected and stocked in the shrimp ponds at a

density of 122 ind·m−2 (220 ind·pond−1). M. Mercenaria (body

length: 2.2 ± 0.1 cm; body weight: 94.7 ± 9.6 g) purchased from

Xianglian Aodalai Technology Co. (Ningde, China) was placed in

the shellfish ponds at a density of 90 ind·m−2.

The bait-microalgae providing food availability to the shellfish

were a mixture of Nannochloropsis oceanica (density: 2×106 cell
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mL−1) and Thalassiosira weissflogii (density: 4×104 cell mL−1) in a

volume ratio of 1:1. Nearly 40 L of the algal solution was pumped

into each ShrimpTan and ShellfishMon pond every two to three days,

for a total of 720 L in both Tan and Mon ponds (Table 1). The bait-

microalgae were cultivated and expanded in the following steps: in

step 1, Nannochloropsis sp. and Thalassiosira sp. were purely

cultured in a 3 L conical flask with NMB3 medium containing

KNO3 (100 g), KH2PO4 (10 g), FeSO4·7H2O (2.5 g), MnSO4·H2O

(0.25 g), EDTA·Na2 (10 g), vitamin B1 (6 mg L−1), and vitamin B12

(0.05 mg L−1). The culture conditions were light intensity of 100

mmol photon m−2 s−1 under 23°C (light: dark=12:12 h; Cao et al.,

2021). In step 2, 0.5 L of the algal solution from step 1 was

inoculated into a 5 L conical flask for activation and expansion.

The culture conditions were the same as in step 1, and the final

densities of Nannochloropsis sp. and Thalassiosira sp. were 2×107

cell mL−1 and 4×105 cell mL−1, respectively. In step 3, 1 L of the algal

solution fromstep 2was inoculated into a 50Lwhiteplastic barrelfilled

with seawater (disinfected with sodium hypochlorite and

dechlorinated with sodium thiosulfate before use). The final densities

ofNannochloropsis sp. and Thalassiosira sp. were 3×106 cell mL−1 and

5×104 cell mL−1, respectively. In step 4, 10 L of the algal solution from

step 3was inoculated into a 500 Lwhiteplastic barrel for further spread

cultivation. The culture process was in line with step 3; the final

densities of Nannochloropsis sp. and Thalassiosira sp. were 2×106 cell

mL−1 and 4×104 cell mL−1, respectively.
BA

FIGURE 1

Experimental system. (A) Tandem culture system, (B) Monoculture system. The volume of the culture tank: 2300 L for each pond. The cultured
organisms were Exopalaemon carinicauda and Mercenaria. Totals of 10% (230 L) or 20% (460 L) represent the proportion of water inflow or outflow
to the total volume of pond water.
TABLE 1 Information on daily water inflow, daily water discharge, shrimp feed addition, and algal solution addition in monoculture (ShrimpMon and
ShellfishMon) and tandem culture (ShrimpTan and ShellfishTan) ponds.

Pond Daily water inflow, L d−1 Daily water discharge, L d−1 Total shrimp feed addition,
g

Total algal solution addition,
L

ShrimpTan 230 0 70 1400

ShrimpMon 460 460 70 0

ShellfishTan 0 230 0 0

ShellfishMon 460 460 0 1400
ShrimpTan, tandem culture of shrimp (Exopalaemon Carinicauda); ShrimpMon, shrimp monoculture of (E. Carinicauda); ShellfishTan, tandem aquaculture of shellfish (Mercenaria Mercenaria);
ShellfishMon, monoculture of shellfish (M. Mercenaria).
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2.3 Aquaculture system operation and
daily management

Throughout the farming period, the aquaculture systems were

inspected in the morning and evening to ensure that the production

facilities and breeding animals were in good condition. Shrimp were

fed twice a day with commercial feed pellets containing 42% crude

protein (Yuehai™, Guangzhou, China), once in the morning (7: 00

am) and once in the afternoon (4:00 pm). The feeding rate was

maintained at 1%–4% of shrimp weight (Salame, 1993), and all

shrimp ponds received the same amount of feed (7−8 g per day,

224 g in total) during the farming period (Table 1). On 10

November and 25 November, five shrimp were collected from

each pond to measure shrimp weight for feeding rate

determination. In each pond, two air pumps were operated daily

to facilitate aeration. No drugs (e.g., probiotics and antibiotics) were

used during the breeding process.

2.4 Sampling and analysis

Water temperature (WT), salinity (SAL), dissolved oxygen (DO),

and pHwere recorded in situ at four-day intervals (on 10, 15, 20, 25, 30

November, and on 4 December, respectively) with a YSI ProPlus

(Yellow Spring Inc., USA). Water samples (2 L) were taken at three

randomly chosen locations at mid-water depth within each cement

pond using a water collector (5 L in volume). One liter of well-mixed

water was immediately fixed with Lugol’s solution (3%–5% final

concentration) for phytoplankton analysis. Phytoplankton taxa were

counted in sedimentation chambers (Hydro-Bios Apparatebau

GmbH, Kiel, Germany) using an inverted microscope (CK2,

Olympus Corporation, Tokyo, Japan), and the biomass was

calculated using geometric approximations using the computerized

counting program (Yang et al., 2020). A total of 0.2 L was filtered on

0.45µm cellulose acetate membrane filters for analysis of ammonium

(NH4
+-N), nitrate (NO3

−-N), nitrite (NO2
−-N), and phosphate (PO4

3

−-P). NH4
+-N, NO3

−-N, and NO2
−-N were measured by the

hypobromite oxidation method, the zinc-cadmium reduction

method, and the on-line flow injection method, respectively, using

an automated spectrophotometer (Smart-Chem 400 Discrete

Analyzer, Westco Scientific Instruments, Brookfield, USA) (AQSIQ,

2007). PO4
3−-P was determined using an ammonium molybdate

ultraviolet spectrophotometric method (Ma et al., 2018). The

remaining unfiltered water was used for the determination of total

phosphorus (TP), total organic carbon (TOC), phytoplankton

chlorophyll a (Chl a), and chemical oxygen demand (COD). TP and

COD were determined following the standard methods (AQSIQ,

2007). TOC was determined with a total organic carbon analyzer

(modelAurora 1030,OIAnalytical,USA) (Zeng et al., 2021).Chlawas

extractedwith90%acetone (at 4°Cfor24h)afterfiltration throughGF/

C filters (Whatman, GE Healthcare UK Limited, Buckinghamshire,

UK). Absorbance was then read at 665 and 750 nm before and after

acidification with 10% HCl using a spectrophotometer (Ma

et al., 2021).

The distribution of labile P (referred to as easily changeable or

mobile P fractions) at the sediment–water interface profiles was
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determined using Zr-oxide diffusive gradients in thin films (DGT).

In total, 32 Zr-oxide DGT probes (EasySensor Co. Ltd., Nanjing,

China) assembledwith standardDGTholderswere inserted across the

sediment–water interface on 8 November (at the start of cultivation)

and4December (after 25daysof cultivation)usinga releasedevice (Ma

et al., 2021). The probes were forced 2 cm into the sediment and kept

4 cm above the water surface. After 48 h, the probes were retrieved and

brought to the laboratory for analysis. The binding gels were removed

from the DGT probes and cut into 2 mm strips using a ceramic blade.

The accumulated masses of DRP in the Zr-oxide binding gels were

extractedwithNaOH(1M).The concentrationof labilePmeasuredby

DGT was calculated as follows (Ma et al., 2018):

M = Ce  ∗ (Ve + Vg)=fe Eq1

Labile P  =  (M  ∗ Dg)=(D  ∗ A  ∗ t) Eq2

whereM is the accumulated mass of P on the Zr-oxide gel (µg),

Ceis the labile P concentration in the alkaline eluate (mg L-1), Ve is

the volume of extraction solvent (mL), Vg is the volume of the gel

(mL), fe is the elution efficiency, Dg is the thickness of the diffusive
layer (cm), D is the diffusion coefficient of the phosphate in the

diffusive layer (cm2 s-1), A is the exposed area of the gel (cm2), and t

is the deployment time (s).

At the end of the experiment, we harvested all shrimp and

shellfish and recorded their length and weight. Their growth

performance was evaluated in terms of survival rate (SR), daily

growth rate (DGR), and specific growth rate (SGR), according to

Turkmen (2007).
2.5 Calculation of pollutants in aquaculture
tailwater discharge

During water discharge, 0.5 L of tailwater was collected at a five-

day interval from the outflow tube for measurement of TP, PO4
3−-P,

TOC, NH4
+-N, NO3

−-N, and COD. The pollutants in the tailwater

discharge were calculated according to Cai et al. (2013):

M =
C ∗V
T

Eq3

where daily emissionM (mg m-2 d-1) was calculated as the mean

for each of the five days of water quality sampling and then summed

for the entire month of cultivation. C is the concentration of the

pollutant (mg L−1) taken from the outflow tube at a five-day

interval, and V is the volume of water discharged as tailwater (L),

which was determined by the water level scale on the wall of each

pond. T is the cultivation time (d).
2.6 Statistical analyses

Origin 9.0 and SPSS 2.5 software were used for basic drawing

and data processing. Results were expressed as means and standard

errors. Following Bin Othman and Heng (2014) and Park et al.

(2009), we used repeated measures ANOVA (RM-ANOVA) and
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the Mann–Whitney U test (MWU) to compare the means between

the groups of interest (statistical significance was accepted at p<

0.05). RM-ANOVA was applied to the repeated measures data, such

as TP, TOC, NH4
+-N, NO3

−-N, NO2
−-N, PO4

3−-P, and Chl a

(monitored at five-day intervals). MWU was applied to the

independent data, such as the growth data of the rearing

organisms (monitored only once at the end of the experiment).
3 Results

3.1 Composition, biomass, and
abundance of phytoplankton in
the Tan and Mon systems

According to the data monitored on 20 November, there were 11

phytoplankton species belonging to Cyanophyta, Chlorophyta,

Bacillariophyta, and Euglenophyta. In ShrimpTan ponds,

Nannochloropsis sp. and Thalassiosira sp. were the dominant species

as added bait-microalgae, accounting for 37.4% and 37.0% of total algal

biomass and abundance, respectively (Figure 2). Similar patterns were

found in ShellfishTan ponds. In ShrimpMon ponds, Lygbya sp. and

Coelosphaerium dubium, belonging to the Chlorophyta phylum, were

the top two dominant species, contributing 35.2% of the total algal

biomass and 31.0% of the total algal abundance. In ShellfishMon ponds,

the most dominant algal species were Cosmarium sp., Lygbya sp., and

C. dubium, accounting for 40.4% of the total algal biomass and 35.0%

of the algal abundance (Figure 2).

During the experiment, Chl a concentration, an indicator of

algal density, was significantly higher in ShrimpTan or ShellfishTan
than in ShrimpMon or ShellfishMon (p = 0.001; 0.03). The mean

values of Chl a were 0.98, 0.49, 0.34, and 0.11 mg L−1 in ShrimpTan,

ShellfishTan, ShrimpMon, and ShellfishMon, respectively (Figure 3A).
3.2 Growth performance of reared
organisms in the Tan and Mon systems

WeselectedSR,DGR,andSGRtomeasure thegrowthperformanceof

reared organisms since they are highly recommended in the majority of

previous studies (Turkmen, 2007).No statistical differenceswere observed

between the Tan and Mon models for SR, DGR, and SGR of shrimp

(Table 2). There were no significant differences between Tan and Mon

systems for shellfish’s SR, although it tended to be lower in ShellfishTan
ponds (82%), than in ShellfishMon ponds (87%; Table 2). In contrast,

shellfish DGR was higher in ShellfishTan ponds (6‰ d−1) than in

ShellfishMon ponds (2‰ d−1). SGR displayed similar patterns as DGR.
3.3 Variations in water quality variables and
their associated relationships

As for TP (Figure 3B), ShrimpTan was significantly higher than

ShrimpMon (p< 0.001), and ShellfishTan was significantly higher

than ShellfishMon (p< 0.001). Particulate phosphorus (PP) exhibited

a similar pattern to TP, being significantly higher in ShrimpTan or

ShellfishTan than in ShrimpMon or ShellfishMon (p = 0.001, 0.02;
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Figure 3C). No significant differences were observed for PO4
3−-P

between ShrimpTan and ShrimpMon (p = 0.82) and between

ShellfishTan and ShellfishMon (p = 0.72, 0.70; Figure 3D).

In terms of labile P at the sediment–water interface (Figure 4),

both ShrimpTan and ShrimpMon ponds were higher at the end of the

experiment (4 December) compared to the initial stage of the

culture (10 November). In the ShellfishTan ponds, the labile P in

the sediment (0 to −20 mm) monitored on 4 December decreased

compared to the initial condition, together with the occurrence of a

static layer (sediment or water layer with an extremely low

concentration of labile P). On the other hand, the labile P in the

water (0 to 30 mm) monitored on 4 December increased with

respect to the initial value. During the experiment, there was no

noticeable trend change in labile P for ShellfishMon ponds.

No significant differences were observed for TOC between

ShrimpTan and ShrimpMon ponds (p = 0.40) and between

ShellfishTan and ShellfishMon ponds (p = 0.25) (Figure 5A). NH4
+-

N was significantly lower in ShrimpTan than in ShrimpMon (p =

0.02), while it was significantly higher in ShellfishTan than in

ShellfishMon (p = 0.002; Figure 5B). NO3
−-N was notably higher

in ShrimpTan or ShellfishTan than in ShrimpMon or ShellfishMon (p =

0.01, 0.006; Figure 5C). For NO2
−-N (Figure 5D), no difference was

found between ShrimpTan and ShrimpMon (p = 0.88), while

ShellfishTan was significantly higher than ShellfishMon (p = 0.02).

As for the relationships between water quality variables

(Table 3), TP correlated positively with Chl a, NO2
−-N, NO3

−-N,

NH4
+-N, PP, and PO4

3−-P and correlated negatively with pH.

NO2
−-N and NO3

−-N correlated positively with Chl a, NH4
+-N,

PP, and PO4
3−-P and negatively with pH and WT. NH4

+-N showed

significant positive correlations with TP, PP, and PO4
3−-P and

negative correlations with pH and COD.
3.4 Tailwater discharge in the Tan and
Mon systems

Thepollutantsdischarged frommariculturearedepicted inFigure6.

Except for NO3
−-N, all pollutant emissions, including PO4

3−, TP, TOC,

NH4
+-N, and COD, were significantly lower in Tan than in the Mon

system. The Tan system discharged 19 mg TP m−2 d−1, 2 mg PO4
3−-P

m−2 d−1, and 2 g TOCm−2 d−1 to the surrounding environment, which

was1.3, 1.7, and1.4 times lower than thoseobserved in theMonsystems,

respectively.Approximately 38mgNH4
+-Nm−2 d−1 and11 gCODm−2

d−1 were discharged from the Tan system, 1.3 and 1.2 times lower than

from the Mon system, respectively. In contrast, NO3
−-N discharge was

slightly higher in the Tan system (up to 30mgm−2 d−1) than in theMon

system (27 mg m−2 d−1), although we found no statistical difference

between them.
4 Discussion

4.1 Performance of reared organisms in
Tan and Mon systems

Within the culture period (10 November– 4 December 2021),

we found no statistical differences in the performance of shrimp and
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shellfish between the Tan and Mon systems, which suggested that the

tandem culture model was viable in terms of animal harvesting

compared to the monoculture model. However, the survival rate of

shrimp in all ponds was relatively low (50%–51%) compared with the

data (67%–80%) reported in previous studies (Abdelrahman et al.,

2018; Yang et al., 2021). The following three reasons may explain the

low survival rate of shrimp: i) the temperature droppedwith the season

(from 17°C to 4°C), which was regarded as a major factor in reduced

shrimp survival (Perez-Velazquez et al., 2012). The optimum

temperature for shrimp is 23°C–30°C; above and below this

temperature, their survival is considerably lower (Perez-Velazquez

et al., 2012; Abdelrahman et al., 2018). ii) No protective drugs such as
Frontiers in Marine Science 06
probiotics and antibiotics were used during the farming period, which

could reduce shrimp resistance to various pathogens (Butt et al., 2021).

iii) Generally, the safety threshold of NO2
−-N concentrations in the

overlyingwater of shrimpaquacultureponds is 0.01mgL−1 (Lai, 2014).

However,weobservedmean concentrations ofNO2
−-N (0.03–0.04mg

L−1) in all shrimp ponds that were considerably higher than the safety

threshold, indicating that the water quality could be harmful to the

shrimp and reduce their survival and growth through a variety of

physiological dysfunctions (Hu et al., 2012; Yang et al., 2021). It is

worthnoting that, except for the ShellfinsMonponds, theNO2
−-N levels

gradually increased in the middle of the experiment. This can be

attributed to the organic loading (indicated by TOC increase) and its
B

A

FIGURE 2

Circular stacked bar plots demonstrating the biomass (10−3 mg L−1) (A) and percent abundance (B) of phytoplankton species monitored on 20
November in monoculture (ShrimpMon and ShellfishMon) or tandem culture (ShrimpTan and ShellfishTan) experiments. Different species are displayed in
different colors. The total number of species abundances was 16.51, 27.63, 20.07, and 44.24 in ShrimpMon, ShellfishMon, ShrimpTan, and ShellfishTan
ponds, respectively.
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TABLE 2 Growth performance of reared organisms in different modes at the end of the experiment.

Pond SR (%) DGR (‰ d−1) SGR (‰ d−1)

ShrimpTan 50 ± 6a 24 ± 9a 7 ± 3a

ShrimpMon 51 ± 5a 24 ± 6a 8 ± 2a

ShellfishTan 82 ± 2A 6 ± 2A 2 ± 1A

ShellfishMon 87 ± 2A 2 ± 1A 1 ± 0A
F
rontiers in Marine Science
 07
Data are presented as mean ± SE. Different letters indicate significant differences according to the Mann-Whitney U test (p<0.05). ShrimpTan, tandem culture of shrimp (Exopalaemon
Carinicauda); ShrimpMon, monoculture of shrimp (E. Carinicauda); ShellfishTan, tandem aquaculture of shellfish (Mercenaria Mercenaria); ShellfishMon, monoculture of shellfish (M.
Mercenaria). SR, Survival rate (%); DGR, Daily Growth Rate (‰ d−1); SGR, Specific Growth Rate (‰ d−1).
B

C

D

A

FIGURE 3

Mean values ( ± SE) of phytoplankton chlorophyll a (Chl a) (A), total phosphorus (TP) (B), particulate phosphorus (PP) (C) and phosphate (PO4
3−-P)

(D) for 25 days of growth of shrimp and shellfish in monoculture (ShrimpMon and ShellfishMon) or tandem culture (ShrimpTan and ShellfishTan)
experiments. The data above the lines indicate the average value of the different treatments.
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related decomposition processes: high levels of organic matter

occurred together with high levels of NO2
−-N, particularly in the

later stages of cultivation (Milstein et al., 2001).However, the relatively

short duration of this experiment, covering only part of the organism’s

growth cycle, may underestimate some of the problems typically

occurring in the longer term (e.g., organic matter accumulation and

disease outbreaks) (Dong et al., 2022). Shellfish survival in this study

remained at 82%–87%, which is close to the survival rate of 90%

reported by Washitani et al. (2017). Notably, the daily growth rate of

shellfish tended to be higher in ShellfishTan ponds (6‰ d−1) than in

ShellfishMon ponds (2‰ d−1), which may be due to the adequate food

(bait-microalgae) in Tan systems, as indicated by the more stable and

higher algal biomass (as indicated by Chl a).

Algae, as primary producers of aquaculture ecosystems, differed

in biomass and composition between the Tan and Mon systems,

with higher biomass of Nannochloropsis sp. and Thalassiosira sp. in

the Tan than in the Mon systems. This suggested that the Tan

model facilitated the colonization and stabilization of the added

bait-microalgae. An increase in nutrient availability was expected to

cause dynamics in the phytoplankton community and an increase

in biomass, as indicated by the positive correlations between Chl a

and the nutrients N and P. This was in line with previous studies

(Laiolo et al., 2014).

4.2 Tandem culture model in support of P
utilization and P loop closure

P use efficiency differed between the Tan and Mon systems,

likely due to differences in algal uptake efficiency and recirculating
Frontiers in Marine Science 08
water. Microalgae had a higher potential for P utilization in the

Tan systems. On the one hand, as an intermediary medium to

remove the excess nutrients from the shrimp ponds and

subsequently, as feed for the shellfish, microalgae absorbed and

removed large portions of water P, reducing PO4
3−-P to low levels

(≤ 0.01 mg L−1). In this way, P was removed by combining

assimilatory and dissimilatory processes, which can fully exploit

the P resources of the pond culture and help close the P cycle (Van

Rijn, 2013). The efficiency of algae in nutrient uptake and removal

has been widely recognized (Xu et al., 2017; Paw et al., 2019;

Abdelfattah et al., 2023). For instance, Chlorella minutissima

removed 88% of N and 99% of P from the aquaculture

wastewater (Paw et al., 2019). On the other hand, microalgae can

also utilize sediment P resources by increasing the upward

diffusion of sediment P (referred to as the “pumping” effect of

algae in the previous study by Xie et al., 2003), as indicated by the

decreased labile P in the surficial 2 cm sediment (decreased from

0.04 to 0.02 mg L−1 in ShellfishTan ponds). In contrast, P use

efficiency in Mon systems was less successful. This was likely

because the bait-microalgae in the Mon system were added

directly to the ShellfishMon ponds and immediately filtered by

the shellfish, and thus did not have time to regrow and reproduce.

Furthermore, the recirculating water in the Tan systems

allowed for accelerated P turnover and utilization, which

explains well why nutrients (NH4
+-N, TP, and PP) were higher

in the Tan than in the Mon systems. In contrast, shrimp and

shellfish ponds in Mon systems were independent of each other,

which hindered the P flow between them and, in turn, reduced the

efficiency of P utilization.
FIGURE 4

Two-dimensional distribution images of labile phosphorus concentration (labile P) at a spatial resolution of 0.45 mm at sediment-water interface
profiles at the beginning (10 November) and end (4 December) of the culture experiment. The location of the sediment-water interface is
represented by zero. Tan and Mon represent tandem and monoculture modes, respectively.
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B

C

D

A

FIGURE 5

Mean values ( ± SE) of total organic carbon (TOC) (A), ammonium (NH4
+-N) (B), nitrate (NO3

−-N) (C), and nitrite (NO2
−-N) (D) during 25 days of

growth of shrimp and shellfish in monoculture (ShrimpMon and ShellfishMon) or tandem culture (ShrimpTan and ShellfishTan) experiments. The data
above the lines indicate the average value of the different treatments.
TABLE 3 Spearman’s rank correlations (r value) between environmental variables (significant correlations in bold, *p<0.05, **p<0.01).

pH DO Chl a NO2
−-N NO3

−-N NH4
+-N PO4

3−-P TP PP COD

WT -0.10 -0.62** -0.12 -0.35** -0.23* -0.06 -0.17 -0.02 0.01 -0.30**

pH 0.33** -0.20* -0.55** -0.65** -0.60** -0.22* -0.58** -0.46** 0.01

DO 0.22* -0.10 -0.12 -0.15 -0.05 -0.01 -0.02 0.06

Chl a 0.24* 0.26* 0.10 -0.06 0.43** 0.46** 0.37**

NO2
−-N 0.74** 0.61** 0.45** 0.51** 0.37** 0.06

NO3
−-N 0.54** 0.30** 0.39** 0.29** 0.06

(Continued)
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4.3 Pollutant emissions from the Tan and
Mon systems

The Tan system with recirculating water makes it possible to

reduce water consumption and pollutant emissions. Indeed, the

shrimp (algae)−shellfish tandem culture operation can be achieved

with a minimum daily water exchange rate of only 10% (230 L). In
Frontiers in Marine Science 10
contrast, traditional pond aquaculture consumes a large amount of

water. For example, each kg of aquatic product frompond aquaculture

in China requires 3−13.4 m3 of water (Liu et al., 2021), which is 4−19

times higher than our Tan system. Such minimal tailwater discharge

maintained system stability and reduced pollutant emissions (Wang,

2003). For example, the daily emissions of N and P from the Tan

systemwere 78mgm−2 d−1 and 2mgm−2 d−1, whichwere 1.2−1.5 and
B

C

D

E

F

A

FIGURE 6

Mean values (± SE) of total phosphorus (TP) (A), phosphate (PO4
3−-P) (B), (TOC) (C), ammonium (NH4

+-N) (D), nitrate (NO3
−-N) (E) and chemical

oxygen demand (COD) (F) discharged from mariculture. Tan and Mon represent tandem and monoculture modes, respectively.
TABLE 3 Continued

pH DO Chl a NO2
−-N NO3

−-N NH4
+-N PO4

3−-P TP PP COD

NH4
+-N 0.31** 0.55** 0.45** -0.27**

PO4
3−-P 0.29** 0.12 -0.02

TP 0.94** -0.03

PP 0.04
frontie
WT, water temperature (°C); DO, dissolved oxygen (mg L−1); Chl a, phytoplankton chlorophyll a (µg L−1); NO2
−-N, nitrite (mg L−1); NO3

−-N, nitrate (mg L−1); NH4
+-N, ammonium (mg L−1);

PO4
3−-P, phosphate (mg L−1); TP, total phosphorus concentration (mg L−1); PP, particulate phosphorus (mg L−1).
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3 times lower than the intensive shrimpponds inAustralia (de Lacerda

et al., 2006). Similarly, TP, PO4
3−-P, TOC, NH4

+-N, NO3
−-N, and

COD emissions from Tan systems were 1.3, 1.7, 1.4, 1.3, 1.1, and 1.2

times lower than those observed in Mon systems, indicating that

tandem systems had clear advantages in terms of pollution reduction.

Furthermore, the growth and reproduction of bait-microalgae were

more stable inTansystems than inMonsystems,whichmay increaseP

uptake by microalgae. Overall, the Tan model was eco-friendly and

preferred because it demonstrated high stability, high nutrient

utilization efficiency, minimal water input, and low wastewater

discharge while allowing full control of the culture environment.
5 Conclusions

Overall, the microalgae-mediated tandem culture of shrimp and

shellfish made the use of P resources more efficient and sustainable

through the recirculation of the water and the high uptake efficiency

of algae. As an intermediate medium to remove the excess nutrients

from the shrimp ponds and then as feed for the bivalve, the

microalgae not only absorbed water P but also utilized sediment

P by stimulating the upward diffusion of sediment P. Furthermore,

the tandem culture system can reduce pollutant emissions by

minimizing water discharge. In addition, TP, PO4
3−-P, TOC,

NH4
+-N, and COD emissions were 1.3, 1.7, 1.4, 1.3, and 1.2 times

lower than those observed in monoculture systems, respectively.

The environmental and health co-benefits of such a tandem culture

are an effective approach to recovering and removing P and

therefore deserve to be prioritized.
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