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Removing fluoroquinolones (FQs) in marine culture tailwater is crucial for the
coastal marine environment. The application of a bacteria-based microrobot for
FQ removal was discussed. Norfloxacin (NOR) and levofloxacin (LEV) had static
maximum adsorption capacities of 114.8 and 49.4 mg/g, respectively, by a
magnetic microrobot. The experimental results of NOR adsorption by a
magnetic microrobot were well supported by the Langmuir isotherm and
Elovich kinetic models. Both the Langmuir isotherm model and the pseudo-
second-order kinetic model may be able to accurately represent the LEV
adsorption process. The mass transfer mechanism of the NOR and LEV
adsorptions was divided into two steps and described better using the
intraparticle diffusion (IPD) model. The exothermic and spontaneity of the
sorption process were demonstrated through the study of thermodynamics.
The magnetic microrobot's heterogeneous surface was validated by the
examination of site energy distribution. Additionally, this study demonstrated
that the majority of the NOR and LEV sorption took place at sites with energies
over 4.25 and 17.36 kJ/mol, respectively, supporting the notion that NOR and
LEV adsorption constitute physical-chemical processes. Based on the above
results, a magnetic microrobot, as a new-style green bio-adsorbent, can
potentially be used to remove NOR and LEV from the mariculture in an
inexpensive and effective manner.
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1 Introduction

Fluoroquinolones (FQs) are extensively consumed for disease
prevention and growth promotion in animal breeding and
aquaculture (Coffie et al., 2021). Mariculture tailwater has drawn
much attention, as it brings serious eutrophication oftshore and
damage to the surrounding estuary ecosystems (Gao et al., 2022).
Also, some of the FQs were officially detected in the mariculture
system around the world (Wang et al., 2022). Most of the FQs
cannot be metabolized or absorbed by the body, and so enter into
the environment instead (Oberoi et al., 2019). They have also been
recognized as new toxic organic pollutants in the aquatic
environment (Saya et al., 2022). Antibiotic residues in water may
endanger the ecosystem and human health because they can cause
central nervous system stimulation, convulsions, ocular problems,
inhibition of the neurotransmitter gamma-aminobutyric acid,
reproductive dysfunction, and gastrointestinal disturbances
(Saya et al,, 2022). It is imperative to develop a green and
effective technology to remove antibiotic residues from the
aquatic environment.

When FQs enter the environment, they undergo migration and
transformation processes such as adsorption, hydrolysis, photolysis,
and biodegradation (Sarmah et al., 2006; Patel et al., 2019; Yang
et al., 2021). While FQs are relatively stable in water they are not
particularly suitable for hydrolysis (Van Doorslaer et al., 2014; Patel
et al,, 2019). The photolysis process is much easier to carry out
(Wammer et al.,, 2013; Lakshmi Prabavathi and Muthuraj, 2019),
but will produce active free radicals and cause secondary pollution.
Therefore, adsorption is the primary way of removing FQs in land-
based mariculture tailwater since the biodegradation rate of FQs is
very low (Oberoi et al.,, 2019; Saya et al., 2022). Many absorbents
have been confirmed to remove FQs from aqueous media, such as
clay minerals (Haciosmanoglu ~ et al., 2022), biochar (Cheng et al.,
2021), activated carbon (Kah et al., 2017) and other carbonaceous
materials (Scaria et al., 2022), plastic polymers (Rai et al., 2022),
graphene-based nanomaterials (Wang et al., 2019a), and Fe-oxide-
based composites (Chu et al., 2022). Some green materials, such as
plant leaves, fruit, algae, fungi, and bacteria, were employed to
achieve energy-efficient, cost-effective, and environmentally
friendly removal of organic pollutants (Altaf et al., 2021).
Moreover, the favored adsorption has some strengths, such as a
simple operation process, high treatment efficiency, rich adsorbent
materials, and no highly toxic by-products (Fang et al., 2021b;
Hacilosmanoglu ~ et al., 2022).

Magnetic substrate-loaded adsorbent has been employed in
the removal of FQs with easy regeneration (Fang et al., 2021a).
Magnetic micro/nanorobots have piqued the interest of
researchers because of their enormous potential for use in
biomedicine and environmental remediation (Zhou et al., 2021).
In addition to their bio-friendliness, recoverability, and toxin-free
nature due to magnetic manipulation, they can actively swim
around aquatic contaminants and remove them via capture
(adsorption/absorption) or degradation (Zhang et al., 2018).
Owing to the strong dynamic intermixing, also known as the
magnetic stirring function, the magnetic fields can also be used to
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speed up reaction kinetics or increase recognition efficiency. They
can also be used to retrieve nano/microrobots after the cleaning
process is finished (Ji et al., 2020). The magnetic micro/
nanorobots will eventually be able to be recycled or reused
without their parts being altered. To deal with oil spills,
researchers designed a micromotor that moved like a walnut
and was made of polycaprolactone, Fe304 nanoparticles, and
catalase in a solution with H202. The micromotor could be
navigated and recycled using an external magnetic field (Wang
etal.,, 2019b). Porous biohybrid microrobots made of fungal spores
and Fe;O, nanoparticles were found to be very effective at
removing heavy metal ions. The group behaviors and
magnetically driven movement of the microrobots may enhance
pollutant adsorption more than static microrobots (Zhang et al.,
2018). Carbon soot-based micromotors were simultaneously
activated by a magnetic field and oxygen microbubbles, allowing
for efficient on-the-spot degradation of methyl blue (MB) dye
contamination (Singh et al., 2020). Additionally, it has been
reported that functional magnetic micromotors were powerful
enough to absorb or remove antibiotics from contaminated water
(Li et al., 2019b; Liu et al., 2019).

In a previous study, we made magnetic microrobots with iron
(I, IIT) oxide nanoparticles (FesO, NPs) based on hydrocarbon-
degrading bacteria (Pi et al, 2022). The magnetic microrobot
performed excellently for Congo red adsorption from the aquatic
phase (Pi et al., 2022). Owing to FQs having a similar benzene ring
structure to that of organic dye, the removal of FQs with the help of
a magnetic microrobot was the goal of this work. Norfloxacin
(NOR) and levofloxacin (LEV) are FQs that are used widely, and
the concentration of ng/L to ng/L has been detected in different
aqueous environments (Fang et al., 2021a, b; Yan et al., 2017a; Yan
et al,, 2017b). They were used as typical FQs in this work.
Adsorption capacity, kinetics, isotherm equilibrium, site energy
distribution analysis, and mechanism were used to investigate
NOR’s and LEV’s removal potential. Adsorption parameters,
which corresponded to a specific site energy distribution, were
also determined using a variety of isotherm models. Owing to their
magnetic characteristics, microrobots were easy to navigate and
were recycled under a magnetic field.

2 Materials and methods

2.1 Materials

Without further purification, all chemicals are at an analytical
grade. The bacteria were isolated from an antibiotic-producing
pharmaceutical factory’s sewage outlet. Our previous research
serves as a reference for the isolation procedure (Pi et al., 2015).

2.2 Synthesis of microrobots

The microrobot can be simply defined as a nanocluster
magnetite (Fe;0,) attached to bacteria. The Fe;04 was prepared
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in accordance with previous studies (Schwertmann and Cornell,
2000 Jiang et al., 2018; Jiang et al., 2020). The preparation of
magnetic microrobots is referred to in the literature (Pi et al., 2022;
Vaghasiya et al., 2022). The details of the characterization of bio-
based materials were also demonstrated according to the field
emission scanning electron microscopy (FESEM), transmission
electron microscopy (TEM), fourier transform infrared (FTIR),
and X-ray diffraction (XRD), nitrogen adsorption-desorption
isotherms, magnetic behaviors, and point of zero charges (Pi
et al., 2022).

2.3 Adsorption experiments

All adsorption experiments were conducted using 50-mL glass
tubes in accordance with our previous work (Wang et al., 2021; Pi
et al, 2022). To investigate the adsorption isotherm equilibrium,
50.0 mL of a NOR/LEV solution was mixed with 5 mg Fe;O, or a
magnetic microrobot, with initial NOR/LEV concentrations
ranging from 10 to 50 mg/L. In addition, 0.1 mol/L NaOH and/
or 0.1 mol/L HCI solutions were used to adjust the NOR/LEV
solutions’ pH. The tubes were shaken at 150 rpm at a controlled
temperature using a shaker in the dark. Then, the pH value (4-10),
the adsorbent dose, and the adsorption temperature were changed
to obtain the adsorption capacity.

In the kinetics experiments, a 500-mL NOR/LEV solution was
mixed with moderate adsorbents. The NOR/LEV solution was
measured using high-performance liquid chromatography
(HPLC) after being adsorbed for various amounts of time. To
avoid light, all samples were shaken in the dark. Each experiment
was replicated three times.

Ultraviolet-(UV-)HPLC (1260, Agilent Technologies) was
utilized for the detection of NOR and LEV. With a mobile phase of
60:40 (v/v) acetonitrile anhydrous and formic acid at 1% in deionized
water and a flow rate of 0.75 mL/min, the HPLC was equipped with a
C18 column (2.7 m, 4.6 mm x 100 mm). The wavelengths used for
UV detection were 278 nm (NOR) and 293 nm (LEV).

2.4 Methods of data analysis

2.4.1 Equilibrium adsorption capacity

The following formulae (1-3) were used to calculate the NOR/
LEV removal efficiency (adsorption percentage), adsorption
capacities at time t, and equilibrium:

(CO B Ce)

R=0 X 100 1)
_ (CO — Ct)
qc = " Vv (2)
0. =%y L)
w

where R is the NOR/LEV’s removal efficiency; Cy (mg/L), C, (mg/L),
and C, (mg/L) are the concentrations of the initial, equilibrium, and
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time ¢ of the NOR/LEV, respectively; the NOR/LEV’s adsorption
capacities at time ¢ and equilibrium are g, (mg/g) and g, (mg/g); and
the adsorbent’s mass is w (g) and V' (L) is the volume of the solution
(Pi et al, 2022).

2.4.2 Fitting of adsorption isotherms

The empirical relationships between adsorption capacities of
NOR/LEV on Fe;0, and the magnetic microrobots with the
equilibrium concentration in the liquid phase were fitted with
Langmuir, Freundlich, Temkin (Pi et al., 2022), and Langmuir-
Freundlich (Yan et al,, 2017a; Yan et al., 2017b) isotherm (Carter
et al,, 1995) equations (4-7):

c. C 1

= 4)
qe qm KLqm
1
Ing, =InKp +—InC, (5)
ng
RT
4. = (5, ) In(K;C) ©
T
_ 9mbC;
=7 et » )

where Ki (L/mg), K [(mg/g) (L/mg)l/“], and K (L/mg) are the
adsorption coefficients for the Langmuir, Freundlich, and Temkin
models, respectively. g,, (mg/g) was the calculated maximum value
of the adsorbents’ NOR/LEV adsorption capacity. The 1/ng
indicates the Freundlich model parameter, while by (L/mg) is the
equilibrium constant for the adsorption of the Temkin model (Yan
etal, 2017a; Yan et al,, 2017b). b (L/mg) is the equilibrium constant
for the adsorption of the Langmuir-Freundlich model.

2.4.3 Fitting of adsorption kinetics

The pseudo-first-order, pseudo-second-order, and Elovich
kinetic models were used to establish the rate-governing
adsorption process, as shown below (8-10) (Sun et al., 2022):

In(q, —q;) =Ing, — k;t (8)
t 1 t
S ©)
qt k2q§ qe
g =0o+BlInt , (10)

where k; (h™) and k, (g/mgh) are the pseudo-first-order and
pseudo-second-order rate constants, respectively. In the Elovich
model, o and f3 are constants.

2.4.4 Mass transfer mechanisms

The adsorption process’s speed-limiting steps were investigated
using intraparticle diffusion (IPD) (Wang et al., 2010) and liquid
film diffusion (LFD) models.

The LFD and IPD models were expressed as:

—In(1-F) = kst (11)
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qr = kippt'/? + ¢ (12)

The constant for the diffusion rate of a liquid film is k; (min™"),
and F is the q/q.. The IPD diffusion rate constant is k;pp [mg/
(gmin'’?)], and the linear intercept ¢ (mg/g) provides information
about the thickness of the boundary layer (Foroutan et al., 2021).

2.4.5 Thermodynamic calculation

The following equations were used to calculate the
thermodynamic parameters to ascertain the nature of the
adsorption process (13-15):

K =de 13
o) (13)

AS  AH
InK, =222 14
e = R TRT (14)
AG = -RTInK, (15)

where the coefficient of the adsorption distribution is K, (L/g).
Entropy, enthalpy, and Gibb’s free energy are represented by AS (J/
mol), AH (J/mol), and AG (J/mol-K), respectively. The universal gas
constant is R (8.314 J/mol K) and the temperature is T (K).

2.4.6 Approximate site energy distribution

The adsorbent’s adsorption site energy distribution was linked
to the equilibrium adsorption capacity (Carter et al., 1995). Using
the parameters of the Langmuir-Freundlich model, the following
equations (16,17) were used to determine the magnetic
microrobot’s site energy distribution:

E*:E—ES:RTln(%) (16)

e

qmnbcsn ean*/RT

F(E*) = RT ° (1 . bc;le*ﬂE*/RT)Z

(17)

where C, = C,, E; is the adsorption energy, E* is the difference in
adsorption energies between the adsorbate and solvent on the
adsorbent surfaces, and F(E*) is an approximate site energy
distribution function. The adsorbate’s maximum solubility is C;
(mg/L). The C, value of NOR in water is 303.5mg/L, 400 mg/L,
522.1 mg/L, 678.2 mg/L, and 872.5 mg/L at 293.15 K, 298.15 K,
303.15 K, 308.15 K, and 313.15 K (pH=7), respectively (Ross and
Riley, 1990; Blokhina et al., 2016). The C; value of LEV in water is
46, 50, 54, 58, and 62 mg/mL at 293.15, 298.15, 303.15, 308.15, and
313.15 K, respectively (Ross and Riley, 1990; Blokhina et al., 2016).

The adsorption site energy distribution, which can be calculated
using the following equation, was used to determine the average site
energy:

/ - ExF(Ex)d(Ex)
wE) =2 o (18)

/m F(Ex)d(Ex)
0

Incorporating the above equation with Eq. (16) and Eq. (17), the
average site energy could be determined as follows:
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U(Ex) = Rn—Tln(l +bC") (19)

3 Results and discussion

3.1 Adsorption property for norfloxacin
and levofloxacin

3.1.1 Effect of initial norfloxacin and
levofloxacin concentration

The impact of the initial concentrations of NOR and LEV on
the relative adsorption capacity and removal efficiency on the
magnetic microrobot is illustrated in Figures 1A, B. The relative
adsorption capacity increased with the initial concentration until 40
and 50 mg/L for NOR and LEV, respectively. The concentration
gradient is a vital driving force between the liquid adsorbate and
solid adsorbent. When it overwhelmed the resistance to bulk
transfer between the adsorbate and adsorbent, the adsorption was
enhanced as if the initial concentration of the adsorbate had
increased (Altaf et al., 2021). Also, the limited adsorption site of
the adsorbent reached a saturation state with the increase of the
initial concentration. Thereafter at this point, the absorbent
achieved the equilibrium, with the adsorption capacity up to 63.8
and 49.4 mg/g for NOR and LEV, respectively. The removal
efficiency of NOR and LEV decreased gradually with the increase
of the initial concentration. This can be attributed to the fixed
amount of adsorbent dosage in this experiment.

3.1.2 Effects of adsorbent dosage

The effect of the adsorbent dose on the adsorption capacity and
removal efficiency is presented in Figures 1C, D. When the dosage
increased from 3 to 30 mg, the removal efficiency increased
significantly due to the increase in the number and surface area
of the active adsorption sites (Altaf et al., 2021; Fang et al., 2021).
Also, the aggregation of the adsorbents resulting from a high dose of
nanoparticles enhanced the removal efficiency (Altaf et al., 2021),
while aggregation led to a decrease in the total surface area of the
adsorbent (Fang et al., 2021b). The adsorption capacity increased
with the increasing dosage, from 3 to 5 mg, peaking at 5 mg. The
high adsorption capacity at 5 mg could be attributed to the
fulfillment of most binding sites and an increase in total surface
area (Zhou et al., 2018). Then, there was a decline when the
adsorbent dosage was larger than 5 mg, indicating that the
absorbent achieved equilibrium. While the capacity was calculated
using the relative adsorption dose, the value declined according to
the increased dose of the adsorbent.

3.1.3 Effect of pH

The pH of the solution, which plays a crucial role in the
adsorption process, can alter the adsorbents’ surface charges and
adsorbate ionization, affecting the adsorption capacity even more
(Fang et al., 2021a). Because they have two distinct acid dissociation
(pKal and pKa2) from the carboxyl group and the amino group,
respectively, the form and adsorption effects of NOR and LEV were
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The adsorption properties and removal percentage of norfloxacin (NOR) and levofloxacin (LEV) on FezO,4 and the magnetic microrobot. (A, B) The
initial concentrations of NOR and LEV, (C, D) the adsorbent dosages, (E, F) the initial pH of NOR and LEV, and (G, H) the adsorption temperature.
Note: the columns represent the adsorption capacity and the lines represent the removal efficiency.

determined by the pH value of the solution, as shown in Figure 2. If
the solution pH was< pK,;, -COOH and -NH;- existed in the
molecular of the cationic form. When the solution pH was >
pK.2 -COO™ and -NH- existed in the molecular in anionic form.
When pK,,;. pH< pK,, then NOR and LEV were in the zwitterionic
form with -COO™ and -NH,'- existed in the molecular form.
Figures 1E, F depict the adsorption capacity and removal
efficiency onto a magnetic microrobot at various initial pH levels,
from 4 to 10. It can be seen that the adsorption limit and expulsion
proficiency under similar circumstances were NOR > LEV. The
adsorption capacity and removal efficiency of the capacity increased

Frontiers in Marine Science

with the pH ranging from 4 to 7 for NOR, peaking at pH = 7. The
LEV adsorption had a similar trend to that of NOR, with the highest
adsorption capacity at pH = 6. The removal capacities were 63.8 and
49.2 mg/g, respectively. The adsorption capacity and removal
efficiency significantly declined as the pH increased from 7 to 10.
In general, the adsorbents” uptake of FQs was higher under pK,;.
pH< pK,, than acid or alkaline conditions, which was related to the
properties of the FQs in zwitterionic form. The results are consistent
with the studies conducted by Altaf et al. (2021). The adsorption
capacity reached its maximum value at a pH of approximately 7,
which is consistent with the structural characteristics of zwitterionic
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Molecular structure and pH-dependent speciation of (A) NOR (norfloxacin) and (B) LEV (levofloxacin).

FQs (Yan and Niu, 2017; Yan and Niu, 2018), and the quantity of
zwitterionic FQs gradually increased with pH, implying that FQ
adsorption results from complementary ion-pair interactions (Jiang
etal,, 2021). According to the research, Fe;O4 makes a passive oxide
layer by coating on the surface when the pH is > 7 and reduces the
FQ adsorption from the magnetic microrobot (Rezaei and
Vione, 2018).

3.1.4 Effect of temperature

The adsorption performances of NOR and LEV by magnetic
microrobot at various temperatures are presented in Figures 1G, H,
respectively. The highest adsorption capacity and removal efficiency
were achieved at 30°C for NOR and at 25°C for LEV. The
interaction between FQs and absorbents was enhanced due to the
active site expansion, when the adsorption temperature increased
from 20°C to 30°C for NOR and 25°C for LEV (Altaf et al., 2021).
While the adsorption temperature continued rising, the updraft
movement of FQs was enhanced, which weakened the attraction
between active adsorption sites and themselves, leading to the
decline of the adsorption capacity and removing efficiency (Chen
et al.,, 2011).

3.2 Adsorption isotherms

The experimental data and model-fitted findings for NOR and
LEV adsorption from a magnetic microrobot are shown in Table 1.
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The non-linearity of the NOR and LEV adsorption isotherms on the
absorbents suggests that the NOR and LEV concentrations and
distributional effects were related to the magnetic microrobot’s
adsorption capacity (Sun et al,, 2022). At various temperatures,
the R’ values of the Langmuir isotherm model were greater than
those of the Freundlich, Temkin, and Langmuir-Freundlich
isotherm models, indicating that NOR and LEV mostly adsorb
onto the absorbents in monolayers. In the Freundlich model, n is
the parameter relating to the mean energy of adsorption. If np> 1, it
is preferred that adsorption is chemisorption in nature, and a strong
adsorbent/adsorbate interaction occurs (Lv et al., 2020; Gaho et al.,
2022). The calculated values of np were all larger than 1, indicating
the chemisorption of NOR and LEV on the absorbents.

Many different adsorbents were listed in the comparison of the
adsorption capacity with magnetic microrobots. As shown in
Table 2, the Q,, for NOR was 698.6 mg/g by FRMB consisting of
SDS (Li et al., 2019a). The Q,,of Fe;O4-based adsorbents (5-IOW
and 14-IOW) for NOR (8.64 and 6.48 mg/g) were significantly
lower than those of the magnetic microrobot. The Q,,.., of the
magnetic microrobot for NOR was much larger than for most other
adsorbents (Table 2). The Q,, for LEV was 298.43 mg/g by PCS-
KOH (Yang et al., 2020), which was much higher than for the other
absorbents. The Q,,of the Fe;04-based adsorbent (Fe;O4-gINPs)
for LEV was 22.47 mg/g, which was much lower than that of the
magnetic microrobot. Compared with other adsorbents, a magnetic
microrobot can be used as one of the markedly superior adsorbent
materials in wastewater treatment containing NOR or LEV.

frontiersin.org


https://doi.org/10.3389/fmars.2023.1169883
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

92UBI2S dulIe|y Ul SI213U0I4

L0

610 UISIBIUOLY

TABLE 1 Adsorption equilibrium isotherm models on norfloxacin (NOR) and levofloxacin (LEV) using a magnetic microrobot.

Model NOR LEV
Isotherm model arameters
P 293.15K 298.15K 303.15K 308.15K 313.15K 293.15K 298.15K 303.15K 308.15K 313.15K
Q> exp(mg/g) 36.68 60.26 55.02 2533 21.84 35.72 49.36 45.86 41.48 37.83
Goca(mg/g) 73.53 153.61 62.46 31.76 23.66 2337 113.51 359.71 94.70 165.84
Langmuir
c C 1 K, (L/mg) 2.39*107* 0.01618 0.0545 0.04095 0.07788 0.01424 0.009694 0.003193 0.01636 0.006584
Le_Le
9e qm KLqm
R2 0.9842 0.9888 0.8502 0.4715 0.7532 0.8375 0.7276 0.9674 0.9739 0.9840
K /g)(L/
i ﬁmﬁ ,§;( 0.52 3.778 5.987 1.609 2.847 2.074 1.306 1.229 19.06 1.652
Freundlich &
Ing, =InKp + N C np 0.9317 1322 1.804 1.289 1.805 1.484 1.143 1.049 1.452 1216
np
R2 0.9582 0.9517 0.7958 0.8263 0.9985 0.6660 0.6765 0.9724 0.9644 0.9781
by (J/mol) 141.28 95.06 143.98 225.78 325.69 167.42 97.40 86.78 125.62 122.10
Temkin
RT Ky (L/mg) 0.1257 0.2346 0.3454 0.2431 0.3707 0.1471 0.09889 0.1043 0.1577 0.1251
qe = (b_)ln (KrCp)
T R2 0.7809 0.9226 0.6449 0.8891 0.9852 0.5128 0.5452 0.9319 0.9414 0.9807
qm(mg/g) 20475.1 3660.9 30416.6 2221.49 48.87 12782.3 40599.3 2184.9 1361.5 93.14
Langmuir-Freundlich b(L/mg) 9.47%10°° 7375107 8.4310° 422107 0.0457 3.78107° 4.55%107° 4.87*107* 0.0021 0.0088
bC!
q. = lq': hcf" n 1.3545 0.8870 0.8466 0.8458 0.7614 1.1117 1.4427 0.9997 0.7064 1.1383
¢
R’ 0.9358 0.9963 0.7264 0.8242 0.9898 0.7823 0.2015 0.9557 0.9154 0.9653
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TABLE 2 Comparison of the adsorption capacities of different adsorbents for the removal of norfloxacin (NOR) and levofloxacin (LEV) at ambient

temperatures (25°C).

NOR
Adsorbent
Reference

Qp,exp (MA/9)

Adsorbent

Qnm,exp (MQ/Q) Reference

¥-Fe,0;@BC 5.52 Wang et al., 2020 Fe-P-Mt 48.61 Liu et al.,, 2015
SCGB 19.52 Nguyen et al., 2022 Humic acid-treated zeolite 35.45(pH=4.85)
Chen et al., 2019
5-IOW 8.64 47.68(pH=9.44)
Fang et al., 2021b
14-I0W 6.48 G.Zn/MCM 60.5 Abukhadra et al., 2022
HLB 529.85 Zhou et al., 2023 PCS-900 299.23
FRMB 299.6 PCS-KOH 298.43
FRMB/SDS 698.6 Li et al,, 2019a PCS-Na,CO3 279.47
Yang et al., 2020
FRMB/SDBS 589.9 PCS-700 259.61
63.29 (293K) AC 247.09
ZIF-8 66.82 (303K) Zhou et al., 2019 MWCNT 116.09
69.44 (313K) BC 76
Xu et al,, 2021
304 (298K) NFBC 172
PDMPs 321 (308K) Wan et al,, 2018 Fe;0,4-gINPs 22.47 Altaf et al., 2021
332 (318K) BMF 115 Yao et al.,, 2021
magnetic microrobot 114.8 This work magnetic microrobot 494 This work

3.3 Adsorption kinetics

The kinetic data of NOR and LEV fitted with three kinetic
models are presented in Figure 3 and Table 3. Based on Figure 3 and
the high R’ values in Table 3, the adsorption of NOR fitted the
Elovich kinetic model well, while the adsorption of LEV fitted the
pseudo-second-order model well. The Elovich model was suitable
for simulating the adsorption of NOR, showing that it is the valence
electron, rather than just the electrostatic attraction, that causes the
adsorption of NOR on to magnetic microrobots (Sun et al., 2022).
The main process involved in LEV kinetic adsorption was
chemisorption due to the pseudo-second-order model (Sun
et al., 2022).

3.4 Mass transfer mechanisms

According to temperature, pressure, and the types of adsorbent
and adsorbate, varied mass transfer resistances may be able to limit
the adsorption rate, which was evaluated using a kinetic analysis.
The solid material was characterized by two primary resistances:
protection from outer dissemination (interparticle), connected with
mass exchange from mass liquid to the outside surface, and
intraparticle dispersion, connected with mass exchange from an
outside surface to an internal permeable construction. To
investigate mechanisms and the potential rate-determining steps,
several models have been proposed. Piecewise and linear
regressions were used to fit the adsorption data using the IPD
and LFD models to investigate the specific adsorption processes of

Frontiers in Marine Science

NOR and LEV. The results are shown in Figure 4 and Table 4. The
IPD model was better suited to represent the mass transfer process
of NOR and LEV adsorption by Fe;O, and a magnetic microrobot
based on the statistical parameter (R2 > 0.90). From Figures 4A, B,
the fact that the connection between g, and t”? is non-linear and
does not pass through the origin point indicates that there are other
rate-limiting steps besides IPD and that the rate of adsorption may
potentially be controlled by an external diffusion mechanism. IPD
and equilibrium are the two steps of the adsorption process. The
adsorption rate of NOR and LEV was kjpp; > kipp,. The first stage
was relatively slow, and the second stage represented the
equilibrium condition for the adsorption-desorption process. The
internal mass transfer restriction of the magnetic microrobot was
stronger than that of Fe;O, based on the fact that the R? of the
magnetic microrobot for NOR adsorption was higher than that of
Fe;04 (Yuetal., 2021). In conclusion, NOR and LEV were adsorbed
on magnetic microrobots by a chemical process that was regulated
simultaneously by internal and exterior diffusion processes.

3.5 Adsorption thermodynamics

To examine the adsorption thermodynamics of NOR and LEV
on a magnetic microrobot, a range of temperatures, including 298,
303, 308, 313, and 318 K were chosen. It is clear from Table 5 that
the adsorption of NOR had a negative AH value, which indicates
that the process was exothermic and involved the adsorption of
both chemical and physical substances. LEV adsorption by the
magnetic microrobot was an endothermic process (AH>0), which
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FIGURE 3

(A, B) Pseudo-first-order kinetic model, (C ,D) Pseudo-second-order kinetic model, and (E, F) Elovich kinetic model for norfloxacin (NOR) and
levofloxacin (LEV) adsorption.

TABLE 3 Adsorption kinetic models on norfloxacin (NOR) and levofloxacin (LEV) using Fe;0,4 and a magnetic microrobot.

NOR LEV
Kinetic model* Parameters
magnetic microrobot magnetic microrobot
Ge.exp(Mg/g) 57.16 61.14 38.47 53.78
Qe cal(mglg) 58.08 64.39 25.66 39.03
PFO
ki(h7™) 0.00463 0.0042 0.0041 0.0021
In (qe - qt) = lnqe - klt
R 0.7374 0.9237 0.9662 0.9732
Gecallmglg) 4223 67.02 43.16 125.0
PSO
¢ 1t ky(g/mgh) 1.90x10™* 8.42x107° 1.27x107 1.26x107*
Lo =
ka: g,
@ el 4 IS 0.6842 0.8054 0.9539 0.9837
a(mg/g) -49.29 -55.92 -5.54 -29.71
g =a+BInt B 18.16 20.89 9.283 21.58
R 0.9322 0.9784 0.9553 0.8823
Frontiers in Marine Science 09
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FIGURE 4

The particle diffusion model (A ,B) and LFD model (C, D) of norfloxacin (NOR) and levofloxacin (LEV) adsorption by FesO,4 and a magnetic microrobot.

shows that chemisorption may have occurred. AS was positive,
demonstrating that the solid/solution interface contains additional
unpredictability. It might be connected to the fact that the
molecules of the displaced solvent (like water) gained more
translational energy than the molecules of the adsorbate lost (de
Andrade et al., 2018).

To investigate the adsorption thermodynamics of NOR and
LEV on magnetic microrobots, a range of temperatures, including
298, 303, 308, 313, and 318 K, were chosen. It can be seen in
Table 5 that the AH of the adsorption of NOR was negative,
demonstrating that both physical and chemical adsorption was
involved in the exothermic process. For the LEV adsorption by a
magnetic microrobot, it is an endothermic process (AH), which

suggests that chemisorption may have occurred. Since AS was
positive, the solid/solution interface must have had additional
randomness. It could be related to the fact that the adsorbate
molecules lost less translational energy than the displaced solvent
molecules (like water) (de Andrade et al., 2018). AG< 0, which
means that adsorption was advantageous and spontaneous at
any temperature.

3.6 Adsorption site energy analysis

Based on Equation (17), the equilibrium NOR and LEV
adsorption capacities g, are plotted as a function of the magnetic

TABLE 4 Adsorption kinetic models on norfloxacin (NOR) and levofloxacin (LEV) using FezO, and a magnetic microrobot.

NOR

Kinetic model* Parameters

magnetic microrobot

LEV

magnetic microrobot

LED Ks(min™) 0.00693 0.00557 0.04686 0.02966
~In(1=F) =kt R 0.8200 0.7773 0.8649 0.8651
k;(mg/g-min'’?) 5.84 5.60 4.44 12.27

¢;(mg/g) -21.69 -17.11 1.04 -25.89

IPD R 0.9764 0.9882 0.9876 0.9790
9 = kippt'* + ¢ k;(mg/g-min'’?) 0.58 2.21 27.00 57.41
c>(mg/g) 45.06 24.40 1.18 1.35

R 0.9670 0.9808 0.9264 0.8397
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TABLE 5 Adsorption thermodynamic parameters of norfloxacin (NOR) and levofloxacin (LEV) adsorption by a magnetic microrobot.

AG (kJ/mol)
Absorbent AH (kJ/mol) AS (J/(K-mol))
293(K) 298(K) 303(K) 308(K)
Fe;04(NOR) -67.01 -219.79 -2.58 —-1.48 -0.38 0.72 1.82
magnetic microrobot (NOR) -88.78 -291.42 -3.35 -1.89 -0.44 1.02 2.48
Fe;04(LEV) -7.36 -22.73 -0.36 -0.55 -0.54 -0.31 -0.25
magnetic microrobot (LEV) 20.25 66.64 0.71 0.38 0.05 -0.29 -0.62

microrobot’s site energy E* values in Figure 5. The E* values
decreased dramatically as the amount of NOR and LEV adsorbed
on adsorbents increased. These findings demonstrated that NOR
and LEV molecules occupied the magnetic microrobot’s high-
energy adsorption sites first, and then the low-energy adsorption
sites. After the adsorbate occupied the high-energy sites, low-energy
sorption sites interacted with the NOR and LEV molecules as the
solution concentration rose. This was in line with the earlier NOR

adsorption on carbon nanotubes (Wang et al., 2010). On a magnetic
microrobot, the values of NOR’s site energy E* were significantly
lower than those of LEV’s. The E* values of NOR adsorbed on the
magnetic microrobot fell in the range of 4.25 to 10.73 kJ/mol, and
the E* values of LEV ranged from 17.36 to 21.22 kJ/mol.
Additionally, the plots of E* showed an increase with
temperature, indicating that the NOR and LEV adsorption on the
magnetic microrobot benefited from higher temperatures.

A m 20315K e 298.15K 4 303.15K
v 308.15K & 313.15K
14
12 *
i 10 | v * o
= T - v ¢ A
=gtk vV Vv oo LN
i ] [} A
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n
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u
4 M 1 " [] M [ 2 1 2 1 M [
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B Equilibrium NOR adsorption capacity, g, (mg/g)
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=0T ° : * v
° L
g A *
=19 " v
= *
b i ° A v
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Equilibrium LEV adsorption capacity, g, (mg/g)

FIGURE 5

Site energy of norfloxacin (NOR) and levofloxacin (LEV) adsorption. (A) site energy versus equilibrium NOR adsorption capacity; (B) site energy versus

equilibrium LEV adsorption capacity.
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Temperature increased the rate of molecular diffusion, making it
easier for NOR and LEV molecules to cross the magnetic
microrobot’s external boundary layer and enter its internal pores.

Based on the Langmuir-Freundlich isotherm model, the
approximate site energy distribution (F(E¥)) for the adsorption of
NOR and LEV to the magnetic microrobot at various temperatures is
depicted in Figure 6. For NOR and LEV, the site energy had
unimodal distributions. Most of the NOR and LEV sorption
occurred on the sites with energy over 4.0 kJ/mol and lower than
16.0 kJ/mol, indicating that NOR and LEV sorption on the
biosorbent was a physical-chemical process. First, as the site energy
(E*) increased, the frequency function F(E*) decreased until it was
close to zero. The upward trend suggests that, at high concentrations,
some NOR and LEV molecules were forced to occupy lower-energy
sites. Conversely, at low-solution concentrations, NOR and LEV
molecules were preferentially captured at the high-energy site
(Zhang et al, 2021). Owing to the lower F(E*), however, the
extremely high- or low- energy sites contributed very little to the
maximum amount of adsorption (Liu et al., 2016).

293.15K e
30

10.3389/fmars.2023.1169883

4 Conclusion

The magnetic microrobot demonstrated outstanding NOR and
LEV adsorption capacities. The static maximum adsorption
capacities of NOR and LEV on the magnetic microrobot were
114.8 and 49.4 mg/g, respectively. The Langmuir isotherm model
and Elovich kinetic models agreed well with the experimental data
of NOR adsorption by a magnetic microrobot. The Langmuir
isotherm model and the pseudo-second-order kinetic model
might be able to adequately describe the LEV adsorption
procedure. The IPD was not the only mechanism regulating the
adsorption process, and the IPD model was better suited to describe
the mass transfer process of the NOR and LEV adsorption by
magnetic microrobot. Exothermic and spontaneous characteristics
were verified through thermodynamics. The biosorbents’
heterogeneous surface was verified by the analysis of site energy
distribution. Additionally, Figure 6 demonstrated that the majority
of the NOR and LEV adsorption took place on sites with greater
than 4.25 kJ/mol and less than 17.36 kJ/mol, supporting the notion

298.15K 4 303.15K

308.15K & 313.15K

F(E*)(mg-mol/g-J)

14

E*(kJ/mol)

F(E*)(mg-mol/g-J)

FIGURE 6

10 pxkg/mon 12

25

Site energy distribution of norfloxacin (NOR) and levofloxacin (LEV) adsorption on a magnetic microrobot at various temperatures. (A) Site energy

distribution of NOR; (B) site energy distribution of LEV.
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that this adsorption was physical-chemical in nature. Based on the
findings, the magnetic microrobot can potentially be employed to
inexpensively and efficiently remove NOR and LEV from aqueous
wastewater as a new-style green bio-adsorbent.
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