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Starfish have a wide range of feeding habits, including starfish, sea urchins, sea

cucumbers, corals, abalones, scallops, and many other marine organisms with

economic or ecological value. The starfish outbreak in coastal areas will lead to

severe economic losses in aquaculture and damage the ecological environment.

However, the current monitoring methods are still artificial, time-consuming,

and laborious. This study used an underwater observation platform with multiple

sensors to observe the starfish outbreak in Weihai, Shandong Province. The

platform could collect the temperature, salinity, depth, dissolved oxygen,

conductivity, other water quality data, and underwater video data. Based on

these data, the paper proposed an early warning model for starfish prevalence

(EWSP) based on multi-sensor fusion. A deep learning-based object detection

method extracts time-series information on the number of starfish from

underwater video data. For the extracted starfish quantity information, the

model uses the k-means clustering algorithm to divide the starfish prevalence

level into four levels: no prevalence, mild prevalence, medium prevalence, and

high prevalence. Correlation analysis concluded that the water quality factors

most closely related to the starfish prevalence level are temperature and salinity.

Therefore, the selected water quality factor and the number of historical starfish

are inputted. The future starfish prevalence level of the starfish outbreak is used

as an output to train the BP (back propagation) neural network to build EWSP

based on multi-sensor fusion. Experiments show that the accuracy rate of this

model is 97.26%, whose precision meets the needs of early warning for starfish

outbreaks and has specific application feasibility.
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starfish disaster, multi-sensor fusion, early-warning model, self-supervised model,
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1 Introduction

Starfish are one of the most common carnivorous echinoderms

in coastal areas. It has robust reproductive and regeneration

capabilities and uses shellfish and corals as food sources. The

characteristics and feeding habits of starfish enable them to

reproduce rapidly in a suitable environment, forming a large-scale

starfish outbreak disaster and causing significant damage to

shellfish farming and coral ecosystems (Babcock et al., 2020;

Wang et al., 2021). In coral ecosystems on the Great Barrier Reef

in Australia, Acanthaster planci (Crown-of-Thorn Starfish, COTS)

outbreaks are one of the most prominent factors in coral

degradation (Pratchett et al., 2019; Westcott et al., 2020). In

marine ranching, predatory starfishes such as Japanese common

starfish and Asterias rubens (sugar starfish) are the main predators

of farmed shellfish (Miyoshi et al., 2019; Agüera et al., 2021). The

main food of adult Asterias amurensis and Patiria pectinifera are

bivalve mollusks. A large-scale outbreak of the population will have

a huge impact on the population of shellfish, especially the

Ruditapes philippinarum. It is of great significance to protect coral

ecosystems and marine pastures by monitoring the scale of starfish

aggregation and assessing the possibility of starfish prevalence to

take management measures to reduce the losses caused by starfish

outbreaks. In 2012, Kayal et al. developed the SCUBA-tow

technology based on Manta-tow and SCUBA to track the

distribution and density of starfish aggregations (Kayal et al.,

2012). Suzuki et al. used a DNA barcoding approach to describe

the distribution of COTS larvae in Sekisei Lagoon, Ryukyu

Archipelago, Japan (Suzuki et al., 2016). Saponari et al. used

snorkeling at shallow depths (0–5 m) and scuba diving at greater

depths (5–30 m) to monitor and assess starfish outbreaks in Ari

Atoll, Republic of Maldives, over 2 years (Saponari et al., 2018).

Dumas et al. adopted the method of citizen science to monitor

starfish outbreaks, effectively increasing the observation range and

detection quantity (Dumas et al., 2020). Uthicke et al. developed an

eDNA method to detect the density of crown-of-thorns starfish

early in the outbreak (Uthicke et al., 2022). Rogers et al. used an

empirically tuned, individual-based simulation model to investigate

how density and aggregation influence COTS reproductive success,

and quantified a threshold level of density and aggregation above

which reproductive success will increase dramatically (Rogers et al.,

2017). Ecological analysis methods also informed management

targets for the culling of starfish to prevent coral decline

(Plagányi et al., 2020). Besides ecology-based methods, image-

processing techniques are also used for starfish detection. Gesú

et al. proposed three feature indicators for identifying starfish from

starfish video sequences based on the unique shape of starfish (Gesú

et al., 2003). Clement et al. developed a local binarization method

based on texture features to automatically detect starfish images

(Clement et al., 2005). Smith and Dunbabin developed a novel

shape recognition algorithm to classify the Northern Pacific Sea Star

autonomously (Smith & Dunbabin, 2007). Gobi demonstrated

using local invariant features, specifically SIFT features, in the

visual recognition and identification of starfish (Gobi, 2010).

Dayoub et al. proposed a method based on a random forest

classifier (RFC) to train images to assist underwater robotic
Frontiers in Marine Science 02
systems in the detection and tracking of crown-of-thorns starfish

(COTS) (Dayoub et al., 2015).

However, the methods, including SCUBA-tow technology and

DNA barcoding technology, are all implemented in the form of on-

the-spot surveys, which have problems of poor timeliness and high

cost and have high requirements for human resources and material

resources. Methods based on traditional image processing

technology have the problem of poor generalization, and it is easy

to reduce processing precision due to scene transformation. To

overcome the above difficulties, image-processing techniques based

on deep learning have been gradually applied to starfish detection in

recent years. Liu et al. released a large-scale, annotated underwater

image dataset, called the CSIRO dataset, from a COTS outbreak

area on the GBR, to encourage research on Machine Learning and

AI-driven technologies to improve the detection, monitoring, and

management of COTS populations at reef scale (Liu et al., 2021).

Based on the CSIRO dataset, Truong proposed a deep learning

model based YOLOv5 (YOU ONLY LOOK ONCE version 5)

algorithm to automatically detect the COTS to prevent the

outbreak and minimize coral mortality in the Reef (Truong,

2022). Nguyen applied advanced data augmentation methods for

enhancing the quality and quantity of the CSIRO dataset to train

and evaluate the COTS detection model with the YOLOv5

algorithm, which is used for embedded systems and mobile

devices (Nguyen, 2022). Heenaye-Mamode Khan et al. proposed a

novel approach for the automatic detection of COTS-based

Convolutional Neural Network (CNN) with an enhanced

attention module (Heenaye-Mamode Khan et al., 2023). Sheth

and Prajapati detected COTS using various deep learning models

and compared their accuracies to find the best model based on its

performance (Sheth & Prajapati, 2022).

It is plausible that environmental conditions affecting starfish

larvae’s survival and development act similarly on each species of

the same type (Yamaguchi, 1973). Temperature and salinity are

very important for the survival of COTS larvae. Larvae die quickly

at temperatures above 32°C and slowly at lower temperatures.

Therefore, COTS larvae are widely distributed in the waters of the

Great Barrier Reef, where the maximum water temperature is 27–

28°C. The study also showed that larvae developed faster in low-

salinity conditions (Lucas, 1973). Kashenko researched the lower

limit of seawater desalination tolerance range of A. amurensis and P.

pectinifera (blue bat star). The results showed that the P. pectinifera

has a higher tolerance to salinity, under 18‰ still alive, while the A.

amurensis is 22‰ (Kashenko, 2003). Caballes et al. studied the

environmental critical points of each link in the development of the

COTS. The results showed that gametes, fertilization, and embryos

have a wide range of adaptability to temperature, salinity, and pH.

Then, they proposed that compared with the early developmental

stages, the scope of environmental adaptation may be narrowed

during ontogeny in the later stage (Caballes et al., 2017). Novia

Arinda Pradisty et al. evaluated more than 10 environmental

parameters and determined the environmental parameters with a

more significant correlation with starfish survival through

redundancy analysis (RDA), including salinity, turbidity, and

dissolved inorganic nitrogen (Pradisty et al., 2020). Chen et al.

found that environmental (nutrient concentration) and oceanic
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factors (ocean currents) played an essential role in the genetic

feature and larval dispersal of starfish populations (Chen et al.,

2021b). In recent years, multi-sensor fusion methods that integrate

multiple data sources have been widely used. Manzione and

Castrignanò have used a multi-source data fusion method based

on multivariate geostatistics to predict the depth of groundwater

levels (Manzione & Castrignanò, 2019). Nti et al. fused data from

different sensors to predict the stock market (Nti et al., 2021). Hou

et al. proposed a multi-source spatiotemporal data fusion model for

sea surface temperature prediction (Hou et al., 2022). Jiang et al.

proposed a deep learning method based on multi-sensor fusion to

predict the water quality of urban sewage pipe networks (Jiang et al.,

2021). To promote the monitoring and prediction of harmful algal

blooms, a multi-element fusion prediction (MEFP) method for

cyanobacteria bloom was proposed (X. Chen et al., 2022). Tang

et al. created a multisource hybrid dataset for deep learning model

training to predict harmful algal bloom events in Lake Okeechobee

(Tang et al., 2022).

In the past, the impact of environmental factors on starfish was

mainly the result of laboratory experiments or long-term scattered

collection results. However, no intensive collection of environmental

factors was taken. The data source of environmental factors used in

this paper comes from the in situ intensive collection method of the

multi-parameter water quality meter. The amount of data is larger,

which is significant for accurately identifying environmental factors

related to starfish outbreaks and early warning research. The data

used in this paper come from the underwater observation platform

arranged in the marine ranch in Weihai, Shandong Province, which

mainly breeds sea cucumbers. Limited by the location of the platform,
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the research object of this paper is P. pectinifera. Although it poses no

threat to coral or shellfish farming, it is an important predator of sea

cucumbers (Lambert, 1997; Popov et al., 2014); P. pectinifera has been

observed by the platform. Based on the platform and machine

learning algorithm, the starfish disaster situation in the target sea

area was subdivided. A starfish disaster warning was established—

EWSP. The following describes the overall framework of the model

first and then describes the implementation steps of each sub-

module. Finally, the performance of the model is evaluated.
2 Materials and methods

The data used to study the early warning model for starfish

outbreak disasters (EWSP) include starfish number, temperature,

salinity, depth, and dissolved oxygen. Among them, the number of

starfish was calculated according to the maximum value per hour,

and the temperature, salinity, depth, and dissolved oxygen were

calculated according to the average value per hour. Figure 1 shows

the entire process from raw data acquisition to the final EWSP. The

process was mainly divided into four parts.
2.1 The data preprocessing section

This section described the method of processing video data into

starfish numbers and the preprocessing operation of water

quality parameters.
FIGURE 1

Schematic diagram of the EWSP.
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2.2 The calibration section of the starfish
prevalence level

This section used a clustering algorithm to calibrate the starfish

prevalence level.
2.3 Parameter selection section

This part combined the correlation analysis between the water

quality parameters and the starfish prevalence level to obtain the

influence of the water quality parameters. It selected the data

corresponding to the parameters with a more significant

impactful than the training data.
2.4 Neural networks training and
prediction section

The parameters with significant correlation and the historical

number of starfish were the input, and the future starfish prevalence

level was the output. A starfish early warning model was established

using a BP neural network based on deep learning.
2.5 Data source

The data were collected from the underwater observation

platform located in the marine ranching in the northern part of

Weihai, China, as shown in Figure 2. The platform was placed 13 m

underwater and measures 2 m long, 2 m wide, and 1 m high. The

platform is equipped with various sensors, including underwater

cameras and multi-parameter water quality sensors, to provide

underwater video data and various water quality parameters such

as temperature, salinity, depth, dissolved oxygen, and conductivity.

The underwater camera used in this platform is a ROS-C 600

marine high-definition color camera with 30× optical zoom and 80°
Frontiers in Marine Science 04
ultra-wide angle. The multi-parameter water quality sensor

configured on the platform is the UMI-OT series, which can

simultaneously observe multiple water quality parameters. The

sensor parameters are shown in Table 1. The period of video and

water quality parameter data used in this study is fromMay 2020 to

October 2021. Eight kinds of marine life can be detected in the

video, such as P. pectinifera, Gymnocorymbus ternetzi, Stichopus

japonicus, and Scophthalmus maximus, and obtained 278 days of

data between May 2020 and October 2021; the missing part was

concentrated in December 2020 to June 2021 and October 2020, the

main reason for which is that the water body is completely turbid,

leading to video that cannot be used or video that cannot be saved

owing to hard disk failure.
2.6 Data preprocessing

2.6.1 Preprocessing of video
In this study, 800,000 images were extracted at fixed intervals

from the video data from May 2020 to October 2021, and 5,349

images were selected as a dataset and labeled. The selection

principles were as follows:

2.6.1.1 Principle 1

The number of pictures selected each month is as close as

possible. Because the turbidity of the water body varies slightly in

each month, this can prevent the data distribution from shifting and

the object detection model can only be used in certain months and

is not robust.

2.6.1.2 Principle 2

Do not select pictures that are close in time because the P.

pectinifera, as a slow-moving echinoderm, will not have a big

difference in the distribution in a short time.

2.6.1.3 Principle 3

Pick images with better lighting conditions that will be more

conducive to labeling.

The selected pictures were divided into the training set, testing

set, and validation set according to the commonly used ratio of

6:2:2. In a total of 5,349 images, 3,209 images are selected as the

training data, 1,070 images are chosen as the testing data randomly,

and the remaining 1,070 images are used as the testing data. The

training set was used to train the detection model. The validation set
FIGURE 2

Underwater observation platform.
TABLE 1 Sensor parameters.

Sensor Type Range Resolution

Salinity sensor 0–85 mS/cm ± 0.008 mS/cm

Temperature sensor −5–45°C ± 0.003°C

Dissolved oxygen sensor 0–500 mmol/L ± 0.1 mmol/L

Conductivity sensor 0–90 mS/cm ± 0.003 mS/cm

Depth sensor 0–100 m ± 0.03%
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was used to reflect the training process. The testing set was used to

test the generalization ability of the detection model.

The detection model used in this study was the yolov5

algorithm based on deep learning. The detection model was

constructed through the target detection algorithm, the target in

the image was recognized, and the number of the same category is

counted. Using 5,349 pictures to obtain a trained detection model,

the detection model had an accuracy rate of 95% for the primary

research target starfish. The detection model was applied to all

videos from May 2020 to October 2021. The sequence data of the

number of starfish over time resulted from preprocessing of the

video. The sequence data were divided by taking the maximum

value every hour, with missing data being filled with zeros. This

method resulted in 12,273 data samples corresponding to 12,273 h

of data.

2.6.2 Water quality data preprocessing
Water quality data of the multi-parameter water quality meter

used in this study include five parameters: temperature,

conductivity, depth, dissolved oxygen, and salinity. Sensors that

provide raw data may experience various malfunctions that result in

missing values or outliers that are significantly different from other

values. For such data, we adopt the method of direct discarding to

remove them from our analysis. The sensor sampling frequency was

once every 5 min. To align the water quality data with the sequence

data in time, the following operations are performed: firstly, the

missing values and outliers are directly deleted, and then the

moving average method with a window size of 1 h is used to

calculate each average value over the hour. The water quality data

were divided into 12,273 subsets at 1-h intervals.

2.6.3 Data normalization
Data normalization is an essential operation in data

preprocessing. In this study’s data analysis process, the units and

magnitudes of various data are vastly different because the data

come from different sensors. The data normalization method is

used to scale the original data and eliminate the effect of the unit. It

is calculated as follows:

wij =
wij −min(wij)

max (wij) −min(wij)
(1)

where wij is the value of the ith water quality parameter at the

jth moment.
Frontiers in Marine Science 05
2.7 Calibration of starfish prevalence level

The starfish prevalence level is often determined according to

the number of starfish. Owing to starfish’s different survival and

development statuses in different sea areas, it was difficult to define a

unified standard (Hughes et al., 2014). When people classify starfish

prevalence levels, they usually draw a rough classification standard

based on the damage caused by starfish outbreaks to the local

ecological environment. However, the description of the boundary

between different levels was often vague, and a large area of

uncertainty is prone to appear. In this study, we used the self-

supervised method. The K-means clustering algorithm, which often

was used for level classification, was used to classify starfish

outbreak disasters, which can calibrate the number of different

starfish to as many levels as possible to maximize the interval

between samples (Hartigan & Wong, 1979; Li et al., 2016; Rifa

et al., 2020).

2.7.1 Initial point selection
The interval between different calibration results is determined

according to the data distribution, avoiding human subjectivity. The

results of the k-means algorithm largely depend on the position of

the initial point, which means that the results have great

randomness (Erisoglu et al., 2011). Because of the random

selection of the initial point, the calculation results will be

different each time, and this error cannot be avoided. There are

specific errors in any clustering algorithm. To reduce the error

caused by randomness, this study will select multiple random initial

points, calculate the similarity between classification results, and

select the one with the highest similarity with other classification

results. The classification result is the final level calibration result.

The calculation of the similarity refers to Eq. 2 in Section 2.8.1.

2.7.2 Hyperparameter selection
To begin with, the sequence data are first aggregated using a

time window of size s and a step size of 1 day. This process results in

a three-dimensional feature point for each aggregation part,

including data statistics within the calculation window. The three

statistics included in the feature point are the average value,

maximum value, and standard deviation. Choose k value as the

number of clusters in the k-means algorithm and the number of

classifications of the starfish prevalence level. The specific meanings

of k and s are shown in Table 2.
TABLE 2 Specific meanings of k and s.

Parameters Name Meanings

k Number of classifications of
the starfish prevalence level

The physical interpretation of this parameter pertains to the number of classifications of the starfish prevalence level,
which is expressed as the number of clusters in the clustering algorithm in the algorithm.

s Time window size The physical interpretation of this parameter is the number of how long to assess the starfish prevalence level, which
is expressed as the amount of data contained in the prevalence level label in the algorithm.
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Therefore, two hyperparameters, k and s, need to be selected in

the steps of using this algorithm. The specific selection method is as

follows: give a set of commonly used k values and a set of s values,

combine them, and give each feature point a feature label through

the k-means algorithm. In the complete dataset, according to the

time series, select the feature label to which the nearest feature

center in time belongs. The new feature label sequence obtained by

combining each kind of k and s is calculated according to the

correlation between the corresponding time and the original data

sequence of the number of starfish. Then, the k and s values are

determined by comprehensively considering the actual engineering

situation and the correlation. Table 3 shows the classification of

marine biological prevalence levels by countries around the world.

It can be seen from the table that the classification of marine animal

prevalence level in practice is mainly divided into two to five levels,

with three levels and four levels being the most common. Therefore,

a set of k = [2,3,4,5] is selected.

At the same time, according to some China official documents,

such as “the notice on establishing and improving the marine

ecological early warning and monitoring system by the ministry

of natural resources”, “the emergency response plan for storm

surge, waves, tsunamis and sea ice”, and “the provision on

national marine warning report consultation”, weekly and

monthly periods are common reporting cycles for marine disaster

warning reports. Therefore, a set of s = 7–30 was selected.
2.8 Parameter selection

It is necessary to select parameters to reduce the complexity of

the EWSP model, reduce the prevalence of overfitting, and enhance

the generalization ability.

2.8.1 Linear correlation analysis
To describe the qualitative relationship between the factors

affecting the starfish outbreak disaster and the starfish prevalence

level and to screen out water quality parameters that are more

relevant to the starfish prevalence level, it is necessary to calculate

the correlation between each parameter and the starfish prevalence

level (Chen et al., 2021a). We use the Pearson correlation coefficient
Frontiers in Marine Science 06
during the feature selection process (Li et al., 2016; Jayaweera &

Aziz, 2018). The Pearson correlation coefficient is usually used to

measure the degree of linear correlation between two variables. The

larger the absolute value, the higher the correlation, and positive or

negative represents the positive or negative correlation, respectively.

It is calculated as follows:

ri =
om

j=1(wij − �wi)(lj −�l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

j=1(wij − �wi)
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

j=1(lj −�l)
2

q (2)

where ri is the Pearson correlation coefficient between the ith

water quality parameter and the starfish prevalence level (−1≤ ri ≤

1), �wi is the average of the numerical sequence corresponding to the

ith water quality parameter, lj is the calibration value of the starfish

prevalence level at the jth moment, and j is the average value of the

calibration value of the starfish prevalence level.

2.8.2 Nonlinear correlation analysis
There are some disadvantages to using only the Pearson

correlation coefficient analysis. The Pearson correlation coefficient

can well characterize the linear relationship between two variables,

but when there is a nonlinear relationship between them, this ability

to represent it will be significantly reduced. Therefore, this paper

uses the Spearman correlation coefficient to measure the nonlinear

correlation between parameters and quantities (Paul et al., 2017; Cai

et al., 2019). Here, we briefly explain the Spearman correlation

coefficient. The Spearman correlation coefficient is the Pearson

correlation coefficient between grade variables. Its original

calculation formula is similar to the Pearson correlation

coefficient calculation formula. The difference is that the original

data are converted into grade data, and the original data are based

on their average. The descending position is given a corresponding

rank. The absolute value of Spearman’s coefficient indicates the

degree of dependence. The larger the absolute value, the higher the

monotonic correlation. Its calculation formula can be simplified as:

ri = 1 −
6on

j=1d
2
j

n(n2 − 1)
(3)

dj = R(wij) − Rlj (4)
TABLE 3 Marine biological prevalence management file.

Filename Country Prevalence Level Number

Emergency plan for aquatic animal diseases in Shandong province China 4

Aquatic nuisance species task force strategic plan United States 4

Australian pest animal strategy Australia 4

Invasive alien species act Japan 3

Harmonia+ Belgium 2

German–Austrian black list information system Germany–Austria 3

Great Britain non-native species risk assessment England 4

European non-native species in aquaculture risk analysis scheme European Union 5
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epi is the Spearman correlation coefficient between the ith water

quality parameter and the starfish prevalence level (−1≤pi≤1), R(wij)

and Rlj respectively represent the ranking of the value of the ith

water quality parameter at the jth moment in its numerical

sequence in descending order and the ranking of the starfish

prevalence level calibration value at the jth moment in its

numerical sequence in descending order, and n is the sample size

of the numeric sequence.

2.8.3 Correlation parameter selection
The Pearson correlation coefficient is mainly used to measure

the linear correlation between two variables, so it is susceptible to

outliers. Compared with the Pearson correlation coefficient, the

Spearman correlation coefficient is a correlation coefficient based on

the rank of the data. Since the amount of data directly manipulated

is rank, the coefficient is robust to outliers and can reflect nonlinear

relationships. Therefore, the selection of high-correlation

parameters in this paper should consider both. The calculation

method of the parameter selection evaluation index pi is as follows

(Cai et al., 2019):

pi =
ri −min(ri)

max(ri) −min(ri)
+

ri −min(ri)
max(ri) −min(ri)

(5)

where pi is the selection evaluation index of the ith water quality

parameter (0≤pi≤2). According to its calculation formula and range,

the category of parameters defined here with a pi greater than 1.5

will be selected as BP neural network model’s input features.
2.9 Training based on BP neural
network model

2.9.1 Structure of the BP neural network model
Amultilayer perceptron BP neural network model is established

as the early warning model for starfish outbreak disasters. The

output is the average of the starfish prevalence level in the next

period. The structure of the BP neural network model is shown in

Figure 3, which includes an input layer, three hidden layers, and an

output layer. The input layer receives a tuple, and after the
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activation of three hidden layers, a probability tuple is an output

in the output layer.

2.9.2 Dataset of the BP neural network model
To construct the BP neural network dataset, the time window

method was used with a step size of 1 h. Specifically, the dataset

feature part consists of 336 consecutive hours of the water quality

data and sequence data statistics, including mean, maximum, and

standard deviation values. The dataset label part consists of the

corresponding maximum prevalence level occurring in the next

72 h after the 336 h. The dataset contains 11,864 data samples,

which are divided into three parts: 7,118 for training, 2,374 for

validation, and 2,372 for testing, in a ratio of 6:2:2.
3 Results and discussion

3.1 Prevalence level calibration

This study used the K-means algorithm to divide the starfish

prevalence level. The division method is based on the actual number

of starfish. To divide results more relevant and robust to the number

of starfish, a set of commonly used k = [2,3,4,5] was set, and

according to the observations widely used in actual engineering

interval s = 7 – 30. Among them, k was the number of classification

of starfish prevalence levels in this method, and s was the length of

the sub-dataset after division. According to the ecological

prevalence level classification standard commonly used in marine

engineering practice and the requirement that the calibration results

be robust to the number of oceans, we set k to 4 and s to 14 as the

model hyperparameters among the parameter combination results.

After choosing the hyperparameters, 18 random selections are

made to determine the initial point, and the correlation between

each clustering result and other results is calculated and summed.

The result with the highest correlation sum is used as the final initial

point. The dataset used in this model contains 511 days of data.

After data aggregation with s = 14, 482 feature points are obtained

for clustering. The clustering results are interpreted as follows: Each

feature point is represented by three statistics (average value,
FIGURE 3

The BP neural network structure.
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maximum value, and standard deviation) as the coordinate axes,

and the resulting clustering is visualized in Figure 4A. Figure 4B

shows the results of calibrating the clustering results to each

sequence data according to the date, including 12,273 data.

The specific meaning of Figure 4 is as follows: Level 0 feature

points are mostly concentrated in areas where the average,

maximum, and standard deviation are relatively small, indicating

that in this prevalence level, the target waters are likely to maintain a

stable and low number of starfish. Feature points with level 1 have

the characteristics of a small mean, small maximum, and large

standard deviation, indicating that the number of starfish in the

target waters at this prevalence level will fluctuate greatly and may

return to a stable state of low numbers, but there is also a possibility

of a sudden increase in number. Prevalence level 2 feature points
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have the characteristics of a small mean, large maximum, and large

standard deviation, indicating that the number of starfish at this

prevalence level is likely to reach a level of excessive aggregation that

poses a threat to the ecology of the target waters. In prevalence level

3, the maximum, mean, and standard deviation are all very large,

and the number is in a range that needs urgent control and is likely

to continue to aggregate in the future. For the clustering results

under s = 14,k = 4, we can give the description of the prevalence

level division in Table 4.
3.2 Impactful factor selection

This study used the Pearson correlation coefficient and the

Spearman correlation coefficient to calculate the parameters related

to the starfish habitat collected by the sensors. Firstly, the Pearson

correlation coefficient was used to calculate the correlation between

the temperature, depth, salinity, electrical conductivity, dissolved

oxygen, and the starfish prevalence level. Among them, depth and

dissolved oxygen are negatively correlated with the starfish

prevalence level, and other indicators are positively correlated

with the starfish prevalence level. Secondly, the Spearman

correlation coefficient is used to calculate the correlation between

the temperature, depth, salinity, electrical conductivity, dissolved

oxygen, and the starfish prevalence level. Among them, temperature

and electrical conductivity have a more significant correlation with

the starfish prevalence level, indicating that they have a more

impactful effect on the occurrence of disasters.

After obtaining the calculation results of Pearson’s and

Spearman’s correlation coefficients, we use the parameter

selection evaluation index to evaluate each impactful factor. The

results are shown in Table 5. It can be seen from the table that

salinity and temperature are the two most impactful factors

according to the calculation method of this evaluation index.
A

B

FIGURE 4

(A) Visualization of clustering results for different prevalence levels
when k = 4 and s = 14. (B) The dotplot illustrates the clustering of data
points, while the annotated boxplot presents the corresponding results.
TABLE 4 Different prevalence level specific meanings and description.

Prevalence
level

Meaning Description

0 Very low
prevalence

The number of starfish is within the
acceptable range, and the number fluctuates
slightly. Almost no impact on sea cucumber
farming.

1 Low
prevalence

The number of starfish is within the
acceptable range, and there may be
unacceptable aggregation. Little impact on sea
cucumber farming.

2 Medium
prevalence

The number of starfish has been in the
unacceptable range for a long time and has a
large change range. It is recommended to
remove it regularly. Relatively great impact on
sea cucumber farming.

3 High
prevalence

The number of starfish has been in an
unacceptable range for a long time and has
changed greatly. It is recommended to take
immediate measures. Extremely great impact
on sea cucumber farming.
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Therefore, the input feature group of the starfish outbreak disaster-

grade BP neural network model should include temperature

and salinity.
3.3 Parameters of the BP neural network

The BP neural network used in this paper is a three-layer BP

neural network model, with 9 nodes in the input layer, 1,000 nodes

in the hidden layer, and 4 nodes in the output layer. The input

vector includes the average, standard deviation, and maximum

value of historical temperature, salinity, and the number of

starfish. The output results represent the predicted probabilities of

the four prevalence levels. The activation function adopts the relu

function. The essence of predicting the prevalence level is a multi-

classification problem. The loss function uses cross-entropy loss.

Figure 5 shows the number of starfish and their predictions

over time.
3.4 Testing of early warning model effect

Use 20% of the data in the total dataset as a test set to evaluate

the effect of the EWSP. A total of 2,372 data samples were tested,

and the confusion matrix is shown in Figure 6.

For the starfish outbreak disaster early warning model, the

historical temperature, salinity, and the number of starfish are

selected as input tuples. The predicted results were compared

with the actual results. Levels 0–3 represent four starfish
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prevalence levels: very low prevalence, low prevalence, medium

prevalence, and high prevalence. Among the 2,372 prevalence data,

2,307 were correctly predicted, and 65 were wrongly predicted; for

low prevalence, 401 were correctly predicted, 11 were wrongly

predicted as low prevalence, 11 were predicted as very low

prevalence, but no case was wrongly predicted as high prevalence;

73 out of 94 medium prevalence are correctly predicted; 284 out of

298 high prevalence are correctly predicted. The accuracy rate and

the precision rate of four kinds of starfish prevalence level are 0.99,

0.95, 0.78, and 0.95, and the recall rates are 0.99, 0.94, 0.75, and 0.99,

respectively; The F1-scores are 0.99, 0.94, 0.76, and 0.97

respectively. From the results of accuracy, the EWSP is good at

predicting the prevalence level of starfish, especially for the early

warning of lower prevalence levels. The early warning model has a

very high accuracy rate.

The main errors in analyzing the early warning model come

from many aspects. One is due to the error in the data itself, that is,

the data collection process of the water quality sensors and the

underwater camera. For example, the water quality sensor is

affected by underwater attachments, or the water body is severely

turbid, causing the camera to lose sight. This paper uses a simple

method for missing values and outliers in raw data. The method

of direct discarding makes the dataset lose a lot of original

information; second, the biological aggregation characteristics of

starfish in the sea area led to unbalanced sample categories. For

example, in July, the concentration of starfish in the entire month

was significantly more than in other months. In addition, the water

quality sensor parameters used in this study only include five types,

and after selection, only two parameters are used as input
FIGURE 5

The number of starfish and its predictions over time.
TABLE 5 Calculation results of parameter selection evaluation index pi.

Parameters Pearson ri Spearman pi Evaluation index pi

Temperature 0.2798 0.1773 1.6976

Salinity 0.3520 0.5314 1.7831

Conductivity 0.0296 0.1537 0.8950

Dissolved oxygen −0.0043 −0.0881 1.3420

Depth −0.0919 −0.0927 0.5356
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components, which belong to a small number of categories. This

research assumes that this situation is also the cause of the error in

the early warning model. The final result is that the accuracy of the

EWSP is 0.9726.
4 Conclusions

This study used a deep learning-based object detectionmodel and

clustering algorithm to preprocess the dataset. The linear and

nonlinear correlation coefficients are used to calculate the

correlation of each water quality participating in the starfish

prevalence level. Combining the number of historical starfish, water

quality parameters, and starfish prevalence levels, select the highly

correlated parameters and extract the data corresponding to the

impactful factors and the number of starfish. The number of starfish,

critical parameters, and starfish prevalence level are used as the

training data of the neural network model. Finally, the early

warning model for starfish outbreak disasters is obtained. In the

Table 6, Judging from the prediction results of the four starfish

prevalence levels, the accuracy rates of the 0, 1, 2, and 3 starfish

prevalence levels predicted by the model are 0.99, 0.95, 0.74, and 0.95,

respectively. The sample data are all from the natural underwater

environment of marine ranching. The actual underwater

environment parameter data ensure that the predictions are closer

to the nature scene. At the same time, the training data selection can
Frontiers in Marine Science 10
be adjusted, and the model architecture is simple and flexible. The

neural network has a strong nonlinear fitting ability and exhibits

excellent predictive performance in the case of sufficient data. At the

same time, the research can be further expanded. In the future, if the

natural enemies or food of starfish appear in the field of view of the

underwater camera, the types of input data or the number of water

quality parameters can be added to the model. For other starfishes

related to shellfish farming or coral protection, such as COTS,

underwater images containing COTS (such as the CSIRO dataset)

can be added to the object detection model. The experimental results

show that the EWSP in marine ranching has high precision, which

has a specific application value for the regular operation of marine

ranching, and EWSP can help to reduce the damage of starfish

outbreak disaster time to marine ranching.
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Confusion matrix of early warning results.
TABLE 6 Metrics of early warning results.

Very Low
(Level 0)

Low
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Medium
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High
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