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Estimation of fish catch potential
using assimilation of synthetic
measurements with an
individual-based model

Cian Kelly1*, Finn Are Michelsen2 and Morten Omholt Alver1

1Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU),
Trondheim, Norway, 2Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
A large fraction of costs in wild fisheries are fuel related, and while much of the

costs are related to gear used and stock targeted, search for fishing grounds also

contributes to fuel costs. Lack of knowledge on the spatial abundance of stocks

during the fishing season is a limiting factor for fishing vessels when searching for

suitable fishing grounds, and with better planning and routing, costs can be

reduced. Strategic and tactical decision-making can be improved through

operational decision support tools informed by real-time data and knowledge

generated from research. In this article, we present a model-based estimation

approach for predicting catch potential of ocean areas. An individual-based

model of herring migrations is combined with an estimation approach known as

Data Assimilation, which corrects model states using incoming data sources. The

data used to correct the model are synthetic measurements generated from

neural network output. Input to the neural network was vessel activity data of

over 100 fishing vessels from 2015-2018, targeting mainly herring. The output is

the predicted normalized density of herring in discrete grid cells. Model

predictions are improved through assimilation of synthetic measurements with

model states. Characterizing patterns from model output provides novel

information on catch potential which can inform fishing activity.

KEYWORDS

neural network, synthetic measurements, individual-based model, ensemble Kalman
filter, data assimilation, catch potential
1 Introduction

Fish provides a source of protein for billions of people, while also being a crucial source

of fatty acids and micronutrients that are important to brain development, making it a key

component in food security (Beveridge et al., 2013; Béné et al., 2015). To sustainably

harvest marine resources requires a shift in energy consumption. Globally, it is estimated

that between up to 50% of fisheries costs are fuel related, and emissions grew by one fifth

between 1990 and 2011 (Parker and Tyedmers, 2015; Parker et al., 2018). In addition,

declining supplies of fossil fuels, geopolitical conflicts and energy intensive modern
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lifestyles cause fuel price volatility (Pelletier et al., 2014). A study by

of energy consumption in Norwegian fisheries Schau et al. (2009)

showed that energy use for fish trawler and factory trawlers is most

intensive, while purse seining of shoaling fish, such as herring, is

most fuel efficient.

With better planning and routing, costs in the fishing industry

can be reduced (Reite et al., 2021a). One way to improve planning of

fishing activity is to provide support for decision-making. Decisions

can be categorized based on the time scales: strategic (weeks to

months to years), tactical (hours to days) and operational decisions

(near real-time). The type of support provided will depend on the

category of decisions being made (Reite et al., 2021b). Routing and

scheduling in shipping industry has been used to reduce fuel

consumption through optimization of speed and heading (Bal

Bes¸ikçi et al., 2016; Granado et al., 2021). In fisheries, remote

sensing to identify fishing grounds, seasonal forecasting of

environmental conditions using dynamic ocean modelling and

analysis of vessel activity can improve decisions and potentially

reduce fuel consumption (Iglesias et al., 2007; Bez et al., 2011; de

Souza et al., 2016; Hobday et al., 2016). A survey of fishers involved

in the Fishguider project found that communication with other

vessels and distance from fish factories are important information

for deciding when and where to fish now, and that there is interest

in model-based predictions of plankton, fish and whale spatial

distributions if available (Kelly et al., 2022b).

Model-based predictions can make use of patterns in nature,

which are representative of hidden information useful in informing
Frontiers in Marine Science 02
modelling efforts at different levels, from determining parameter

values, comparing model output to real patterns (Wiegand et al.,

2003). These patterns are useful at various stages of model

development from designing model structure, model selection

and calibration, with patterns such as densities and spatial

patterns and often used (Grimm and Railsback, 2012). Fisheries-

dependent data provide wide spatial coverage, long time series and

variety in target species (Pennino et al., 2016). However, data is

sparse considering the spatial extent of fish distributions.

Ideally we would like to utilize all information that fishing

vessels base their decisions on e.g. echosounder and sonar data.

Since we lack this information, we reason that it is possible to

extract hidden information about what they are seeing from the

vessel motions, including speed, distance travelled, and turning

angle. Since catch events are at the extreme end of the spectrum of

fish presence, we train a shallow Artificial Neural Network (ANN)

to estimate normalized fish densities which are categorized into

synthetic absence and presence data, providing a more complete,

although uncertain, source of observations (Figure 1).

In this article we focus on predictions that inform decision-making,

mainly strategic and tactical decisions, using model-based estimation.

The estimation procedure uses a large array of synthetic measurements

(approximately 2000 per day) derived from ANN output to

sequentially estimate fish spatial distributions. The migration model

simulates the fine-scale movements of Norwegian Spring Spawning

Herring (NSSH) using an individual-based model described in Kelly

et al. (2022a). The synthetic measurements predicted by the neural
FIGURE 1

Illustration of the coverage of fishing vessels relative to the catch positions recorded in electronic logs. The left panel displays synthetic measurements
predicted by the neural network d, with light red points indicating absence and dark red presence. The predictions uses the independent AIS dataset
from early January to late February 2020. The panel on the right shows electronically logged catch points for the same period.
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network are assimilated with Monte Carlo simulations of the IBM,

using an Ensemble Kalman Filter (EnKF) approach developed in Kelly

et al. (2023). Data Assimilation involves applying a correction term to

model states based on incoming measurements. Assimilating synthetic

measurements with IBM output can improve model forecast estimates

and thus inform the catch potential of unexplored ocean areas during

the fishing season. Results are presented for simulation scenarios of the

independent dataset 2020, from an ANN trained on vessel activity data

from 2015:2018.

Absent of model corrections, errors in IBM predictions increase

during model simulations due to uncertainties in parameterizations,

gaps in knowledge and computational limitations. Through assimilation

of derived patterns from fisheries data, we intended to improve IBM

predictions when data is available. Since the real distribution of fish

clearly influences fishing vessels, it is plausible that the movements of

the vessels can contain information about the fish distribution. Our

hypothesis was that the IBM predictions can be made more accurate by

using model corrections based on vessel movements. This represents a

novel approach for improving IBM estimates with real-time data

sources. Through developments in computational power and data

availability, such modelling approaches will improve our ability to

estimate key biological processes.
2 Methods

2.1 Description of data, pre-processing and
feature selection

Automatic Identification System (AIS) data for 186 vessels was

accessed from the Norwegian coast guard for a total of six years

from January 2015 to December 2020, covering the Norwegian

Exclusive Economic Zone. The sample consisted of vessels

primarily targeting NSSH with purse seiners and pelagic trawls, of

both coastal and oceanic fleets.

The received records consisted of variable sampling times

(average of 10 seconds), and so to standardize records, they were

downsampled to regular 10 minute intervals using statistics over

that interval. The data included speed over ground, heading,

latitude and longitude coordinates and sample time. Noise in data

was low pass filtered using a hampel filter, which replaces the

central value in the data window with the median if deemed too

distant from the median value, in this case three standard deviations

for six point (one hour) windows.

The AIS time series were transformed from the original set of

features to motion-related features, similar to Arasteh et al. (2020),

where the haversine formula was used to calculate the geographical

distance between two consecutive points. The speed, acceleration and

jerk were calculated from this geographical estimate. The heading and

change in heading were taken from the interpolated dataset. Two

additional features were calculated over one hour sliding windows, the

first being the number of 45 degree segments of a full circle area visited,

and the second being the total distance traversed.

The vessel points were grouped in days of the year and assigned

to individual model grid cells with 4 km2 resolution, based on

geographical coordinates of AIS points. The median of these motion
Frontiers in Marine Science 03
related features in each 4 km2 grid cell were used as the input for the

neural network. In addition, the day, month and year were used as

temporal features. The latitude and longitude coordinates of each

grid cell were used as spatial features. These 13 features were chosen

as it was assumed that the time of year, location and motion of

vessels is related to the spatial distribution and abundance of NSSH.

Similarly, the electronic catch logs of the selected vessels were

accessed through the fishery directorate and daily catch values of

NSSH in kg were assigned to model grid cells. In this study, for

simplicity, we assign grid cells with no catch record but AIS points

zero values. Logbooks lack coverage and resolution to conclude

complex spatial patterns of abundance, and there are several

modelling methods that combine AIS and logbook data to

address this issue (See for example: [Russo et al., 2018; Adibi

et al., 2020)]. For this reason, data is assimilated with high

observation noise, reflecting the high uncertainty in logbook data.

The target output ti was an p × 1 vector storing the min-max

normalized catch values of sampled cells, where p is the full list of

sampled cells. The cells with AIS point contained the motion, spatial

and temporal-based input vi for the ANN, which was a p × qmatrix,

where q are the 13 features in each cell. Thus, the ANN was built to

predict normalized density outputs ai based on viand normalized ti
values (Figure 2).
2.2 Synthesizing observations from ANN
output data

To generate the synthetic measurements, a shallow feed-

forward network was implemented in matlab using nftool. It was

chosen given fast computation time and simplicity. Feedfor-ward

networks consist of a series of layers, where the first layer has a

connection from the network input and each subsequent layer has a

connection from the previous layer, before the final layer produces

the network’s output. In this case, one hidden layer was used. The

process of training a neural network involves tuning the values of

the weights and biases of the network to optimize network

performance. The input matrix vi for training consisted of over

two million data points from 2015:2018. The ANN optimizes

weights on parameters to minimize mean-squared normalized

errors between the target outputs ti and network outputs ai:

F =
1
No

N

i=1
(oi − ai)

2 (1)

d = f (o, a) (2)

where d is the p × 1 vector of synthetic measurements that were

a function of the ANN output data ai and normalized target output

ti. Following minimization of the objective F, the function f uses a

threshold to determine ai values classified as presence of fish. We

calibrated the top 10% of percentiles as the threshold, where above

this value a Gaussian random number is selected for d with mean

and standard deviation based on ti (Figure 3). Below the percentile

threshold, d was treated as absence of fish with a value of zero. The

transformation from a to d was based on the assumption that the
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filter can’t really distinguish between high and low presence values,

and furthermore, we needed a way to map filter outputs to

reasonable values for model corrections. This is why we used a

standard value perturbed with random Gaussian measurement

noise. The d vector was calculated for the model simulation

period of 15.01.2020 - 28.02.2020 and was assimilated with model

forecast estimates in the same period and locations.
2.3 Assimilation with model data

The forecast model used to predict fish densities was an

individual-based model of the NSSH spawning migration,

described in Kelly et al. (2022a). It was used to model the

interaction between conglomerates of individuals (super-

individuals) and their surrounding environment. The migration is

initialized in northern Norway and progresses south along the
Frontiers in Marine Science 04
Norwegian coast. We present a simplified version of the model

for completeness:

q(t) = f (∇ T(t),∇D(t))

vb(t) = r
cos  (q(t))

sin  (q(t))

" # !

vf (t) = −Fvc(t) + vb(t)

p(t + Dt) = p(t) + Dt(vf (t) + vc(t))

b(t + Dt) = b(t) − Dtwb(t)

(3)

where q is the orientation of the superindividual, calculated

based on ∇T and ∇D, the temperature and bathymetry gradients.

The intended swimming speed is r, which drives the intended

velocity vector vb is balanced with a counter-current response vc.

The position state variable p of each individual is updated based on

the time step Dt and these two velocity components. The biomass b

is updated based on a parameter w, which reduces biomass by a

fixed fraction each Dt.
For the purpose of assimilation with the EnKF, we require a

Monte Carlo simulation of the forecast model states to represent the

probability distribution. Simply, we initialized N instances of the

IBM and added N disturbances a and b to p and b following each

time step of the IBM above, described fully in Kelly et al. (2023):

P = ½p1,…pN � + ½a1,…aN �
B = ½b1,…bN � + ½b1,…bN �
                         Xf = f (P,B)

(4)

where Xf is the forecast estimate for the assimilation procedure.

The function maps from continuous IBM states P and B to the

discrete grid representation Xf, which is an n ×N density field where

each grid cell index n represents the density of fish in a 4 km2

grid cell.

For the calculation of the Kalman Gain K, which is used to

calculate the correction term, the covariance of the forecast matrix

Xf must be calculated. However, as in many applications, the n × n

size is too large to explicitly calculate in the standard EnKF and so
FIGURE 3

Histogram of synthetic non-zero measurement values distribution
(d > 0).
FIGURE 2

Simplified conceptual illustration of the input of vessel data (vi) passed to the input layer of the shallow ANN which predicted a single output value
for the area (ai).
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an equivalent representation from Mandel (2006) is used instead:

�Xf = 1
No

N

i=1
Xf
i

Af = Xf − �Xf

HA = HXf −H�Xf

P = 1
N−1 HA(HA)

TIm + R

K = L ȯ 1
N−1 A

f (HA)TP−1
� �

(5)

where H is anm × nmatrix that maps between model states and

measured states, Im is an m × m identity matrix, R is the m × m

observation error covariance matrix, where each element on the

diagonal is the variance of observation noise (Ω). The parameter Ω

is important as it determines the strength of the final correction

value. L is an m × N localization matrix which adds a penalty to

model covariances that are distant from the measurement points.

For a small ensemble and high dimensional system, localization is

necessary to limit the impact of spurious correlations in the

ensemble (Houtekamer and Mitchell, 2005).

One issue with using observations of fish densities is the non-

negative nature of measurement values in d. Observations are

usually perturbed with Gaussian noise, but this causes instabilities

in the IBM where there are low fish densities. For statistical

consistency, this requires a reformulation of the EnKF, and we

use the variant known as the deterministic EnKF (Sakov and Oke,

2008):

�Xa = �Xf + K(d −H�Xf )

Aa = Af − 1
2 KHA

f

Xa = Aa + �Xa

(6)

where d is the vector of synthetic measurements at the time of

simulation andHmapsmmodel states in corresponding 4 km2 grid

cell. Corrections are applied to each model state and the analysis

estimate Xa is the best prediction of posterior model states.
2.4 Analysis

To assess the sensitivity of the model to assimilation of synthetic

measurement vector d, our analysis varied two key parameters. The

first is r, the intended swimming speed of super-individuals in the

IBM (Equations 3). This has a large effect on the rate of progression

of the migration southwards along the Norwegian coast. The second

parameter varied was Ω, which determines the strength of model

corrections through R in Equations 5. Higher Ω value limits the

impact of corrections measurements relative to lower Ω values.

Control scenarios were simulated with no assimilation of synthetic

measurements and thus no Ω values, but with separate realizations

of r. By varying r in the control scenarios, overlap that is due to

model fit can be separated from the effect of model corrections.

To assess the performance of the various scenarios above,

spatial indices were used similar to in Kelly et al. (2023). These

are coarse indices, but offer good insight on performance of model

scenarios. We calculated the latitude and longitude for each
Frontiers in Marine Science 05
analyzed state �Xa
n , denoted la

n and fa
n . The weighted mean or

center of gravity of the latitude and longitude are denoted �la and
�fa, while the inertia g a is a measure of spatial variance of the model:

g a =
on

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(la

n −
�la)2 + (fa

n − �fa)2
q

 �Xa
n

on
i=1

�Xa
n

(7)

To measure the overlap k between the model and observation,

spatial indices of catch values were calculated. The weighted

geographic mean of catch positions on each day labeled �lt and �ft

and the inertia for catch g twas calculated as above, although instead

of �Xa
n , catch weight was used, and the n states were the list of logged

catches for the day indexed. A measure of overlap k between model

and catch distribution was calculated:

k = 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�la − �lt)2 + (�fa − �ft)2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�la − �lt)2 + (�fa − �ft)2

q
+ g a + g t

(8)

where a value of zero indicates populations concentrated at two

distinct points with no overlap, and a value of 1 indicates perfect

overlap. The kmetric was calculated daily for duration of the model

simulations and the average value was used to compare different

model scenarios (Figure 4).

For assessing catch potential, we used an index that measured

occurrence of catches in areas with model predictions of presence.

For this assessment we mapped both the model estimates and the

catch locations to a coarser grid of approximately 55km2 ICES

statistical rectangles covering the major fishing areas for NSSH in

the spring season. A total of 280 grid cells were used, with model

presence calculated based on the top 10% of grid cells, and

observation presence assigned in cells with at least one catch

point. Each day this equaled 28 cells that were assigned model

presence, with varying numbers of observation cells assigned

presence (Figures 5, 6). The performance of models were

calculated as the percentage of observation cells correctly

predicted with presence by the model over the simulation period.

We compared model predictions to an ensemble of 1000 random

strategies, where 28 cells were picked at random each day.
3 Results

3.1 Sensitivity analysis

Corrections had an effect on the spatial distribution of the 35

scenarios (Figure 4). Lower Ω values pulled several scenarios

towards the catch distribution, dependent on the r values. In

general, scenarios with r values from 0.1 to 0.3 and higher

uncertainty led to higher k values. For the control scenarios, the

highest k values are achieved for r = 0.3 and r = 0.4, which were

within range of the parameter value optimized in Kelly et al.

(2022a). Corrections with higher r perform better for lower Ω

values. The variability in k values reflects the fact that different

model scenarios experience different sets of measurements

throughout the simulation.
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FIGURE 4

Average k values, a measure of overlap, for simulation scenarios, with rows representing different r values (swimming speed parameter) and columns
representing different Ω values (observation noise). The control scenario was run without assimilation.
FIGURE 5

Illustration of catch potential calculated from �Xa for different Ω values and a control scenario, where r = 0.2 from 30th of January 2020 to 3rd of
February 2020. The black points are the NSSH catch locations during this period. The red squares show the top 10% of model cell values. Note that
catch potential estimates in Figure 9 were calculated daily.
Frontiers in Marine Science frontiersin.org06
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Visually, the effect of corrections on the model �l and �f for each

time step (4 hour increments), we see that with low Ω all corrected

models are pulled towards a similar centre point throughout the

simulation (Figure 7). Contrasting, with an Ω an order of

magnitude higher, the divergence between model states is

maintained even with corrections, but there is still a visible effect

of corrections (Figure 8). This indicates that different model

scenarios converge on similar geographical distributions when

there is less uncertainty in measurement values and vice versa.
3.2 Catch potential

The 35 scenarios were compared on the catch potential metric

(Figure 9). A random strategy of picking 10% of the cells in the

observation area for each day was simulated 1000 times and shown

to have an average catch potential of 10%, with a standard deviation

of 2%. All model simulations performed better than the random

strategy, with lower r values showing the best results on average. At

lower levels of Ω, the predicted catch potential was higher than the

control performance in every case of r. This indicates that the raw
�Xa values are imbalanced when comparing k values as in Figure 4,

but filtering values for catch potential improves the capacity to use

model-based estimation for decision support.

The visualizations of the catch potential in ICES grid cells

display how corrected models converge on similar spatial
Frontiers in Marine Science 07
distributions compared to controls (Figures 5, 6). The

visualizations are averaged over 5 day periods to increase the

number of catch points visualized. In general, the distribution of

presence cells becomes more concentrated in corrected output.

When themigration speed is slower, corrections can pull themodel

forward (Figure 5), while when the model migration is progressing

faster, the model can be pulled back with corrections (Figure 6).
4 Discussion

The assimilation approach presented in this article utilized

vessel movement data to generate synthetic measurements using a

neural network, providing a large array of measurements,

predicting both absence and presence of fish, with which to

correct model states. Given assimilated scenarios only have access

to synthetic measurements in d trained on independent datasets,

with no direct information on catches, this illustrates the power of

using assimilation of indirect synthetic data to improve model

predictions. The final filtering of model output has immediate

utility in informing fishing activity.

However, scaling synthetic measurements according to neural

network output a loses connection to absolute densities of fish.

Further work is required to build a more accurate filter that can

predict absolute values. For example, labeling activity along

trajectories provides more refined information on vessel behavior
FIGURE 6

Illustration of catch potential calculated from �Xa for different Ω values and a control scenario, where r = 0.4 for 19th of February 2020 to 23rd of
February 2020. The black points are the NSSH catch locations during this period. The red squares show the top 10% of model cell values. Note that
catch potential estimates in Figure 9 were calculated daily.
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FIGURE 7

The �l and �f values at each time step t of the model run for Ω = 10000 in corrected and control scenarios with varying values of r. The blue bubbles
represent the centre of gravity catch values calculated at daily increments.
FIGURE 8

The �l and �f values at each time step t of the model run for Ω = 100000 in corrected and control scenarios with varying values of r. The blue
bubbles represent the centre of gravity catch values calculated at daily increments.
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such as searching, steaming, pumping and fishing, and these

features can improve predictions of densities (Adibi et al., 2020).

Additionally, we exclusively used catch logs of NSSH in the ANN,

but adding multispecies information on distribution of competitors,

predators and prey may also improve predictions. The shallow

ANN developed is a proof-of-concept for a more complex system of

pattern recognition for complimenting modelling efforts.

We have shown that the model estimates can be strengthened

with assimilation, but given we have incomplete knowledge of fish

dynamics, scaling errors and other sources of uncertainty, it is

challenging to relate predictions to real processes. For the

pragmatic purpose of predicting catch potential, this is not a major

issue, but when using such a model to test theoretical considerations

in ecology, including additional individual states and parameters may

be required. Regardless, the Data Assimilation procedure gives insight

into the state and parameter values that better fit observations, so if

models accurately represent real biological states and parameters,

assimilation can sequentially estimate true dynamics in nature.

As Data Assimilation is sequentially estimating model states, it’s

challenging to extract the effects of individual corrections. Further

work may look more closely at the local effects of assimilation on

posterior states. Understanding these effects may reveal how to

mitigate some of the instabilities that cause variability in spatial

patterns demonstrated in Figure 4. Instabilities in the k values

compared to catch potential metric in Figure 9 shows that when we

filter patterns from the model, the predictions become more useful.

The occurrence-based metric for catch potential shows that

assimilated models perform well in comparison to control
Frontiers in Marine Science 09
scenarios. Additionally, many weak models perform well under

this metric compared to randomly selecting fishing areas. This

illustrates the power of extracting simple patterns from model

outputs for decision support. Further analysis of spatial patterns

may uncover ways in which model output can be filtered for useful

input to decision support.

More work is needed to understand what fishers require to

reduce search for fishing grounds. There are many factors beyond

fish spatial distributions that influence decisions on when and

where to fish (Kelly et al., 2022b). Understanding what fishers

need from research as well as testing model output in real fishing

operations can give insight into how we may inform catch potential.

For example, control experiments may be developed where sets of

decisions are made with and without model suggestions

and analyzed.

Productivity gains from technological innovations in the fishing

industry are often countered by a concordant reduction in fish

resources (Hannesson et al., 2010). For example, the collapse of the

Norwegian herring fishery in the 1970s is attributed to the cumulative

impact of new technologies, especially advances in mechanical

hauling (Fiksen and Slotte, 2002; Gordon and Hannesson, 2015).

Therefore, fisheries management plays a crucial role in avoiding

overexploitation of fish stocks. The Norwegian regulatory cycle

involves international negotiations, regulatory meetings at the

Norwegian fisheries directorate and advice from scientific

organizations such as the ICES (Gullestad et al., 2017). Model

estimates are a supplementary information source and should thus

be utilized in accordance with Norwegian fisheries policy.
FIGURE 9

Catch potential (%) calculated for all model scenarios, with rows representing different r values and columns representing different Ω values and the
control scenario without assimilation. For the 1000 random simulations µ = 10% and s = 2%.
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5 Conclusion

The model-based estimation system presented in this article is

useful in predicting catch potential of novel fishing areas. It relies on a

IBM of the herring migration as the forecast estimate and an EnKF

procedure is used to correct the estimate based on incoming

measurements. We have suggested a simple method for translating

vessel activity into synthetic measurements that can be used for

assimilation. This is a proof-of-concept for a system to derive patterns

for assimilation with model data when direct measurements are

unavailable. Data Assimilation produces a posterior field that can

be used to predict the spatial distribution of herring. The corrected

model forecasts outperform uncorrected forecast estimates when

model output is converted to a catch potential metric, especially

when the uncorrected forecast estimate are inaccurate. All model

estimates perform better than picking fishing grounds at random.

Further work can refine the ANN predictions, assess false positive

rates in estimates and analyze the utility of the model-based

estimation system in decision support.
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