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Atmosphere and room
temperature plasma alters
the m6A methylome profiles
and regulates gene expression
associated with color
mutation in clownfish
(Amphiprion ocellaris)

Li-Bin He*, Hui-Yu Luo and Le-Yun Zheng

Disease Control Center, Fisheries Research Institute of Fujian, Xiamen, China
Since the release of the movie Finding Nemo, clownfish have been known and

loved by many people. Clownfish have a very vivid skin color and extreme

ornamental value. However, there are few species of clownfish, which greatly

limits the breeding of new varieties. In this study, the Atmosphere and room

temperature plasma (ARTP) method was used to treat clownfish-fertilized eggs

and successfully screened out mutants that exhibited a skin color change from

black to red in their offspring. To elucidate the molecular mechanism underlying

this color mutation, more than 17,000 methylated peaks were obtained viam6A-

specific methylated RNA immunoprecipitation with next-generation sequencing

(MeRIP-seq). These modification sites were mainly distributed around stop

codons, and the number of corresponding genes exceeded 10,000. Further

RNA sequencing (RNA-seq) of clownfish before and after the mutation was

performed identified 883 genes that exhibited significant differences between

the two samples, among which 152 interaction genes showed significant

differences in the m6A methylated level and gene expression level. The results

of a functional analysis showed that the phosphatidylinositol-3-kinase (PI3K)-

serine/threoninekinase (Akt) pathway and its related signal pathways may play an

important role in skin color change. In particular, genes such as mitogen

activated protein kinase kinase 1 (MAP2K1), insulin―like growth factor―l

(IGF1), and fibroblast growth factor 1 (FGF1) may play key roles in the

accumulation of melanin in clownfish, and the homeobox-protein-encoding

empty spiracles homeobox 2 (EMX2) and mesenchyme homeobox (MEOX2)

genes may be important for determining the regions of accumulation of this skin

pigment. Our results provide a new reference for the genetic breeding of

clownfish and lay a foundation for further understanding the molecular

mechanism underlying body color changes in clownfish.
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1 Introduction

The clownfish, especially the Amphiprion ocellaris is a well-

known ornamental fish that was made popular by the Pixar film

Finding Nemo and is also called anemonefish because of its

mutualistic symbiotic relationship with tropical sea anemones

(Elliott et al., 1999). There are approximately 30 anemonefish

species in the subfamily Amphiprioninae (as well as a few naturally

occurring hybrids) (Elliott et al., 1999; Hu et al., 2016; Feeney and

Brooker, 2017). They are popular aquarium species because of their

bright colors, adaptability to captivity, and fascinating behavior.

Clownfish have a high ornamental value and are an ideal material

for studying the symbiotic behavior and co-evolution between

clownfish and tropical sea anemones. To date, the limited number

of studies of clownfish have mainly focused on traditional taxonomy,

molecular phylogeny, and evolution (Santini and Polacco, 2006;

Timm et al., 2008; James Cooper et al., 2009; Li et al., 2015; Hu

et al., 2016; Ye et al., 2016; He et al., 2020). The current lack of species

diversity remains a barrier in clownfish breeding. Mutagenesis is a

very effective tool in order to create more genetic resources.

Mutations are the basis of genetic variation, and successful

breeding strategies basically depend on the mutations present in the

base population. Artificial induction is a common method for

creating mutant individuals. Chemical mutagens and physical

mutagens, such as ethyl methane sulfonate (EMS), N-ethyl-N-

nitrosourea (ENU), and X-ray and UV irradiation, play important

roles in mutation induction (Kodym and Afza, 2003). Artificial

induction can also be used to change the body color, for example, in

frogs found internal pigment cells can respond to external UV

radiation (Franco-Belussi et al., 2016). Recently, a new powerful

mutagenesis tool, i.e., atmosphere and room temperature plasma

(ARTP), has been successfully used for mutagenesis breeding in

several species, such as microbes (Ottenheim et al., 2018), plants

(Luo et al., 2016; Zhao et al., 2019), human cell lines (Zhao et al.,

2013), and fish (Ji-Lun et al., 2019). Some studies showed that

ARTP can cause stronger DNA damage, thereby resulting in a

higher mutation rate compared with the UV and chemical

mutagens (Zhang et al., 2014). Based on the existing reports,

ARTP is a more efficient method for mutagenizing clownfish and

resulting in more genetic resources.

The body color of clownfish not only controlled by genes, but

also tends to change with the surrounding environment. Chemical

modifications of RNA provide a direct and rapid way to modulate

the existing transcriptome, allowing cells to adapt rapidly to

changing environments (Malla et al., 2019). N6-methyladenosine

(m6A) is the most prevalent and abundant RNA modification,

especially within eukaryotic mRNAs. Moreover, it has been

extensively researched in yeast, plants, flies, humans, and other

mammals (Lence et al., 2017; Zhao et al., 2017; Yue et al., 2019).

Several studies have shown that m6A governs mRNA splicing

(Bartosovic et al., 2017), translation (Barbieri et al., 2017),

stability (Vu et al., 2017), structure, and export and decay (Zhao

et al., 2017). These studies have identified m6A as a dynamically

regulated gene-expression modulator during development

(Roundtree et al., 2017; Frye et al., 2018), stem cell proliferation

and differentiation (Klungland et al., 2016), the DNA damage
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response (Bartosovic et al., 2017), stress response (Zhou et al.,

2015), etc. In particular, m6A has attracted much attention because

of its demonstrated importance in the regulation of gene expression

and in cell-fate decision in recent years (Wang et al., 2015;

Roundtree and He, 2016; Zhu et al., 2020).

Recently, the sequencing of the clownfish genome provided a

more favorable and convenient setting for the molecular and

genomic research of this fish (Tan et al., 2018). As clownfish have

various color patterns, the survey of genome-wide m6A

modification sites will provide a molecular understanding of the

regulatory mechanism between methylation modifications and

clownfish color patterns.

In order to obtain more resources of body color-related

mutants, we first used the ARTP method to create and screen

mutants. To clarify the molecular mechanism of body color

mutation, we investigate the relationship between m6A

modification and color patterns in clownfish, as a basis for

studying the level of expression of genes that are regulated by

m6A modification. We find m6A methylated may through PI3K-

Akt pathway regulated skin color of clownfish. Our results provide a

reference for obtaining additional mutants and for elucidating the

molecular mechanism underlying body color changes in clownfish.
2 Materials and methods

2.1 Fertilized fish egg collection and
mutation by ARTP

Clownfish with the original black skin color (provided by a marine

ornamental fish breeding base) were housed in recirculating aquaria at

26°C–28°C at the Fisheries Research Institute of Fujian. Healthy and

active clownfish were selected as the parents and fertilized eggs from

the same parent were collected 1 hour after the fish had spawned.

Subsequently, the fertilized eggs were treated with a pure helium-based

ARTP mutation machine (ARTP-A, TMAXTREE Biotechnology Co.,

Ltd., Luoyang, China). The fertilized eggs at the metaphase of the first

mitosis were placed on a glass Petri dish containing 1 mL of sea water.

The dish was then exposed to the plasma, and the ARTP mutation

system was operated using the following parameters: a radio-frequency

(RF) power input of 240 W, a helium gas flow rate of 10 L/min, a

treatment distance of 2 mm, and a treatment time of 10 min. After the

ARTP mutation treatment, the eggs were transferred to a 26°C–28°C

water bath until hatching. Ninety days later, three ARTP- treated and

-untreated individuals were selected, respectively. The skins of these 6

fishes were cut and mixed, then immediately frozen in liquid nitrogen

and stored at –80°C.
2.2 Species identification and
phylogenetic analyses

The fins of the clownfish were clipped and stored in 96% ethanol

immediately. DNA was then extracted and purified for PCR

amplifications. The mitochondrial cytochrome c oxidase subunit I

(COI) gene is a candidate gene for studying the evolution of species,
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the primers (5′–TCAACCAACCACAAAGACATTGGCAC–3′ and

5′–TAGACTTCTGGGTGGCCAAAGAATCA–3′) were used to

amplify this gene (Li et al., 2015; He et al., 2020). The PCR products

were sequenced and the resulting nucleotide sequences were aligned

with the COI gene sequences of Amphiprion akallopisos, A. frenatus, A.

latifasciatus, A. ephippium, A. akindynos, A. clarkia, A. sebae, A.

perideraion, A. bicinctus, A. barberi, A. chrysopterus, A. polymnus, A.

sandaracinos, and A. percula, which were downloaded from National

Center for Biotechnology Information (NCBI) using the MEGA v7

software (Kumar et al., 2016). The results of the alignment were

analyzed using Maximum Likelihood algorithms based on the

Tamura–Nei model using the MEGA 7 software (Kumar et al.,

2016). The statistical confidence was evaluated using 1000 non-

parametric bootstrap replicates (Felsenstein, 1985).
2.3 RNA extraction, library construction,
and sequencing

Total RNA was extracted using the TRIzol reagent kit

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s

protocol. RNA quality was assessed on an Agilent 2100 Bioanalyzer

(Agilent Technologies, Palo Alto, CA, USA) and checked using

RNAse-free agarose gel electrophoresis.

For m6A-specific methylated RNA immunoprecipitation with

next-generation sequencing (MeRIP-seq), fragmented RNA was

incubated with an anti-m6A polyclonal antibody (Synaptic

Systems, 202003) in IPP buffer (150 mM NaCl, 0.1% NP-40,

10 mM Tris-HCl, pH 7.4) for 2 h at 4°C. The mixture was then

immunoprecipitated via incubation with protein-A beads (Thermo

Fisher) at 4°C for an additional 2 h. Subsequently, bound RNA was

eluted from the beads with N6-methyladenosine (Berry &

Associates, PR3732) in IPP buffer, and then extracted using the

TRIzol reagent (Thermo Fisher) according to the manufacturer’s

instructions. Both the input sample without immunoprecipitation

and the m6A immunoprecipitation (IP) samples were used to

construct libraries via the same method with RNA-seq.

For RNA-seq, the rRNA was extracted using a Ribo-ZeroTM

Magnetic Kit (Epicentre, Madison, WI, USA). Second-strand cDNA

was synthesized using DNA polymerase I, RNase H, dNTP, and

buffer. Next, the cDNA fragments were purified with a QiaQuick

PCR extraction kit (Qiagen, Venlo, The Netherlands) and ligated to

Illumina sequencing adapters. The ligation products were size

selected by agarose gel electrophoresis, PCR amplified, and

sequenced using an Illumina HiSeq2500 platform by Gene

Denovo Biotechnology Co. (Guangzhou, China). Three biological

replicates were performed for each treatment.
2.4 Raw data analysis

Before assembly, raw reads were filtered by fastp (Chen et al., 2018).

Next, the short read alignment tool implemented in Bowtie2 was used to

map reads to an rRNA database (Langmead and Salzberg, 2012). All

rRNA mapped reads were then removed. The remaining clean reads

were further used in assembly and gene abundance calculation.
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The A. ocellaris reference genome and associated annotation

files were downloaded from NCBI (accession no. PRJNA407816,

https://www.ncbi.nlm.nih.gov/bioproject/407816) (Tan et al.,

2018). An index of the reference genome was built, and paired-

end clean reads were mapped to the reference genome using

HISAT2. 2.4 with “-rna-strandness RF” and other parameters set

as a default (Kim et al., 2015). The reconstruction of transcripts was

carried out using Stringtie (version 1.3.1) and HISAT2 (Kim et al.,

2015; Pertea et al., 2016).
2.5 Gene expression and functional
enrichment analysis

For each transcription region, a fragment per kilobase of

transcripts per million mapped reads value was calculated, to

quantify the gene expression abundance and variations using

Stringtie (Pertea et al., 2016). Differentially expressed genes

(DEGs) between different samples were then identified using

DESeq2 (Love et al., 2014).

Methylated sites on RNAs (peaks) were identified using the

exomePeak2 R package with P-value <0.05 (Meng et al., 2014). The

enrichment score on different gene functional elements of peaks was

calculated with reference to a previous report (Luo et al., 2014).

m6A enrichment sequence motifs were analyzed using the MEME

Suite (http://meme-suite.org/) (Bailey et al., 2009).

The significance threshold of the P-value was adjusted using the

false discovery rate (FDR), to correct for multiple testing. The genes

or peaks with a minimal two-fold (|log2 Ratio| ≥ 1) and FDR ≤0.05 in

a comparison were regarded as significant differential genes or peaks.
2.6 Statistical analysis of related data in
RNA-seq and MeRIP-seq

We extracted the expression levels of the genes related to peaks,

sorted them according to expression levels, and divided them into

20 equal groups. The number of peaks in the 5′UTR, start codon,
CDS, stop codon, and 3′UTR of each gene was counted and their

percentage among the total number of peaks was assessed.
2.7 Functional enrichment analysis

Candidate genes were mapped to GO terms in the Gene

Ontology (GO) database (http://www.geneontology.org/), and a

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis was used for predicting the functions of candidate genes

(Ashburner et al., 2000; Kanehisa and Goto, 2000; Boyle et al., 2004).
2.8 Validation of gene expression patterns

Seven genes were selected for validation by quantitative realtime

reverse transcription PCR (qRT-PCR). First-strand cDNA was

synthesized using a HiScript II Q RT SuperMix for qPCR Kit
frontiersin.org
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(Vazyme, China). Gene-specific primers for qPCR were designed

based on the corresponding sequence using Primer3 (https://

primer3.ut.ee). GAPDH2 (AMPOCE_00031857) was used as an

internal control. qRT-PCR was performed using the ChamQ SYBR

qPCR Master Mix (Vazyme, China) on an ABI StepOnePlus™

instrument (ABI, America) according to the manufacturer’s

instructions. Three technical replicates were performed for each

gene. A regression analysis was performed using the qRT-PCR and

RNA sequencing results; this analysis included all genes from both

genotypes at all three time points of the waterlogging treatment.

Relative gene expression (calculated using the 2−△△Ct method) was

visualized graphically (Rao et al., 2013).
3 Results

3.1 Phenotype and data statistics of MeRIP-
seq of clownfish

In this study, fertilized eggs of clownfish were selected and

mutated using ARTP. After hatching, the skin color of the clownfish

was observed and only a few individuals changed from the original

black to red, which were selected out for further study (Figure 1A).

We cloned and sequenced the COI gene of the mutated clownfish,

and a molecular evolutionary analysis showed that the COI gene

sequence was consistent and clustered with the COI gene of

Amphiprion ocellaris, which revealed that the variety of the

mutated clownfish was Amphiprion ocellaris (Figure 1B). To

elucidate the molecular mechanism underlying the clownfish

body color change, we performed RNA-seq and MeRIP-seq on

clownfish skin before and after mutagenesis, respectively.
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For MeRIP-seq, the wild-type clownfish skin of the test and

control groups in immunoprecipitation were named MW-IP and

MW-input henceforth, and the mutant clownfish skin of the test

and control groups in immunoprecipitation were named MM-T

and MM-C, respectively. After removing low-quality reads and

rRNA mapped reads, more than 223 million clean reads were

generated in all libraries (Table S1), and the mapping rate of

clean reads against the clownfish reference genome ranged from

67% to 92.71% (Table S2). The control group of both samples had a

22%–25% higher mapping ratio than did the test group.
3.2 Profiles of m6A modification in wild-
type and ARTP-treated mutant clownfish

The total reads from MW and MM samples were 1976912 and

1590251, respectively. To obtain the complete transcriptome-wide

m6A map of the clownfish, we identified 15873 and 17611 M6A

peaks in MW and MM, respectively (Tables S3, S4). Among them,

5761 special peaks were detected in the MW sample, 7499 special

peaks were detected in the MM sample, and 10112 common peaks

were detected in both the MW and MM samples (Figure 2A). To

further understand the preferential locations of the reads on

transcripts, we investigated their distributions. In the two

samples, we found that most reads were highly enriched around

the start codon, the coding region, and the stop codon. However,

the enrichment was more frequent at the start codon region in input

samples and at the stop codon region in IP samples (Figures 2B, C).

Interestingly, the enrichment around the start codon region in MM-

input samples was stronger than that observed in MW-input

samples (Figures 2B, C). Thus, we investigated the metagene
A B

FIGURE 1

Phenotypic and variety identification of clownfish (Amphiprion ocellaris) that hatched from ARTP-treated eggs. (A) Phenotype of wile type (WT) and
mutated clownfish. White circle indicates the sampling location. (B) Molecular evolutionary analysis of the mitochondrial cytochrome c oxidase
subunit I (COI) gene of mutated clownfish. The NCBI accession numbers used in this study are MW630864.1 (Amphiprion ocellaris), OM127852.1
(Amphiprion percula), FJ582759.1 (Amphiprion frenatus), MW630855.1 (Amphiprion barberi), KC539208.1 (Amphiprion ephippium), MN560824.1
(Amphiprion bicinctus), KP194708.1 (Amphiprion clarkii), KP194341.1 (Amphiprion akindynos), MW630859.1 (Amphiprion chrysopterus), FJ582760.1
(Amphiprion lat ifasciatus), KU987434.1 (Amphiprion sebae), MW630868.1 (Amphiprion sandaracinos), FJ582732.1 (Amphiprion akallopisos),
MH049169.1 (Amphiprion perideraion).
frontiersin.org

https://primer3.ut.ee
https://primer3.ut.ee
https://doi.org/10.3389/fmars.2023.1173215
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


He et al. 10.3389/fmars.2023.1173215
profiles of m6A peaks further. In the MW sample, we found that

most m6A peaks were highly enriched around the coding regions

(40.35%), stop codon (31.95%), and 3′UTRs (14.58%), followed by

the start codon (11.54%) and 5′UTRs (1.57%) (Figure 2D). In the

MM sample, we found that most m6A peaks were highly enriched

around the coding regions (41.17%), stop codon (31.57%), and 3′
UTRs (13.3%), followed by the start codon (12.24%) and 5′UTRs
(1.61%) (Figure 2E). The proportion of enrichment around the

coding regions, the start codon, and the 5′UTRs was slightly greater
in MM vs. MW (Figures 2D, E).

To determine whether the identified m6A peaks contained the

RRm6ACH (R = A/G and H = A/C/U) conserved sequence motif,

we implemented a search for motifs that were enriched in the 50-bp

area around the m6A peak using the DREME software. It has been

reported that m6Amodification preferentially appears after G in the

conserved motif RRm6ACH. Our results showed that the MW and

MM enrichment sequence motifs exhibited a similar character in

clownfish mRNA (Figures 2F, G; Table S5).
3.3 Relationship between m6A
modification peaks and gene function

We further surveyed the m6A modification peaks relationship

with gene function. The results showed that 10202 and 11193 genes

were related to the m6A modification peaks in MW and MM

reported above, respectively (Tables S6). Among them, the two
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samples had 6620 common m6A modification peaks related to

genes, 3582 specific m6A modification peaks related to genes in

MW samples, and 4573 specific m6A modification peaks related to

genes in MM samples (Figure 3A; Table S7). To further explore the

effect of ARTP treatment on m6A modification in clownfish mRNA

and the molecular mechanism underlying the skin color change in

mutated clownfish, we focused on the 4573 MM-specific peak-

related genes. The GO enrichment analysis revealed the significant

enrichment of GO terms such as gene expression (GO:0010467),

chromatin modification (GO:0016568), nucleic acid binding

(GO:0003676), lysine N-methyltransferase activity (GO:0016278),

and transferase complex (GO:1990234) (Figure 3B; Table S8). The

KEGG enrichment analysis showed that the significantly enriched

pathways included Glycosaminoglycan biosynthesis—chondroitin

sulfate/dermatan sulfate (ko00532), RNA transport (ko03013),

extracellular matrix (ECM)–receptor interaction (ko04512), Focal

adhesion (ko04510), Regulation of actin cytoskeleton (ko04810),

etc. (Figure 3C; Table S8).

Furthermore, the m6A modification level also caused different

expression levels of genes. The comparison of the m6Amodification

level between MW and MM samples identified 3517 upregulated

and 3728 downregulated m6A modification sites (Figure 3D; Table

S9). As demonstrated by the four randomly selected genes, the

AMPOCE_00027695 and AMPOCE_00014566 genes had a higher

m6A modification level in MM vs. MW, whereas the

AMPOCE_00011661 and AMPOCE_00018305 genes had a lower

m6A modification level in MM vs. MW (Figure 3E).
A B

D E F G

C

FIGURE 2

Overview of the m6A methylome in clownfish. (A) Venn diagram of peaks; (B) peak relative transcript location distribution in MW; (C) peak relative
transcript location distribution in MM; (D) distribution of peaks on different gene functional elements in MW; (E) distribution of peaks on different
gene functional elements in MM; (F) conserved sequence motif for m6A-containning peak regions in MW, as assessed by the DREME software; and
(G) conserved sequence motif for m6A-containning peak regions in MM, as assessed by the DREME software.
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The GO enrichment analysis of differentially expressed m6A-

modified genes showed that the significantly enriched GO term in

the biological process included cellular macromolecule metabolic

process (GO:0044260), nucleic acid-templated transcription

(GO:0097659), protein modification process (GO:0036211), gene

expression (GO:0010467), chromatin modification (GO:0016568),

etc. (Figure 3F; Table S10).
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The enrichment pathways of differentially expressed m6A-

modified genes, as assessed by KEGG analysis, indicated that 23

pathways were significantly enriched, such as Notch signaling

pathway, Focal adhesion, mitogen-activated protein kinase

(MAPK) signaling pathway, Ubiquitin-mediated proteolysis,

ECM–receptor interaction, Adipocytokine signaling pathway,

PI3K-Akt s ignal ing pathway, N-g lycan biosynthes is ,
A B

D

E

F G

C

FIGURE 3

Peak-related gene functional annotation. (A) Venn diagram of peak-related genes. (B) GO enrichment of specific methylation genes in MM.
(C) KEGG enrichment of specific methylation genes in MM. (D) Genes with differential methylation levels in MM and MW. (E) Four examples of genes
with m6A peaks in clownfish. (F) GO enrichment of differentially expressed m6A-modified genes. (G) KEGG enrichment of differentially expressed
m6A-methylated genes.
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Glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan

sulfate, Autophagy—animal, Various types of N-glycan

biosynthesis, FoxO signaling pathway, etc. (Figure 3G; Table S10).
3.4 Data statistics of RNA-seq of clownfish

To assess whether m6A modification is involved in the

regulation of the expression level of genes, we further examined

the expression profiles of the wild-type and ARTP-treated mutant

clownfish by RNA-seq. For RNA-seq, the wild-type and ARTP-

treated mutant clownfish skins were named RW and RM

henceforth, respectively. In total, after removing low-quality reads

and rRNA mapped reads, more than 230 million clean reads were

generated in all libraries (Table S11); the mapping rate of clean

reads against the clownfish reference genome ranged from 91.24%

to 94.12% (Table S12). About 80% of the reads were mapped to

exonic regions, whereas about 20% of the reads were mapped to

intronic and intergenic regions (Table S11).
3.5 Differentially expressed genes between
wild-type and ARTP-treated mutant
clownfish

The comparison of gene expression levels between ARTP-

treated mutant clownfish and wild-type clownfish revealed 883

differentially expressed genes (DEGs), including 254 upregulated

genes and 629 downregulated genes (Figure 4A). A GO analysis

showed that these DEGs were mainly enriched in C-C chemokine
Frontiers in Marine Science 07
receptor activity (GO:0016493), chemokine binding (GO:0019956),

chemokine receptor activity (GO:0004950), G-protein-coupled

chemoattractant receptor activity (GO:0001637), cytokine

receptor activity (GO:0004896), G-protein-coupled peptide

receptor activity (GO:0008528), peptide receptor activity

(GO:0001653), G-protein-coupled receptor activity (GO:0004930),

transmembrane signaling receptor activity (GO:0004888),

transmembrane receptor activity (GO:0099600), signaling

receptor activity (GO:0038023), receptor activity (GO:0004872),

signal transducer activity (GO:0004871), extracellular region part

(GO:0044421), fibrillar collagen trimer (GO:0005583), banded

collagen fibril (GO:0098643), complex of collagen trimers

(GO:0098644), proteinaceous extracellular matrix (GO:0005578),

etc. (Figure 4B; Table S13). The KEGG annotation results of the

DEGs revealed the significant enrichment of several pathways, such

as Cytokine–cytokine receptor interaction, Cell adhesion molecules

(CAMs), Th17 cell differentiation, Protein digestion and absorption,

Chemokine signaling pathway, ECM–receptor interaction, Fat

digestion and absorption, Th1 and Th2 cell differentiation, Janus

kinase (Jak)- signal transducer and activator of transcription

(STAT) signaling pathway, Arachidonic acid metabolism, PI3K-

Akt signaling pathway, Phagosome, etc. (Figure 4C; Table S13).
3.6 Analysis of the differentially expressed
m6A-modified sites related to DEGs

To confirm whether these DEGs are regulated by m6A

modification, we further analyzed the significantly different m6A

modification peaks related with DEGs. The results showed that
A

B

C

FIGURE 4

Number and functional annotation of DEGs between RW and RM. (A) Number of DEGs. (B) GO enrichment of DEGs. (C) KEGG enrichment of DEGs.
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7245 methylation modification peaks were changed and

corresponded to 5233 genes in MeRIP-seq; 883 genes were

significantly different in the RNA-seq data and intersected only

152 genes (Figures 5A, B). Based on their level of m6A modification

and differential expression, we classified these genes into nine

categories, as follows: type 1, containing 82 genes with 28

significantly different genes (downregulat ion in m6A

modification, upregulation in RNA-seq); type 3, containing 96

genes, with 26 significantly different genes (upregulation in m6A

modification, upregulation in RNA-seq); type 7, containing 174

genes, with 75 significantly different genes (downregulation in M6A

modification, downregulation in RNA-seq); and type 9, with 152

genes, with 73 significantly different genes (upregulation in m6A

modification, downregulation in RNA-seq) (Figure 5C). These four

types involved a total of 202 significantly different m6A

modification peaks and 152 related DEGs, suggesting that the

expression of these genes was integratively regulated by multiple

m6A modification peaks (both up- and downregulation)

(Figure 5D; Table S14).

The GO enrichment analysis showed that the main GO terms

that were enriched for the four types of DEGs included extracellular

matrix, signaling receptor activity, proteinaceous extracellular

matrix, G-protein-coupled receptor activity, signal transducer

activity, etc. (Figure 5E). Based on the KEGG enrichment

analysis, considerable enrichment was observed in several key

pathways, including PI3K-Akt signaling pathway, Cytokine–

cytokine receptor interaction, Focal adhesion, FoxO signaling

pathway, Viral protein interaction with cytokine and cytokine

receptor, ECM–receptor interaction, Melanoma, Regulation of

actin cytoskeleton, Neuroactive ligand–receptor interaction, Rap1

signaling pathway, etc. (Figure 5F).
3.7 RNA-seq expression pattern and
validation by qRT-PCR

To confirm the reliability of the RNA-seq data, seven genes were

tested by qRT-PCR (Table S15). The results showed that the

expression patterns of all genes were consistent with the RNA-seq

data (Figure 6A). Among these genes, AMPOCE_00001902 and

AMPOCE_00010931 are tyrosinase-related protein 1 (tyrp1)

homology genes, which are regulated by DNA methylation and

are involved in melanogenesis and pigment accumulation. Both

genes exhibited lower M6A modification levels in MM vs. MW

(Figures 6B, C).
4 Discussion

Clownfish, or anemonefish, are a group of tropical reef fishes

found in the warm waters of the Indian Ocean, Red Sea, and

western Pacific Ocean. The most well-known species of clownfish is

the ocellaris clownfish. Clownfish are commercially important

because of their bright color, ornamental properties, and fast

growth. To obtain additional mutants, black clownfish were

treated by ARTP in this study, and red clownfish were identified
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among the offspring. A molecular evolutionary analysis of the COI

gene further demonstrated that the mutated clownfish was clustered

with ocellaris clownfish, which proves that the mutated clownfish is

most likely derived from the ocellaris clownfish. Although the

successful use of ARTP in Japanese flounder has been reported

(Ji-Lun et al., 2019), our results further demonstrated the feasibility

of using ARTP for mutagenic breeding in fish. In addition, the

results of this study revealed that ARTP mutagenesis may lead to

alterations in m6A methylation levels.

m6A methylation is a reversible dynamic modification that

occurs in various species (Yue et al., 2019; Zhu et al., 2020; Oerum

et al., 2021). Previous research has shown that m6A modifications

affect mRNA transcription and regulate gene expression; our study

further proved that m6A modification may related to skin color and

the regulation of pigment accumulation in clownfish. In humans

and mice, the m6A modification was mainly enriched around 3′
UTRs and stop codons (Dominissini et al., 2012; Meyer et al., 2012).

Our study yielded similar results, especially around stop codons,

which indicates that stop codons may also play a role as substrates

for adenosine methylation and the epigenetic regulation of the

clownfish mRNA. In addition, we found that, although the

accumulation of reads was changed mainly around CDS and stop

codons, both in MW and MM, the input control samples exhibited

higher read accumulation levels in MM vs. MW (Figures 2B, C).

This finding suggests that the genome-wide m6A modification level

may increase in clownfish after ARTP mutagenesis. As it was

previously reported that the m6A modification sites could be

altered by environmental actors, our study suggests that ARTP

may also play a role as an environmental factor that changes m6A

modification sites.

In this study, we obtained abundant information about the

changes of m6A modification sites, as well as about the functional

distribution of genes associated with these sites, which is a complex

issue. The major enriched pathways included the Notch signaling

pathway, Focal adhesion, PI3K-Akt signaling pathway, etc.

However, it remains difficult to conclude whether these m6A

modification sites cause changes in gene expression levels and

traits in clownfish. Interestingly, we screened for mutant material

that exhibited skin color changes after ARTP treatment. To further

determine the effect of these m6A modification sites on gene

expression levels, we also performed high-throughput

transcriptome sequencing of clownfish skin. We detected only

883 significant DEGs, whereas there were 5233 significant DEGs

related to genes, indicating that some m6A modification sites may

not regulate gene expression.

Interestingly, we identified 152 intersection genes between

significant DEGs and significant m6A modification site-related

genes. Among these genes, we found that the trend of m6A

methylation modification was positively and/or negatively

correlated with the expression trend of related genes. The trend

of the final expression level of the gene may be the result of the

combined effect of multiple m6A modification sites; whether some

of these sites play a major role in regulating the gene expression

level warrants further investigation.

In particular, the functional analysis of these DEGs showed that

the significantly enriched pathways were mainly focused on the core
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PI3K-AKT signaling pathway and related pathways, such as

upstream pathways, including Cytokine–cytokine receptor

interaction, focal adhesion, ECM–receptor interaction, JAK-STAT

signaling pathway; and downstream pathways, including the FoxO

signaling pathway, Rap1 signaling pathway, etc. In the present

study, we found that the mutated clownfish skin displayed color

changes, which may be related to the accumulation of pigments. As

reported previously, the PI3K-Akt signaling pathway is a complex
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and vast intracellular signaling pathway that regulates fundamental

cellular functions, such as transcription, translation, proliferation,

growth, and survival, in response to extracellular signals (Liu et al.,

2015; Reilly et al., 2017; Yang et al., 2018). In turn, the PI3K-Akt

signaling pathway is closely related to the accumulation of

pigments. In humans, PI3K/AKT/mTOR signaling induces

melanin degradation in human epidermal keratinocytes (Yang

et al., 2018) and is involved in the regulation of the proliferation
A

B

D

E

C

F

FIGURE 5

Analysis of differentially expressed M6A modification site-related DEGs. (A) Number of differentially expressed M6A modification sites and DEGs.
(B) Venn diagram of differentially expressed M6A modification site-related genes and DEGs. (C) Nine quadrants diagram of differentially expressed
M6A modification site-related genes and DEGs. The numbers in red indicate an interaction of differentially expressed M6A modification site-related
genes and DEGs, and the numbers in parentheses indicate statistically significant differences. (D) Sankey diagram showing the relationship between
differentially expressed M6A modification site-related genes and DEGs. (E) GO functional enrichment analysis of the interaction genes. (F) KEGG
functional enrichment analysis of the interaction genes.
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of retinal pigment epithelial cells (Cai et al., 2012; Li et al., 2021). In

Oreolalax rhodostigmatus, the expression level of PI3K-Akt

pathway-related genes increases according to the duration of light

exposure and may facilitate rapid skin darkening (Zhu et al., 2018).

We found that the melanoma pathway appeared among the

results of the KEGG enrichment analysis, which coincided with the

mutation of skin color from black to red in clownfish. In this

pathway, four genes, i.e., AMPOCE_00004523 (MAP2K1),

AMPOCE_00015652 (GADD45A), AMPOCE_00029025 (IGF1),

and AMPOCE_00033147 (FGF1), exhibited significant changes in

methylation levels and expression levels; with the exception of

AMPOCE_00015652 (GADD45A), the remaining three genes

were also enriched in the PI3K-Akt signaling pathway, which

suggests that the change of black skin may be regulated by the

PI3K-Akt signaling pathway. In generally, the change in body color

of clownfish from black to red may involve the accumulation of

pigments in red and yellow pigment cells. However, we have not

found any relevant information to prove this speculation at

this time.

Interestingly, we found that the skin color changes observed in

clownfish were not overall or irregular; rather, they exhibited

regular changes in specific regions, which may be related to the

expression of homeobox genes. Among the DEGs identified here,

we also found two homeobox-protein-encoding genes, EMX2

(AMPOCE_00003845) and MEOX2 (AMPOCE_00020016).

EMX2 may participate in pattern formation by specifying

positional information in the adult newt limb (Beauchemin et al.,

1998), whereas MEOX2 can suppress epithelial cell proliferation

and endothelial cell activation and regulate smooth muscle cell

migration and integrin expression (Witzenbichler et al., 1999;

Gorski and Leal, 2003; Liu et al., 2015). Whether EMX2 and

MEOX2 are involved in determining skin color at specific regions

of clownfish warrants further investigation.

Finally, this type of study is challenging because clownfish

exhibit various color patterns according to age, sex, and

the environment.
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5 Conclusion

In this study, we used ARTP treatment to obtain mutated

individuals exhibiting a skin color change from black to red.

Moreover, using whole-genome sequencing of the m6A

methylation modification in these mutants, we obtained the

fingerprint map of whole-genome m6A methylation modification.

To prove that m6A methylation modifies clownfish skin color

through the regulation of the expression of genes, we further

analyzed gene expression profiles by RNA-seq; the results showed

that the accumulation of melanin in clownfish skin may be regulated

by the PI3K-Akt signal transduction pathway. In summary, the

findings of this study lay a foundation for further analysis of the

molecular mechanisms associated with m6A methylation and skin

color, and provide targets for molecular breeding in clownfish.
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