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Long non-coding RNAs (lncRNAs) play a multifaceted role in transcriptional

regulation, and the potential molecular regulatory mechanisms of lncRNAs and

lncRNA–miRNA–mRNA networks in body color formation are of great

significance for its selective breeding. Therefore, lncRNAs and lncRNA-miRNA-

mRNA ceRNA network of red- and black-colored Plectropomus leopardus were

identified and analyzed. Sequencing analyses identified 167 differentially

expressed lncRNAs (DELs) between red- and black-colored P. leopardus,

including 89 upregulated and 78 downregulated DELs in the red-colored

group (false discovery rate (FDR) < 0.05 and |log2FC| > 1). Differentially

expressed miRNA (DEM), genes (DEG), and DEL analyses found 605 and 125

negatively co-expressed miRNA–mRNA pairs and lncRNA–miRNA pairs,

respectively. Further correlation analysis with Spearman’s correlation

coefficient >0.9 as the threshold identified 3,721 lncRNA–mRNA pairs. Then, a

competitive endogenous RNA (ceRNA) network of 325 pairs (p < 0.05) was

obtained. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment of network DEGs showed that melanin metabolic

process, lipid metabolism, and immune-related pathway were enriched. The

ceRNA network provided interactions among lncRNAs, miRNAs, and mRNAs and

extended the molecular foundation of body color formation.

KEYWORDS
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1 Introduction

Body color formation is critical in many aquatic animals’ biological processes,

including camouflage, thermoregulation, predator avoidance, selective mating, species

identification, conspecific communication, and photoreception (Leclercq et al., 2010).

Bright or red-colored skin is considered one of the important economic characteristics
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affecting human consumption and preference (Vissio et al., 2021).

The pigmentation process is affected by multiple factors, including

genes, such as forkhead box D3, tyrosinase (TYR), and tyrosinase-

related protein 1 (TYRP1); miRNAs, such as miR-2188, miR-122,

novel-m0118, miR-194, and miR-215; and metabolites, such as

tyrosine, PGG2, PGH2, and traumatic acid (Braasch et al., 2009;

Curran et al., 2009; Zhu et al., 2021; Hao et al., 2022a; Hao et al.,

2022b). However, the underlying mechanisms regulating body color

formation are still incompletely understood.

LncRNA is a group of non-coding RNA molecules widely

transcribed in most genomes of Homo sapiens, Mus musculus,

and Danio rerio (Ulitsky et al., 2011; Iyer et al., 2015; Chou et al.,

2016). As a major class of ncRNAs, lncRNAs function as important

gene expression regulators in energy balance, cell proliferation,

skeletal muscle differentiation and growth, immune responses,

and fillet quality traits (Paneru et al., 2016; Ali et al., 2018; Leiva

et al., 2020). For example, lncRNA SPRIGHTLY regulates primary

human melanocyte proliferation (Zhao et al., 2016). A decrease in

lncRNA SPRY4-IT1 expression inhibits invasion and proliferation

but increases apoptosis of melanoma cells (Mazar et al., 2014). Fish

lncRNAs play critical roles in pathogen infestation, muscle

firmness, sex determination, and gonadal development (Gan

et al., 2020; Song et al., 2022). In Larimichthys crocea, a stringent

set of 210 lncRNAs were detected as being specifically expressed in

the spleen and potentially indicated in immune response (Jiang

et al., 2016). In peripheral blood leukocytes after chitosan

oligosaccharide treatment, as well as in peripheral blood and

spleen after Vibrio anguillarum stimulation, lncRNAs and

mRNAs showed significant differential expression in half-smooth

tongue sole (Cynoglossus semilaevis), which indicated that they may

be related to the immune response (Wei et al., 2021). LncRNAs

showed a similar expression pattern with coding RNAs and

participated in the development of the Choromytilus chorus

(Nunez-Acuna et al., 2022). However, the mechanisms of

lncRNAs regulating body color formation remain elusive.

Multiple reports presented that lncRNAs regulate gene

expression through a competitive endogenous RNA (ceRNA)

mechanism as miRNA sponge, mRNA interactor, and RNA

binding protein sponge/transporter (Salmena et al., 2011; Wang

and Chang, 2011). Researchers have shown that molecular sponging

or miRNA sequestration is an important function mode of lncRNAs

(Ali et al., 2018). Competition for miRNAs targeting between

lncRNAs and mRNAs inhibits miRNAs and leads to the

formation of a lncRNA–miRNA–mRNA axis, thus preventing

miRNA-induced mRNA destabilization (Jalali et al., 2013; Bartel,

2018). Therefore, in the present study, lncRNAs were detected and

analyzed with the data of miRNA (Hao et al., 2022b) and mRNA.

Studies on lncRNA–miRNA–mRNA networks could accelerate our

understanding of lncRNA–miRNA regulation in mRNA (Salmena

et al., 2011; Jeggari et al., 2012).

Plectropomus leopardus, as an important member of the genus

Plectropomus, is characterized by different body colors, which

determine its economic and ornamental values (Maoka et al.,

2017; Zhou et al., 2020). Recent studies on aquatic organisms’

body color formation mainly focus on miRNAs or mRNAs, and

many related genes and miRNAs associated with pigmentation or
Frontiers in Marine Science 02
color variation were characterized in P. leopardus (Wang et al.,

2015; Yang et al., 2020; Zhu et al., 2021; Hao et al., 2022a; Hao et al.,

2022b). However, the regulatory mechanisms of ceRNA in coral

grouper P. leopardus remain unclear. Therefore, we sequenced

lncRNAs of them with the total RNA library construction

method, which detected more RNAs than poly(A) RNA library

construction (Guo et al., 2015; Keel et al., 2020) and explored the

regulatory mechanisms of lncRNAs and lncRNA–miRNA–mRNA

ceRNA network to provide a foundation for resolving body color

formation mystery in coral grouper.
2 Materials and methods

2.1 Samples used in the
present experiment

Black- and red-colored 4-month-old leopard coral grouper (P.

leopardus) samples were reared with the Dongwan grouper diet

(Guangdong Yuequn Biotechnology Co., Ltd.). Fish were

anesthetized with eugenol and sacrificed. Six skin tissues of

similar parts of fishes from each group (red- and black-colored

groups) were utilized, and every two samples were mixed to make

one sample for the lncRNA analysis.
2.2 LncRNA sequencing and analysis

Total RNAs from skin tissues of leopard coral groupers with

different body colors were extracted and qualified with TRIzol reagent

and Agilent 2100 Bioanalyzer, respectively. After total RNA was

extracted, rRNAs were removed to retain mRNAs and ncRNAs. The

enriched mRNAs and ncRNAs were fragmented into short fragments

by using a fragmentation buffer and were reverse-transcribed into

cDNA with random primers. Second-strand cDNA was synthesized

by DNA polymerase I, RNase H, dNTP (dUTP instead of dTTP), and

buffer. Next, the cDNA fragments were purified with a QiaQuick

PCR extraction kit (Qiagen, Venlo, The Netherlands), end-repaired,

poly(A) added, and ligated to Illumina sequencing adapters. Then,

UNG (Uracil-N-Glycosylase) was used to digest the second-strand

cDNA. The digested products were size selected by agarose gel

electrophoresis, PCR-amplified, and sequenced using Illumina

HiSeq™ 4000. The sequenced data were filtered with fastp (version

0.18.0) (Chen et al., 2018). Then, HISAT2 (version 2.1.0) was utilized

to map the clean reads to the reference genome (Kim et al., 2015;

Zhou et al., 2020); Stringtie (version 1.3.4) (Pertea et al., 2015) and

HISAT2 were used to reconstruct novel reliable genes. The coding

potential of the novel transcripts was evaluated with CNCI (version

2) (Sun et al., 2013) and CPC (version 0.9-r2) (Kong et al., 2007). The

intersection of two potential non-coding transcripts was chosen as

lncRNAs. LncRNA expression was calculated with StringTie, and

differentially expressed lncRNAs (DELs) were analyzed by DESeq2

software (Love et al., 2014) (false discovery rate (FDR) < 0.05 and |

log2FC| > 1).
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2.3 Integrated analysis of DEMs with DEGs
and DELs

Differentially expressed miRNAs (DEMs) (Hao et al., 2022b),

differentially expressed genes (DEGs) (FDR < 0.05 and |log2FC| > 1),

and DELs were analyzed to identify the correlation between DEMs

and DEGs, and DEMs and DELs. MiRNA targets were predicted

using miRanda (version 3.3a), TargetScan (version 7.0), and

RNAhybrid (version 2.1.2) + svm_light (version 6.01). LncRNA–

miRNA pairs and miRNA–mRNA pairs with a Spearman’s

correlation coefficient ≤−0.7 were considered negatively co-expressed.
2.4 Competing endogenous
RNA network analysis

Correlations between lncRNAs and mRNAs were assessed

using Pearson’s correlation coefficient (PCC). CeRNAs were

defined as those with a PCC > 0.9. The significance of ceRNAs

with common miRNA sponges was determined using the

hypergeometric cumulative distribution function test (p < 0.05).

qRT-PCR was utilized to analyze the expression of lncRNAs. Seven

lncRNAs were selected with primers in Supplementary Table 1.

qRT-PCR was performed using 2× SG Fast qPCR Master Mix

(B639271, BBI, Roche, Basel, Switzerland) on Roche LightCycler

480. b-Actin was used as an endogenous control for lncRNA. The

expression level of lncRNAs was calculated with 2−(DDCt). The

expression levels of four mRNAs and five miRNAs in the ceRNA

network were also analyzed and calculated with 2−(DDCt) with a
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similar method. Cytoscape (version 3.6.0) was utilized to visualize

the lncRNA–miRNA–mRNA network. Then, DEGs of the network

were analyzed by Gene Ontology (GO) (p < 0.05) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment.
3 Results

3.1 LncRNA sequencing analysis

LncRNA libraries were sequenced, and all reads were aligned to

the reference genome according to their distribution information

and divided into the intron, exon, and intergenic regions. The raw

data presented in the study are deposited in the Sequence Read

Archive of the NCBI (SRR22522288, SRR22522289, SRR22522290,

SRR22522291, SRR22522292, SRR22522293). The accession

number is PRJNA908242. The result showed that most reads

were mapped to the exon regions (Figure 1A). The combined

prediction results of CPC and CNCI identified 3,653 lncRNAs,

which were all novel lncRNAs (Figure 1B). Among them, there are

388 senses, 54 antisenses, 2 intronics, 15 bidirectionals, and 3,069

intergenics (Figure 1C). The expression analysis of these lncRNAs

indicated that they could be used for further analysis (Figure 1D).
3.2 LncRNA expression analysis

The expression pattern of lncRNAs in black- and red-colored P.

leopardus was analyzed. A total of 167 lncRNAs were identified as
D

A B

C

FIGURE 1

Sequencing data of Plectropomus leopardus lncRNA analysis. (A) The distribution position of all reads in the reference genome. (B) LncRNA number
analyzed by software CPC and CNCI. (C) Different types of lncRNA number distribution. (D) LncRNA expression character. B and R represent black-
colored and red-colored groups, respectively. lncRNA, long non-coding RNA.
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DELs (FDR < 0.05 and |log2FC| > 1) (Supplementary Table 2;

Figure 2A). Compared with the black-colored P. leopardus, the red-

colored fish have 89 upregulated and 78 downregulated DELs,

respectively (Figure 2B). Seven lncRNAs were validated and

showed the same expression trend with the sequencing data, which

indicated that the lncRNA sequencing data reliably presented the

differences in lncRNA expression (Supplementary Figure 1A).
3.3 Integrated analysis of DEMs with DEGs
and DELs

Integrated analysis of DEMs with DELs and DEGs was

performed based on datasets of DEGs, DEMs, and DELs from the

red- and black-colored P. leopardus. A total of 489 DEGs (FDR <

0.05 and |log2FC| > 1, Supplementary Table 3), 60 DEMs (p < 0.05

and |log2FC| > 1, Hao et al., 2022b), and 167 DELs (FDR < 0.05 and

|log2FC| > 1, Supplementary Table 2) were utilized. The results

showed that red- and black-colored P. leopardus possessed 2,173

mRNA–miRNA pairs and 531 lncRNA–miRNA pairs with target

prediction relationships. The former included 379 DEGs and 59

DEMs, and the latter included 113 DELs and 59 DEMs. Among

them, 605 miRNA–mRNA pairs and 125 miRNA–lncRNA pairs

had a Spearman’s correlation coefficient ≤−0.7 and were subjected

to network analysis (Supplementary Tables 4, 5).
3.4 Regulatory ceRNA network
(DELs–DEMs–DEGs) analysis

The network analysis found 3,721 DEL–DEG pairs, including 69

lncRNAs and 272 mRNAs, which had a Spearman’s correlation

coefficient >0.9. Further hypergeometric cumulative distribution

function test with p < 0.05 as the threshold parameter identified a

final ceRNA network with 325 pairs (Supplementary Table 6),

involving 57 lncRNAs, 32 miRNAs, and 146 mRNAs
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(Supplementary Figure 2). The hub genes in the network held

important roles and were subjected to connectivity analysis. As

shown in Figure 3, in the ceRNA network, tyrosine family member

gene TYRP1 (Dxb_GLEAN_10020133; Dxb_GLEAN_10003424)

was regulated by five lncRNAs (MSTRG.12272.1, MSTRG.13340.1,

MSTRG.16640.2, MSTRG.24705.2, and MSTRG.3042.1) and three

miRNAs (miR-466-x, novel-m0095-3p, and miR-194-x). The

expression levels of seven lncRNAs, five miRNAs, and four

mRNAs from the ceRNA network were analyzed and showed the

same expression correlation among them compared with the

sequencing data (Supplementary Figures 1B, C). These results

verified 10 lncRNA–miRNA pairs and five mRNA–miRNA pairs in

the ceRNA network.
3.5 GO analysis of ceRNA network DEGs

GO analysis indicated that DEGs in the ceRNA network were

significantly enriched in 212 GO terms, including cellular

components, molecular functions, and biological processes (p <

0.05). These 212 GO terms included pigment-related terms

(melanin metabolic process, pigment cell differentiation,

developmental pigmentation, and tyrosine metabolic process),

immune-related terms (leukocyte differentiation, response to

bacterium, and response to oxidative stress), and lipid-related

terms (long-chain fatty acid metabolic process, short-chain fatty

acid metabolic process, and fatty acid metabolic process)

(Figure 4A; Supplementary Table 7).
3.6 KEGG pathway analysis of DEGs in the
ceRNA network

KEGG pathway analysis revealed a total of 174 enriched

pathways, containing pigmentation-related pathways (tyrosine

metabolism and melanogenesis), immune-related pathways (C-
A B

FIGURE 2

LncRNA expression analysis. (A) The volcano plot analysis of lncRNAs. (B) Heatmaps of the expression of lncRNAs, where red and blue indicate
relatively high and low expression among samples, respectively. B and R represent black-colored and red-colored groups, respectively. lncRNA, long
non-coding RNA.
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type lectin receptor signaling pathway, toll-like receptor signaling

pathway, IL-17 signaling pathway, and NOD-like receptor signaling

pathway), and lipid metabolism pathways (biosynthesis of

unsaturated fatty acids, fatty acid elongation, and arachidonic

acid metabolism) (Figure 4B; Supplementary Table 8). These

findings indicated that lncRNAs and miRNAs might regulate

related gene expression to participate in body color formation.
4 Discussion

The underlying molecular mechanism of body coloration has

been widely explored in multiple species, including coral leopard

grouper, medaka, carp, and zebrafish (Nagao et al., 2014; Wang

et al., 2015; Yang et al., 2020). Multiple miRNAs and lncRNAs are

involved in the bioprocesses by regulating gene expressions (Qin

et al., 2019). Target prediction and functional analysis of color-

related miRNAs such as miR-200b, miR-206, and miR-196a
Frontiers in Marine Science 05
highlighted putative target genes in Koi carp (Cyprinus carpio L.),

including Mitf, Mc1r, Foxd3, and Sox10, which are potentially

related to pigmentation (Luo et al., 2018). MiR-206 plays a

regulatory role in skin color pigmentation by targeting the Mc1r

gene in Koi Carp (Cyprinus carpio L.) (Dong et al., 2020). Luo et al.

(2019) conducted lncRNA sequencing of black-, white-, and red-

skin koi carp (C. carpio L.) and showed that membrane, pigment

cell development, cAMP signaling, melanogenesis, and tyrosine

metabolism appear to affect skin pigmentation. However, the

specific regulatory mechanism of lncRNAs and lncRNA–miRNA–

mRNA networks in marine animals, especially those with diverse

body colors, remains limited. Therefore, we identified lncRNAs

involved in P. leopardus and analyzed their regulatory roles in body

color formation via regulating gene expression. Our functional

enrichment analyses revealed the potential functions of lncRNAs

and lncRNA–miRNA–mRNA networks in body color formation,

which provided a base for research on the regulatory mechanism of

ceRNA in marine animals’ body color formation.
A B

FIGURE 4

GO and KEGG analyses of DEGs in ceRNA network. (A) GO term analysis. (B) KEGG analysis of DEGs. GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; ceRNA, competitive endogenous RNA.
FIGURE 3

Hub gene analysis in ceRNA network analysis of DELs–DEMs–DEGs. ceRNA, competitive endogenous RNA; DELs, differentially expressed lncRNAs;
DEMs, differentially expressed miRNAs; DEGs, differentially expressed genes.
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MiRNAs and lncRNAs have been reported to contribute to

epigenetic modifications and transcriptional and translational

regulations (Birney et al., 2007; Peschansky and Wahlestedt, 2014;

Schmitz et al., 2016). LncRNAs have gained extensive attention

from researchers as an important regulator of gene expression levels

(Kopp and Mendell, 2018). LncRNAs act as sponges, binding to

related miRNAs to affect their expression and downstream target

genes (Zhu et al., 2020). Analysis of lncRNAs in coral leopard

grouper P. leopardus with different body colors identified 3,635

lncRNAs. We found 89 upregulated and 78 downregulated

lncRNAs between P. leopardus with two different colors,

suggesting that they are important in regulating body color

formation. Furthermore, body color formation-related genes were

differentially expressed, further proving that our sequencing data

were reliable.

NcRNAs, including miRNAs and lncRNAs, play important

roles in regulating gene expression (Carrington and Ambros,

2003). LncRNAs and mRNAs can act as sponge molecules with

common miRNA binding sites, usually leading to the inhibition of

target gene expression (Yao et al., 2012; Paneru et al., 2018). Whole-

transcriptome analysis of grass carp with different growth rates

obtained a lncRNA–miRNA–mRNA network associated with

nutrient metabolism and brain development (Ye et al., 2021). A

complete endogenous lncRNA–miRNA–mRNA network of the

female ovary and male testis of Pelodiscus sinensis identified

several genes involved in gonadal development (Ma et al., 2020).

The comparison of red- and black-colored P. leopardus revealed

significantly different quantities and expression levels of DELs,

indicating that P. leopardus with different body colors exhibited

different numbers and expression levels of various RNAs, including

some important genes and non-coding RNAs in the

ceRNA network.

Black body color formation is significantly correlated with

melanin synthesis in fish (Henning et al., 2013; Hao et al., 2022b).

In the present study, DEGs are involved in the ceRNA network-

enriched tyrosine metabolism, an essential pathway in melanin

synthesis (Zhu et al., 2021). The hub gene analysis of the ceRNA

network identified two TYRP1 genes that hold higher expression in

the black-colored group. TYRP1, an important gene of the tyrosine

gene family, participates in melanin synthesis (Kwon, 1993) and

functions in color patterning and pigmentation, including

eumelanin synthesis and tyrosinase activity regulation (Rad

et al., 2004).

Furthermore, GO and KEGG pathway enrichment analyses

showed that the DEGs of the ceRNAs network were enriched in

lipid metabolism and immune response, consistent with previous

findings (Zhu et al., 2021; Hao et al., 2022a). Xing et al. (2021)

reported that lipid metabolism-related pathways, such as fatty acid

biosynthesis and biosynthesis of unsaturated fatty acids, were

identified in Apostichopus japonicus with different body wall color

morphs. Variations in arachidonic acid concentration could

influence fucoxanthin production, an important marine

carotenoid (Zhang et al., 2017). Linoleic acid participates in the

bioprocess of promoting tyrosinase depletion and inhibiting
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hyperpigmentation (Ando et al., 1999; 2004). A total of 202

immune-related DELs were acquired in the immune process after

Aeromonas hydrophila infection of the yellow catfish Pelteobagrus

fulvidraco (Zhong and Gao, 2022). LncRNAs regulated hosts’

responses in the infective process of the infectious salmon anemia

virus (Boltana et al., 2016). Multiple immune corresponding

pathways were enriched in the DEGs of the ceRNA network in

the present study, showing the potential of ceRNAs in the fish

immune regulation with a different color. In Atlantic salmon, the

lncRNA–miRNA–mRNA axis modulates its immune response (Xia

et al., 2020). Previous reports have shown that darker eumelanic

individuals potentially possess a more excellent immune activity

than lighter individuals (McGraw, 2005; Ducrest et al., 2008).

However, whether these lncRNAs and the ceRNA network

mediate or regulate P. leopardus body color formation and their

underlying molecular regulatory mechanisms require further

investigations using RNA interference, si lencing, and

other methods.
5 Conclusions

The regulatory potential function of ceRNAs in coral leopard P.

leopardus with different body colors was analyzed. A total of 3,653

novel lncRNAs were detected, and among them, 89 were

upregulated and 78 were downregulated in red-colored P.

leopardus compared with black-colored P. leopardus. CeRNA

network analysis of DEGs, DELs, and DEMs revealed the DEGs

of the network enriched in pigmentation processes, lipid

metabolism, and immune response, which improved the

understanding of body color breeding selection.
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