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Saint-Leu, La Réunion, France, 5Commonwealth Scientific and Industrial Research Organisation
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia,
6Marine Science Program, Department of Biodiversity, Conservation and Attractions, Kensington,
WA, Australia
In marine turtles, the sex of hatchlings is determined by their egg incubation

temperature. Global warming may increase the extinction risk by skewing

hatchling sex ratios. Assessment of this risk at the population level requires the

identification of sex in hatchlings and juveniles. However, available methods are

typically lethal, highly invasive, or difficult to conduct at a large scale. Changes in

DNA methylation, an epigenetic modification, have been characterized as part of

sex differentiation pathways in some species with environmentally determined

sex, but so far not in marine turtles. Neither have epigenetic biomarkers for sex

been developed into rapid assays suited to research on wildlife. In this study, we

aimed to develop a rapid, minimally invasive, and inexpensive method to identify

the sex of marine turtles. We used reduced representation bisulfite sequencing

DNA methylation data from adult green sea turtle (Chelonia mydas) skin biopsies

to identify 16 genomic regions exhibiting differential methylation between males

and females (adjusted p-value < 0.01). We designed methylation sensitive qPCR

assays for these regions and tested their capacity to identify the sex of turtles

ranging in age between 3-34 years. The qPCR assay identified the correct sex in

turtles > 17 years. However, the sex of younger turtles could not be accurately

identified. This suggests the sex differences distinguishable by the assay were

adult specific, reflecting the training data on which the sex-specific regions were

identified, and likely linked to late-stage ontogenetic changes associated with

sexual maturity. Epigenetic biomarkers are a promising tool for wildlife research

because they can be minimally invasive and high throughput. Future research

into sex-specific differentially methylated regions in hatchlings and juveniles

should be based on genome-wide DNA methylation data from a wider age

range, which includes hatchlings.
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Introduction

Global warming is a risk to all species. One potential group of

concern is reptiles with temperature dependent sex determination

(Janzen, 1994; Mitchell and Janzen, 2010; Blechschmidt et al., 2020).

These animals do not have sex chromosomes and instead, sex is

determined by the temperature during egg incubation. For example,

in green sea turtles (Chelonia mydas), an egg incubation below 29.2°

C results in only male hatchlings and only females above 30°C

(Yntema andMrosovsky, 1980). A similar trend is observed in other

marine turtle species, where higher egg incubation temperatures

have a bias towards female hatchlings and lower temperatures

towards males (Yntema and Mrosovsky, 1980; Miller, 1997).

Global warming is predicted to lead to a biased sex ratio and over

time result in a population decline (Berec et al., 2001). This effect is

likely to be region and population specific and depend on local

conditions that dictate the nest temperatures (Maurer et al., 2021).

Therefore, there is a need to monitor marine turtle hatchling sex

ratios to identify populations at risk of sex bias and decline.

The sex of adult turtles can be identified by visual inspection, as

the males have a large and more muscular tail compared to females

(Eckert et al., 1999). However, turtles are long lived, and to estimate

future population trends it is necessary to monitor hatchling and

juvenile sex ratios. Yet, morphological differences between sexes in

turtles may not become obvious for many years after hatching

(Berry and Shine, 1980). Several approaches exist to identify

hatchling sex. For example, histology on the gonads can be used,

but is lethal (Mrosovsky et al., 1984; Mrosovsky and Provancha,

1992) and particularly undesirable for endangered species.

Laparoscopic examination of the gonads is non-lethal and

accurate on juveniles, but is highly invasive, impractical on a

large scale, and cannot be carried out on small individuals

(Wyneken et al., 2007). Less invasive methods include blood

hormone assays. In a recent example, a Western blot assay of

anti-Mullerian Hormone was demonstrated to be an accurate

marker of sex in 1-2 day old loggerhead hatchlings (Tezak et al.,

2020). However, the accuracy dropped to 90% in 83–177 day old

individuals and has not been confirmed to work in other species.

The cost of this hormone assay was approximately $18.00 US per

samples, excluding labor and equipment. This method may be ideal

where appropriate laboratory facilities are not available but is

unlikely to be suited to large scale monitoring. Finally, because

marine turtles do not exhibit genotypic sex determination (GSD),

sex identification tests based on differences in DNA sequences

between sexes, which are commonly applied in organisms such as

birds and mammals (Hrovatin and Kunej, 2018; Purwaningrum

et al., 2019), are not appropriate.

Another approach to characterizing population sex ratios is to

predict them with developmental models calibrated from sexes

identified via one of the above methods and incorporate nest

temperatures and incubation durations (Godfrey et al., 1996;

Marcovaldi et al., 1997; Godley et al., 2001a; Godley et al., 2001b).

If calibrations are transferable between populations, these models

can predict hatchling sex ratios from beach temperatures alone.

However, this does not take into account other factors such as
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hatchling success (Schwanz et al., 2010), and may not reflect final

clutch sex ratios. These model also crucially depend on accurate

known sex calibration data from hatchlings, and as described, none

of the available methods meet the most desirable characteristics by

being minimally invasive, accurate, high-throughput, and low cost.

In other vertebrate species, changes in an epigeneticmodification

known as DNA methylation are known to occur throughout the

genome (Waters et al., 2018). The most common form of DNA

methylation is the addition of a methyl group to cytosine residues

within cytosine phosphate guanine (CpG) sites (Bird, 1993). DNA

methylation is well known for its role in regulating gene expression

but has been used as a biomarker for life history traits including sex.

The methylation state of specific genes is a characteristic of the sex

determination cascade in several species exhibiting temperature

dependent sex determination (Garcia-Moreno et al., 2018). An

example is the European sea bass (Dicentrarchus labrax), where

higher temperatures during development induce increased DNA

methylation within the promoter of the aromatase gene, known for

its role in sexual development of females (Ramsey and Crews, 2009;

Navarro-Martıń et al., 2011). As far as we are aware, however, this

class of biomarkers has not been explored for sex identification

purposes in wildlife species exhibiting TSD, includingmarine turtles.

This is likely owing to the lack of appropriate whole genome

methylation data, and the relative novelty of methylation analysis

in non-model organisms (Bock et al., 2022).

To explore the potential of this novel class of biomarkers, we

identified DNA methylation markers of sex in green sea turtles

(Chelonia mydas) sampled from skin biopsies. Then, seeking to

produce a fast, low cost and high throughput assay suitable for

population monitoring we developed a quantitative PCR assay and

evaluated its accuracy when applied to known sex individuals at

multiple life stages of green sea turtles.
Methods

DNA methylation dataset

To identify differentially methylated regions between sex of

green sea turtles we used reduced representation bisulfite

sequencing data from a previous study (Mayne et al., 2022). The

previous study contained sequencing data for 63 green sea turtles

skin biopsies ranging between 1-43.8 years of age and with 22

unknown sex, 31 females, and 10 males. Samples with known sex

(15.8-43.8 years) were only used in this study (Supplementary

Table 1). The sequencing data was prepared using the restriction

enzyme MspI digestion which cleaves DNA at a C^CGG sequence

as previously described (Smallwood et al., 2011). The library was

constructed using the Ovation Methyl-Seq system from NuGEN.
Differential methylation

Sequencing data was trimmed using trimmomatic v0.38 with

a sliding window of 4-15bp and a minimum read length of 36bp
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(Bolger et al., 2014). The trimmed reads were aligned to the green sea

turtle genome (rCheMyd1.pri.v2, NCBI) using Bismark v0.23.0 with

default parameters and bowtie2 v2.4.4 as an aligner (Krueger and

Andrews, 2011; Langmead and Salzberg, 2012). Methylation calling

was carried out using Bismark’s bismark_methylation_extractor

function and returns methylation values as a percentage.

Methylation calling output was read into R v4.2.0 using BiSeq

(Hebestreit et al., 2013). Differentially methylated regions were also

identified using BiSeq using default parameters in the recommended

user’s guide. Regions were considered significant with a false discover

rate < 0.05. Global methylation differences were tested by calculating

the mean DNA methylation average for each CpG site and using a

student unpaired t-test between groups. All analyses were carried out

in R v4.2.0.
Gene ontology

The closest genes to the differentially methylated regions were

identified using the closest function in bedtools v2.29.1. To group

the closest genes into functional pathways, gene ontology

enrichment was carried out with EnrichR using 2018 terms

(Kuleshov et al., 2016). Terms were considered significant if

p < 0.01.
Sample collection and animal ethics

Skin biopsies used for qPCR were from either Kélonia

(Réunion; captive individuals) or Ningaloo (Western Australia;

wild individuals). Réunion samples were conducted under permits

from Kélonia, Réunion Island Prefecture and Department of the

Environment (09-1405/SG/DRCTCV; DA 2017-01). Western

Australian samples were collected during mark-recapture

investigations under permits from the Department of

Biodiversity, Conservation and Attractions (U10/2020-2022) and

the CSIRO Large Animal Ethics Committee (AEC: 14-07).
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Methylation sensitive qPCR

A methylation sensitive qPCR assay was chosen as it is a cost-

effective and high-throughput assay. DNA from samples where sex

is known was extracted using the DNeasy Blood and Tissue Kit

(Qiagen) as instructed in the manufacturer’s protocol. DNA

(150ng) was bisulfite treated using an in-house protocol

(Supplementary Information).

Primer design was carried out using MethPrimer v2.0 (Li and

Dahiya, 2002). Differentially methylated regions with a difference in

magnitude of 10% were targeted for primer design. This was done as

changes less than 10% have been found not to be detectable in

methylation sensitive qPCR (Kurdyukov and Bullock, 2016).

MethPrimer produces a primer pair for when the DNA is

methylated and unmethylated (Supplementary Table 2). Primers

were tested with an annealing gradient (55-60°C) and qPCR was

carried out using Bio-Rad SsoAdvanced™ Universal SYBR Green

Supermix (Cat# 172-5271). The mastermix and cycling conditions

were carried out as instructed by the manufacturer’s protocol

(Supplementary Tables 3, 4). qPCR for the methylated and

unmethylated alleles were performed in separate wells. To

determine the DNA methylation state of the amplicon, DCq
between primer pairs were used as indicators for methylation.

The performance of the assay was assessed using a receiver

operating characteristic (ROC) curve. A general logistic regression

model was also applied between the DCq and age to determine if

there was significant difference in methylation differences with age.

All analyses were carried out in R version 4.2.0.
Results

Differentially methylated regions

As described previously, the sequencing data aligned to the

green sea turtle reference genome with an alignment rate of 88.6%

(Mayne et al., 2022). No statistical difference was found between sex

for global methylation (unpaired t-test, p-value = 0.14,

Supplementary Figure 1). Differential methylation analysis

identified 16 regions to be significantly different between sex

(adjusted p-value < 0.05, Supplementary Table 5).
Gene enrichment analysis

Gene enrichment analysis found seven of the 16 differentially

methylated regions to overlap with genes, five to be within 10,000bp

of the gene and the remaining four to be further than 10,000bp

(Supplementary Table 5). Gene ontology analysis resulted in a total

of 22 significant terms with 32% being related to an immune

response and a further 32% relating to epigenetic regulation

(Supplementary Table 6). For example, genes such as PTPN2, a

known negative regulator of T cell signaling and an association with

inflammation was exhibited a hypermethylated region in males

(Spalinger et al., 2021; James et al., 2022). The promoter of DNMT1
FIGURE 1

Performance of the methylation sensitive qPCR to identify sex in
green sea turtle skin biopsies. Each dot represents an individual
turtle and is colored by the known sex. The horizontal axis is the
known age of the turtle. The left vertical axis details the DCq
between the methylated and unmethylated primers. The right
vertical axis shows the percentage of correctly predicted sex and is
the black continuous line through the plot.
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was hypermethylated in females . DNMT1 i s a DNA

methyltransferase, involved in the addition of methyl groups to

CpG sites (Svedružić, 2011; Ito et al., 2022) and was enriched for

terms relating to histone methylation (GO:0031061) and chromatin

silencing (GO:0005677).
Methylation sensitive qPCR

A total of 10 regions exhibiting highly differentiated

methylation between the sexes in the reduced representation

bisulfite sequencing data were targeted for primer design (see

methods), however primers with desirable amplification

properties could only be designed for one region (Supplementary

Table 2). The DCq between the methylated and unmethylated

primers was used to infer a methylation level over the targeted

level. A positive DCq was suggestive of a female and negative value

is a male. In total, skin biopsies from 35 females and 13 males

ranging between 3-34 years of age were tested. The assay correctly

identified sex in 43 of the 48 samples (Supplementary Table 7). The

oldest incorrectly identified sample was 16 years. The accuracy of

the assay with samples less than 17 years of age was 44%, whereas,

for 17 and older the accuracy of the assay was 100% (Figure 1).
Discussion

We aimed to develop a qPCR assay to identify the sex of green

sea turtles from patterns of DNA methylation in skin biopsies. This

would offer a rapid, inexpensive, scalable, and minimally invasive

way to characterize sex ratios, which is potentially at risk from

global climate change. Our results indicate that the sex of turtles >17

years could be identified with high accuracy, which is encouraging

as a proof of concept for this unique class of epigenetic diagnostic

tests applied to skin biopsies. Yet, adults exhibit morphological

differences between sexes, diminishing the need for diagnostic tests.

In contrast, hatchling and juvenile green turtles lack sex-specific

morphological features, and therefore are the age classes where

diagnostic sex tests would be most valuable. This suggests that the

differentially methylated region characterized by our qPCR assay

reflects a late ontogenetic stage in sexual differentiation and

maturation. Gene ontology analysis suggests that on a DNA

methylation level, the main differences in skin biopsies between

sex are associated with genes relating to the immune response and

epigenetic regulation. Since only skin biopsies were used it is

unknown if this result would be similar in other tissues. Since

only one tissue type was investigated it is difficult to draw any

conclusions on what genes may be involved on a mechanistic level

of why some parts of the genome may have methylation differences.

However, it does provide a potential future approach to investigate

genes relating to the immune response and epigenetic regulation as

potential biomarkers of sex. Potentially, expression differences

could exist too, within these classes of genes as DNA methylation

is regulator of gene expression. RNA sequencing or targeted qPCR

for genes could also be used as an alternative to DNA methylation
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to develop a molecular based assay for sex identification. Whether

these differences are maintained throughout all life stages is

unknown as genomic and expression across all life stages of

marine turtles are not readily available.

If a rapid epigenetic test can be developed for the identification

of hatchling turtles, we envisage that it would have two significant

modes of application. The first is to permit on-ground testing of

large numbers of hatchlings to produce accurate empirical data on

current sex ratios and variation between populations. Minimal

laboratory equipment is typically required to undertake qPCR

assays. Therefore, they could be conducted in the field if there

were benefits in receiving fast results. The second is to provide

additional calibration data for developmental models (Stubbs and

Mitchell, 2018), so that not only can estimates of turtle sex ratio be

extrapolated over large geographic regions, but that forecasts into

the future can also be made with greater certainty than is currently

possible. Methylation sensitive PCR has commonly been used in

biomedical diagnostics from detecting genetic abnormalities to

cancer diagnosis (Zhang et al., 2012; Mehta et al., 2014; Massen

et al., 2022). However, it has not been taken up as a commonly used

molecular tool in an environmental or wildlife management setting.

Future research should focus on developing more genomic data

on marine turtles for hatchlings and juveniles. Such data can then be

combined with the data presented in this study to identify sex

specific markers. By not having genome-wide bisulfite sequencing

data of younger turtles is a limitation of this study and is most likely

the reason why the assay was biased to adults. Future research

should also focus on using tissues such as blood as sex-specific

methylation may potentially be more distinct than in skin biopsies.

Future research should also focus on using a qPCR-based assays as

it is relatively inexpensive compared to DNA sequencing and to

ensure it is non-lethal.

Although, this method was only able to correctly predict sex in

adults for which external morphology already allows visual sex

determination, with additional training data with known sex in

hatchlings and juveniles, better biomarkers for sex identification

could potentially be identified. This would enable researchers to

readily identify populations that are at risk of becoming sex-biased

so that management can be more targeted.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author. The raw demultiplex

sequencing data was from a publicly available database

and can be accessed from: https://data.csiro.au/collections/

collection/CIcsiro:49784v1
Ethics statement

The animal study was reviewed and approved by Kélonia, 110
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