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The optimization of empty container repositioning nets has become an essential

problem in low-carbon port cooperation. This paper proposed three optimization

models of multi-port low-carbon empty container repositioning considering

threshold under input and output of empty containers as random variables. Non

repositioning strategy means the highest threshold, and complete-repositioning

strategy means the lowest threshold; threshold-repositioning strategy is in the

middle. The probability of empty-container inventory in each port and the storage

cost, repositioning cost, lease cost, and carbon emission cost of empty containers

are calculated. This paper mainly compares each cost of three models. The results

have shown that: (1) Compared with the non repositioning strategy, the threshold-

repositioning strategy and complete-repositioning strategy can reduce the ports

storage costs and lease costs of empty containers and also reduce carbon

emissions. The lower the repositioning threshold of empty containers between

ports is, the more obvious the advantages of the threshold-repositioning strategy

become. (2) When the cost of storage per empty container increases, under three

strategies, the total cost, storage cost, lease cost, and carbon emission cost of the

port will all increase. The ports proportion of dependence on its own empty-

container storage will decrease, and the proportion of dependence on other ports

and leasing companies will both increase.

KEYWORDS

reposition threshold, empty container reposition, low carbon, port cooperation,
uncertain environment
1 Introduction

The shipping industry plays an important role in the development of international

trade, and more than 80% of international freight is completed by sea (UNCTAD, 2018).

International shipping is one of the main modes of international cargo transportation (Xu

et al., 2023). However, due to the imbalance of regional trade, improper management of
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container operations, and many other reasons, the number and flow

of containers in the actual operation process also have a certain

imbalance. For example, as the world’s largest exporter and the

world’s manufacturing center, China mainly exports groceries and

dry bulk cargoes, which are large in size but low in value. However,

Europe and the USA, as China’s main target markets, also send

domestic goods to China, but they mainly export high-tech

products with small sizes but high value (Chen et al., 2020).

Coupled with the imbalance of international trade, ships often

leave with full loads from China but return empty. This has

resulted in the accumulation of containers on one side and the

lack of containers on the other. A shortage of containers will lead to

extra costs. The cost of container storage is mainly due to shipping

companies’ necessity to rent containers to meet customer needs or

the cost of losing customers due to a shortage of containers. On the

other hand, overstocking containers will lead to storage costs and

management costs in the storage yard, which all add unnecessary

operating costs to shipping companies (Xu et al., 2021a). In order to

meet a balance between the supply and demand of containers in

both destinations, the most cost-effective method is empty-

container repositioning. The demand for empty containers

originates from the consignor’s demand for shipment. The inland

cargo distribution points near the consignor will transfer empty

containers to the consignor’s location. If the quantity of empty

containers at the port of shipment cannot meet the needs of the

consignor, it is necessary to consider repositioning containers from

other nearby ports or to rent containers from local container leasing

companies. When the consignor’s empty-container demand is met,

the empty containers are loaded with the goods and transported to

the port, which is then transported to the destination port by ship

and further delivered to the consignee (Yang et al., 2021). As the

core node of the port and shipping logistics supply chain, the ports

gather a large number of upstream and downstream node

information, most of which is container flow information.

Therefore, if the port participates in the empty-container

repositioning of the shipping company, it can improve the

efficiency of the empty-container repositioning by virtue of the

advantage of the port information intersection.

With the rapid development of the shipping industry, serious

environmental problems have been brought about by economic

advances, according to the report of the International Maritime

Organization (2014). Global marine transportation consumes about

300 million tons of fuel oil every year. These fuels will emit a large

amount of tail gas during the combustion process, including SO2,

NOx, CO2, and particulate matter (Wang et al., 2022a; Xiao and Cui,

2023). In particular, the carbon emissions of the shipping industry

and their impact on the global environment have been widely

discussed (Xiao et al., 2023). Building a low-carbon port and a

low-carbon shipping network has become a hot topic in the

shipping industry as well as in academia. Building a low-carbon

container port characterized by resource conservation,

environmental friendliness, low energy consumption, and low

pollution has become one of the primary tasks of the

construction of world-class ports, and the study of energy

conservation and emission reduction strategies for container ports

has become an urgent need for the construction and development of
Frontiers in Marine Science 02
low-carbon container ports (Trozzi and Vaccaro, 2000). The

production and operation of the port are long processes with

large total emissions and serious total pollution. The operation

process includes all links in the operating system, such as the ships’

entry and exit operations, the dock front operation, the yard

operation, and the gate operation (Peng et al., 2018a), involving

energy consumption and emission sources such as the ships, the

quay bridge, the yard bridge, the container truck, etc. Therefore, the

accumulation of too many empty containers in the port will also

cause carbon emissions, thus calling for studies on the optimization

strategy of empty-container repositioning so as to reasonably

arrange all the links of empty-container repositioning and smooth

the process of container circulation. Such research will have

important implications for global container transportation

operators, brokers, consigners, and port owners, and at the same

time will be conducive to the construction of a low-carbon and

highly efficient port network (Ercan, 2022).
2 Literature review

The statistical results have shown that the shortage of

containers will cause obvious losses to trade, and even the USA

suffers a weakening in the competitiveness of enterprises in foreign

markets due to port congestion and container shortages

(Department of Agricultural and Resource Economics, 2022; Xu

et al., 2021b). Empty-container repositioning can be completed by

both road transportation and sea transportation, mainly with the

participation of ports, shipping companies, and leasing companies

to reasonably allocate and dispatch empty containers (Shintani

et al., 2007; Imai et al., 2009). The traditional studies on empty-

container repositioning have mostly focused on the intercontinental

empty-container repositioning between the origin port and

destination port caused by trade imbalance, which belongs to the

interregional empty-container repositioning between the supply

and the demand sides, and the repositioning mode is solely sea

transportation. Therefore, relevant studies are mainly focused on

empty-container inventory and empty-container repositioning

optimization. Luo (Luo and Chang, 2019) studied the problem of

container inventory management when customer demands change

under a multimodal transportation system and discusses the impact

of empty-container repositioning on the optimal inventory level.

Poo (Poo and Yip, 2019) carried out a dynamic control of the

empty-container inventory cost and empty-container dispatching

cost in regional transportation and formulated dynamic strategy of

empty-container inventory control for shipping companies. Chen

et al. (2022) proposed a port empty-container allocation model to

optimize the number of self-owned empty containers and leased

containers at each inland freight station, and a differential evolution

algorithm was developed to solve their simplified model. In the

aspect of optimizing empty-container repositioning, Chen (1998)

also built a two-stage dynamic stochastic network model for empty-

container repositioning by sea, aiming to address the deficiencies of

previous research results on the optimization of empty-container

repositioning on land. This model divided the empty-container

dispatching decision into two steps to operate, which is closer to the
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actual decision-making situation than the previous deterministic

models. In the first stage, the supply and demand of empty

containers and the remaining empty-container capacity on board

are regarded as deterministic variables. In the second stage, these

parameters are changed into random and dynamic variables.

Cheang and Lim (2004) dynamically considered the problem of

empty-container repositioning in combination with the third-party

leasing strategy. They provided a decision support system to solve

the problem of empty-container repositioning by using the basic

method of network flow. Wang (2017) integrated the inventory cost

of containers into the existing liner route network design and

studied the inventory cost and empty-container repositioning

network. Xie et al. (2017) studied the empty-container

repositioning strategy with mutual cooperation between a port

and a railway and pointed out that empty-container sharing and

cooperation can bring benefits to both sides. Yu (Yu et al., 2018)

studied the problem of empty-container repositioning between the

port and the hinterland, which is composed of a maritime container

terminal and an inland container terminal. The study shows that

the supply of empty containers at the port through inland empty-

container resource sharing can alleviate the situation of an empty-

container shortage at the port. Dong et al. (2020) endeavored to

determine the route of each voyage and control the inventory of

empty containers at the port of call within a reasonable range. Zhou

(Zhou et al., 2020) constructed a two-stage stochastic programming

model for empty-container repositioning, and a separable piecewise

linear learning algorithm is designed to effectively solve large-scale

empty-container repositioning problems. Misra (Misra et al., 2020)

proposed a hybrid time discretization method combined with the

rolling time domain strategy to solve the complex multi-period

marine inventory routing problem. Song (Song et al., 2022)

established a two-stage particle swarm optimization algorithm to

compare parameters such as the total cost of the empty container,

storage costs, lease costs, and optimal storage of empty containers in

ports under a repositioning strategy and a nonrepositioning

strategy. Zhang et al. (2022) introduced the structural hole theory,

using the port of Las Palmas as an example, proving that the port

occupying the position of the structural hole can become a regional

hub by acting as a connecting bridge, which provides a basis for the

repositioning decision-making of shipping companies and ports

from a new perspective. Yoonjea and Gwang (2023) proposed a new

integer linear programming model for the location problem of

reliable facilities for folding containers in order to reduce the

repositioning of empty containers and achieve cost savings and

low-carbon transportation and operation profits for ports. The

inventory of empty containers at the port is an important factor

influencing the selection of an empty-container repositioning

strategy at ports. However, these papers do not consider the

impact of changes in the storage volume of empty containers at

ports on the repositioning strategy.

The construction of low-carbon ports is the key to energy

conservation and emission reduction in the shipping industry

(Rajasekar et al., 2014; Wang et al., 2022b). At present, many

scholars have studied port management from different angles and

obtained some meaningful results. Port operation is a typical

research direction in the shipping industry, and its decision-
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making includes berth allocation (Xu et al., 2022), quayside

bridge dispatching and distribution (Correcher et al., 2018), field

bridge dispatching and distribution (Galle et al., 2018; Peng et al.,

2018b), and internal card dispatching (Tang et al., 2014). For

example, based on the top-down model and taking into account

factors such as engine power, load factor, and fuel emission factor, it

is found that the carbon dioxide emissions from ship berthing

activities account for the majority of the total emissions of container

port ships (Muhammad et al., 2022). On the basis of considering

fuel consumption and emissions, relevant studies on low-carbon

port operations still follow the same academic ideas as traditional

port operations and focus on the abovementioned decision-making

issues. On the other hand, the optimized dispatching of container

trucks is an important way to achieve energy conservation and

emission reduction in ports. The optimized dispatching of

container trucks is an important way to achieve energy

conservation and emission reduction in ports. Taking a container

port as an example, Esmer et al. (2010) used the method of system

simulation to study the optimal configuration of container trucks in

the yard to achieve the low-carbon and energy-saving requirements

of the port. Li et al. (2018) also wielded the method of system

simulation to study the optimal scheduling and management of the

trucks to reduce the waiting time of the truck queue and then reduce

the carbon emissions of trucks. Chen (Chen et al., 2013), taking the

arrival quantity and waiting time of container trucks as the

optimization objective, studied the influence of the arrival pattern

of container trucks on pollution emissions by using queuing theory

and mathematical programming methods. Schulte et al. (2017)

deployed a mathematical programming method to optimize the

booking arrival model of container trucks to reduce the CO2

emissions of empty-container trucks. By using the simulation

method, Peng et al. (2018b) calculated the optimal configuration

of trucks and concluded that CO2 can be reduced when the ratio of

quayside bridge to truck reaches the optimum. Based on GA and

PSO, a hybrid optimization algorithm is designed to solve the joint

scheduling problem of the quayside bridge, internal truck, and field

bridge. The goal is to avoid ship delays and minimize energy

consumption in the operation process (He et al., 2015). Zhao

et al. (2018), taking the cost of carbon emissions into account,

studied the impact of random demand and supply changes on

empty-container repositioning in the context of sea-rail intermodal

transport. Liu et al. (2019) established a system dynamics model for

modular operation. Taking the line from Caofeidian Port to

Tangshan City as an example, through a series of process

interventions, the long-term impact of the collection and

distribution system under different environmental policies was

evaluated, and effective suggestions for reducing environmental

pollution were put forward. Tao and Wu (2021) introduced

“yard-door-port” into a generalized analytical framework to

analyze the carbon emissions from the movement of loaded

containers and the repositioning of empty containers. Guo et al.

(2022) constructed a carbon emission estimation model of a

container multimodal transport network based on the hinterland

and carried out a case study of Shanghai Port and the hinterland of

the Yangtze River Delta. Olgay (2023) estimated the total carbon

emissions generated by container handling equipment used in
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container port operations and planned carbon emission reduction

strategies related to climate change adaptation policies. Container

repositioning and storage are important sources of carbon

emissions at ports. In the process of implementing a low-carbon

development strategy for ports, empty-container transportation and

storage should be considered. Currently, there are few documents

that study this convenience.

Generally speaking, after combing so much literature, we can

conclude that most of the studies on ports’ low-carbon empty-

container repositioning mainly focused on multimodal transport,

coordination between seaports and dry ports, truck allocation,

etc., rarely paying attention to the relationship between port

empty-container input and output or to the impact of empty-

container inventory changes and empty-container repositioning

on port operating efficiency and carbon emissions. Moreover,

strengthening the cooperation in empty-container repositioning,

the port group should also consider the restrictions on other ports

to carry out empty-container repositioning in order to meet their

own empty-container demand. Having summed up the existent

studies, in our work, we consider the input and output of

containers as random variables under the goal of low-carbon

port construction. The port determines the optimal upper limit

of empty-container storage and sets up a repositioning threshold

for empty containers, with the goal of the lowest total cost. The

total cost includes the storage cost, repositioning cost, lease cost,

and carbon emission cost of empty containers. Therefore, our

work is helpful to optimize the port container repositioning

network and to promote the low-carbon development of the

port. At present, we have not found any paper that considers

the optimization of an empty-container repositioning network at a

threshold or involves the probability of a change in empty-

container storage capacity at the port. Therefore, this work

attempts to bridge a gap on this issue.
3 Model formulation

3.1 Model of port empty containers under
threshold-repositioning strategy

3.1.1 Problem description
The goal of ports is to minimize the total cost of empty

containers, which includes storage costs, repositioning costs,

leasing costs, and carbon emission costs. When there is a shortage

of containers in the port, the nearest port will be preferred as the

source of empty containers. When all the cooperating ports are

unable to transfer empty containers, this port can only rent empty

containers from the leasing company. For example, if the port   pi
encounters a lack of containers, set piX as the xth source port of port

 pi, then pi will first turn to port pi1 to send an empty-container

repositioning request. If the empty-container storage capacity in

port pi1 is higher than H1, then empty-container repositioning to pi
can be carried out. If it is lower than H1, port pi will turn to pi2 to

send an empty-container repositioning request, etc. When all ports

are unable to help port pi, it can only seek help from the empty-
Frontiers in Marine Science 04
container leasing company. The abovementioned specific steps are

shown in Figure 1.

Before starting the calculation, we define our variables and

parameters first as follows:

Variables

ei The number of empty containers transferred from port i to other ports.

Si The maximal of empty-container storage in port i.

qi
To meet the demand for empty containers, port i should depend on its
own storage in qi proportion.

bi
To meet the demand for empty containers, port i should depend on
repositioning from other ports in bi proportion.

gi
To meet the demand for empty containers, port i should depend on the
leasing company in gi proportion.

pi(m)

The probability of the empty-container storage capacity of port i being

m, with o
Si

m=1

pi(m) = 1.

Parameters

N The total number of ports.

li
The number of empty containers that obey the positive etheric
distribution input of port i.

l The total sum of empty-container input of all ports

mi
The number of empty containers that obey the positive etheric
distribution output of port i.

hi Storage cost per empty container for port i.

ϵi Lease cost per empty container for port i.

Vmax
i Upper limit of empty-container storage space of port i.

pix The xth priority origin port transferring empty containers to port i.

wiq The probability of port q as the origin of empty containers to port i.

Hi
The empty-container repositioning threshold from port i to other ports,
0 < Hi < Si .

til The cost of a unit empty container from port i to port j.

ch Carbon emission cost per container for storage in unit time.

cz Carbon emission cost per container per nautical mile.

TC Sum of empty-container costs at all ports.

TCH Sum of empty-container storage costs at all ports.

TCz Sum of empty-container repositioning costs at all ports.

TCw Sum of empty-container leasing costs at all ports.

TCc Sum of empty-container carbon emission costs at all ports.
This study brings up three basic assumptions:
(1) The storage costs are the same inside and outside the yard

of ports.

(2) Every port has one single empty-container leasing

company.

(3) The repositioning per empty container between ports is

proportional to the distance.
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Fron
(4) The empty container is TEU, which is 20 HP.
Next, we calculate qi, bi, and gi and every cost of each port. For

port i, its empty containers are continuously in input and output. So

when the empty-container storage status of port i is D, it is

influenced by both D+1 and D−1. When the empty-container

storage of port i is higher than Hi, repositioning of empty

containers can be carried out, and when it is lower than Hi, to

meet the future need of itself, port i will stop the repositioning to

other ports. Under the threshold-repositioning strategy, the change

of empty-container storage in port i is shown in Figure 2:

For the convenience of calculation, setting l as the total sum of

empty-container input of all ports, then l =oN
i=1li. The empty-

container input of port i takes a ratio of fi = li=l in all ports, and

fil = qi(li + ei) + (1 − qi) · 0 = qili +oN
q = 1

q ≠ i

(wiqbili). S o w e
have:

ei =

oN
q = 1

q ≠ i

(wiqbili)

qi
(1)

At the same time, wiqim = qqim
Ym−1

k=1 (1 − qqik ). As shown in

Figure 2, we can calculate that:

pi(Si)(li + ei) = pi(Si − 1)mi (2)

pi(Si − 1)(mi + li + ei) = pi(Si)(li + ei) + pi(Si − 2)mi (3)

pi(Hi + 1)½(Si −Hi − 1)mi + li�

= pi(Hi + 2)(li + ei) + pi(Hi)(Si −Hi)mi (4)

pi(1)(Si − 1)mi = pi(0)Simi + pi(2)li (5)

pi(0)Simi = pi(1)li (6)
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Using formulas (2)–(6), it is then easy to get:

pi(m) = pi(Hi + 1)
(Si −Hi − 1) ! (mi)

m−Hi−1

(Si −m) ! (mi + ei)
m−Hi−1

,

Hi + 1 ≤ m ≤ Si (7)

pi(m) = pi(Hi + 1)
1QHi

l=m (Si − l)
(
li
mi

)Hi+1−m
FIGURE 2

Change of empty-container storage in port i under the threshold-
repositioning strategy.
FIGURE 1

Empty-container repositioning order of port i.
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, 0 ≤ m ≤ Hi (8)

Since o
Si

m=1
pi(m) = 1, it can be acquired that:

pi(Hi + 1) = o
Si

m=Hi+1

(Si −Hi − 1) ! (mi)
m−Hi−1

(Si −m) ! (mi + ei)
m−Hi−1

� �
+ o

Hi

m=0

1QHi
l=m (Si − l)

(
li
mi

)Hi+1−m

" #( )−1

(9)

When the empty-container storage in port i is higher than 0, it

can meet the demand for empty containers by itself, so we have:

qi = 1 − pi(0) (10)

Because all the ports will take threshold-repositioning strategy

in priority, obviously only when all the ports have a 0 storage

of empty containers will they decide to rent them from a

leasing company. We get g1 = g2 = … = gN . Set   l to be the sum

of empty-container input from all the ports, m to be the sum of

empty-container output from all the ports, and S to be the sum of

empty-container storage of all the ports, then:

g1 = g2 = … = gN = ½oSi
m=0

S !
(S −m) !

(
m
l
)m�−1 (11)

Because qi + bi + gi = 1, bi = 1 − qi − gi.
As for the total costs of empty containers in a port, they include

storage cost, repositioning cost, lease cost, and carbon emission

cost, which we will calculate in the following.

The empty-container storage cost of port i is correlated to the

storage volume as well as its probability, which in detail isoSi
m=1m

pi(m)hi. So the sum of empty-container storage at all ports is

calculated as:

TCH =o
N

i=1
o
Si

m=1
mpi(m)hi (12)

The repositioning cost of port i is determined by repositioning

volume libi and transferring the cost from port i to l is til , so the

repositioning cost of port i isoSi
l = 1

l ≠ i

libitil . Thus, the repositioning
cost of all ports is:

TCz =o
N

i=1
o
Si

l = 1

l ≠ i

libitil (13)

The empty-container lease volume of port i is ligi, so the lease

cost of port i is ligiϵi, from which we can get the total empty-

container lease cost of all ports:

TCw =o
N

i=1
ligiϵi (14)

The empty-container carbon emission cost of port i isoSi
m=1pi

(m)mch, and the carbon emission cost from empty-container

repositioning between ports is oSi
l = 1

l ≠ i

libitilcz , so the empty-
container carbon emission cost at all ports is:
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TCc =o
N

i=1
o
Si

m=1
pi(m)mch+o

N

i=1
o
Si

l = 1

l ≠ i

libitilcz (15)

Therefore, the total cost model of all ports’ empty-container

repositioning under the threshold-reposition strategy is as follows:

Min TC = TCH + TCz + TCw + TCc (16)

s.t.

TCH =o
N

i=1
o
Si

m=1
mpi(m)hi (17)

TCz =o
N

i=1
o
Si

l = 1

l ≠ i

libirtil (18)

TCw =o
N

i=1
ligiϵi (19)

TCc =o
N

i=1
o
Si

m=1
pi(m)mch +o

N

i=1
o
Si

l = 1

l ≠ i

libitilcz (20)

pi(m) = pi(Hi + 1)
(Si −Hi − 1) ! (mi)

m−Hi−1

(Si −m) ! (mi + ei)
m−Hi−1

,Hi + 1 ≤ m ≤ Si (21)

pi(m) = pi(Hi + 1)
1QHi

l=m (Si − l)
(
li
mi

)Hi+1−m,   0 ≤ m ≤ Hi (22)

pi(Hi + 1) = oSi
m=Hi+1

(Si − Hi − 1) ! (mi)
m−Hi−1

(Si −m) ! (mi + ei)
m−Hi−1

� �
+oHi

m=0
1QHi

l=m (Si − l)
(
li
mi

)Hi+1−m

" #( )

(23)

qi = 1 − pi(0) (24)

gi = o
Si

m=0

(oN
i=1Si) !

(oN
i=1Si −m) !

oN
i=1mi

oN
i=1li

 !m" #−1
(25)

bi = 1 − qi − gi (26)

0 < Si < Vmax
i

i = 1, 2,…,N
(27)
3.2 Model of port empty containers under
nonrepositioning strategy

If the ports do not adopt the cooperation mode of empty-container

mutual repositioning, they can only meet the empty-container demand
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through their own empty-container inventory or through an empty-

container leasing company. Compared with the threshold-

repositioning strategy, the change of empty-container storage in the

port is also relatively simple. See Figure 3 for the specific change:

Similar to the situation under the threshold-repositioning

strategy:

pi(0)Simi = pi(1)li (28)

pi(m)½(Si −m)mi + li� = pi(m + 1)li + pi(m − 1)(Si −m + 1)mi;

m = 1, 2,…,   Si − 1 (29)

pi(Si − 1)mi = pi(Si)li (30)

According to formulas (28), (29), and (30), since o
Si

m=1
pi(m) = 1,

it can be acquired:

pi(0) = ½o
Si

k=0

Si !mk
i

(Si − k) ! lk
i

�−1 (31)

pi(m) = pi(0)
Si !mm

i

(Si −m) ! lm
i

;

m = 1, 2,…,   Si (32)

Also similar to that under the threshold-repositioning strategy,

when the empty-container storage of port i is higher than 0, the

need for an empty container can be met through the port’s own

storage, so qi = 1 − pi(0). When the empty-container storage of port

i is 0, it can rent empty containers through a leasing company, so

gi = 1 − qi and bi = 0. The total cost model of ports’ empty

containers under the nonrepositioning strategy is as follows:

Min

TC = TCH + TCw + TCc (33)

s.t.

TCH =o
N

i=1
o
Si

m=1
mpi(m)hi (34)

TCw =o
l

i=1
ligiϵi (35)
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TCc =o
N

i=1
o
Si

m=1
pi(m)mch (36)

pi(m) =
Si !mm

i

oSi
k=0

Si !mk
i

(Si−k) !lk
i
(Si −m) ! lm

i

(37)

qi = 1 − o
Si

k=0

Si !mk
i

(Si − k) ! lk
i

" #−1
(38)

gi = o
Si

k=0

Si !mk
i

(Si − k) ! lk
i

" #−1
(39)

0 < Si < Vmax
i

i = 1, 2,…,N
(40)
3.3 Model of port empty containers under
complete-repositioning strategy

In this section, we propose a third strategy: the complete-

repos i t ioning s t ra tegy . Compared to the threshold-

repositioning strategy, ports under the complete-repositioning

strategy do not have a threshold for repositioning, which means

that even if there is only one empty container in storage in a port

when another port sends a request, the port will transfer this

single empty container out anyway. Under this strategy, the

change in empty-container storage of the port can be seen in

Figure 4.

pi(0)Simi = pi(1)(li + ei) (41)

pi(m)½(Si −m)mi + li + ei�

= pi(m + 1)(li + ei) + pi(m − 1)(Si −m + 1)mi ;

m = 1, 2,…,   Si − 1 (42)

pi(Si − 1)mi = pi(Si)(li + ei) (43)
FIGURE 3

The change of port i empty-container storage under the nonrepositioning strategy.
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According to formulas (2), (3), and (4), it is known that:

pi(0) = o
Si

k=0

Si !mk
i

(Si − k) ! (li + ei)
k

" #−1
(44)

pi(m) = pi(0)
Si!mm

i

(Si −m) ! (li + ei)
m ,m = 1, 2,…,   Si (45)

qi = 1 − pi(0) (46)

gi = o
Si

m=0

(oN
i=1Si) !

(oN
i=1Si −m) !

oN
i=1mi

oN
i=1li

 !m" #
(47)

The total cost model of ports’ empty containers under the

complete-repositioning strategy is as follows:

Min

Min TC = TCH + TCz + TCw + TCc (48)

s.t.

TCH =o
N

i=1
o
Si

m=1
mpi(m)hi (49)

TCz =o
N

i=1
o
Si

l = 1

l ≠ i

libitil (50)

TCw =o
N

i=1
ligiϵi (51)

TCc =o
N

i=1
o
Si

m=1
pi(m)mch +o

N

i=1
o
Si

l = 1

l ≠ i

libitilcz (52)

pi(0) = oSi
k=0

Si !mk
i

(Si − k) ! (li + ei)
k

� �−1
(53)
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pi(m) = pi(0)
Si!mm

i

(Si −m) ! (li + ei)
m ,m = 1, 2,…,   Si (54)

qi = 1 − pi(0) (55)

gi = o
Si

m=0

(oN
i=1Si) !

(oN
i=1Si −m) !

oN
i=1mi

oN
i=1li

 !m" #
(56)

bi = 1 − qi − gi (57)

0 < Si < Vmax
i (58)

i = 1, 2,…,N

Theorem 1: Port i depends more on its own storage to meet the

demand for empty containers under the nonrepositioning strategy,

followed by the threshold-repositioning strategy, and finally the

complete-repositioning strategy.

Prove: If ct represents the complete-repositioning strategy, tr

represents the repositioning strategy, and nt represents the

nonreposition strategy, we can deduce from formulas (31) and

(32) that:

p tr
i (0) =

1YHi

l=m (Si − l)
( li
mi
)Hi+1−m

oSi
m=Hi+1

(Si − Hi − 1) ! (mi)
m−Hi−1

(Si −m) ! (mi + ei)
m−Hi−1

� �
+oHi

m=0
1YHi

l=m (Si − l)
(
li
mi

)Hi+1−m

2
4

3
5

(59)

Therefore, when Hi = Si − 1,  p tr
i (0) = pnt

i (0). When Hi = 0,    

p tr
i (0) = p ct

i (0), and we know that

p ct
i (0) = oSi

k=0

Si !mk
i

(Si − k) ! (li + ei)
k

� �−1

> oSi
k=0

Si !mk
i

(Si − k) ! lk
i

� �−1
= pnt

i (0) (60)

Because 0 < Hi < Si − 1, we have p ct
i (0) >   p tr

i (0) > pnt
i (0), and

  qi = 1 − pi(0), so p ct
i (0) < q tr

i < qnt
i .

According to theorem 1, we know that the higher the

repositioning threshold, the higher the dependence of the port on
FIGURE 4

Change of empty-container storage in port i under the complete-repositioning strategy.
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its own empty-container inventory. The lower the repositioning

threshold is, the more help other ports can provide, which requires a

higher degree of cooperation between port groups.
4 Model solving

For threshold-repositioning strategy and complete-

repositioning strategy, the calculations of qi, bi, gi, and ei are

quite complicated. Taking threshold-repositioning strategy for an

example, according to formula (1), it can be known that the

calculation of ei requires the definition of qi and bi. However, to

get qi and bi, we should first clarify pi(m). However, the expression

of pi(m) includes ei. Therefore, this study decided to use the cycle

computation method to acquire qi, bi, gi,  ei, and pi(m). Also, the

same method is used in the calculations of the complete-

repositioning strategy’s parameters. The specific steps are as follows:

Step 1: Initialize qi = 0:8,   bi = 0:1,   gi = 0:1.

Step 2: Set a big enough positive integer, Maximum, and a

minimal integer, Minimum, and start cycle computation.

For (l = 1; l<= Maximum; l++) {

wl
iqim = q l−1

qim

Ym−1

k=1

(1 − q l−1
qik ) (61)

elij =

oI
q = 1

q ≠ i

(wj
iqb

l
ij−1li)

q l
i

(62)

pi(m) = pi(Hi + 1)
(Si −Hi − 1) ! (mi)

m−Hi−1

(Si −m) ! (mi + eli)
m−Hi−1

;

Hi + 1 ≤ m ≤ Si (63)

pi(m) = pi(Hi + 1)
1QHi

l=m (Si − l)
(
li
mi

)Hi+1−m,   0 ≤ m ≤ Hi (64)

q l
i = 1 − o

Si

m=0

Si !mk
i

(Si − k) ! (li + eli)
k

" #−1
(65)

g l
i = o

Si

m=0

S !
(S −m) !

(
ml

ll
)m

� �−1
(66)

b l
i = 1 − q l

i − g l
i (66)
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if (jq l
i − q l−1

i j ≤ Minimum) {break}; }
5 Computational experiment

5.1 Data setting

We take China’s Yingkou Port, Dalian Port, and Yantai Port as

the actual research cases. These three ports are all located in Bohai

Bay, and there is a cooperative relationship between the three ports

for empty-container repositioning. In 2022, the container

throughput of the three ports will be 5.00 million, 4.46 million,

and 412 million TEU, respectively, and the average monthly

throughput will be 416.7, 371.7, and 353.3 K TEU. The upper

limit of empty-container storage can be set to 1/2 of the monthly

throughput. Ships are used for empty-container repositioning

between ports, and the freight rate is $0.5/n mile. See Table 1 for

the distances among the three ports and the repositioning costs.

The empty-container storage charge in each port is $0.1/h, and

generally, the storage period is 10 days, so the storage charge is $24.

According to the statistics of Container xChange in December 2022,

the rental fee for empty containers is $804, and the general round-

trip time of the route is 40 days, so the rental fee within 10 days is

$201. The upper limit of the total scale of the port’s front yard and

the rear yard is one-twelfth of the annual throughput. SetHi = Si
Äns

, in which s ∈ (0, 1), ch =1$/TEU, cz =0.5$/TEU.

The other data of the three ports are shown in Table 2:

Because of the complexity of this model, we chose the genetic

algorithm as our method. Using MATLAB 2018, the results are

shown in Table 3:

According to Table 3, it can be seen that under the complete-

repositioning strategy, the total cost, carbon emission cost, and

empty-container storage are all at the lowest level, while they are

higher under the threshold-repositioning strategy and the highest

under the nonrepositioning strategy. This is because, under both

repositioning strategies, the port can reduce its own storage by

sharing empty containers, thus realizing the target of reducing

storage costs and sharing the risk of lacking containers. Since

under the threshold-repositioning strategy and complete-

repositioning strategy, the empty-container storage is lower than

that under the nonrepositioning strategy, the ports need to meet the

demand for empty containers more through leasing and

repositioning means, so the lease cost and repositioning cost will

both surpass those under nonreposit ioning strategy.

Simultaneously, the proportion of meeting demand through the

ports’ own storage under the nonrepositioning strategy is the

highest among the three strategies, which proves Theorem 1.
TABLE 1 Distances and repositioning costs among three ports (n mile ($)).

Yingkou Port (port 1) Dalian Port (port 2) Yantai Port (port 3)

Yingkou Port 0, 0 156, 78 216, 108

Dalian Port 156, 78 0, 0 89, 44.5

Yantai Port 216, 108 89, 44.5 0, 0
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5.2 Data analysis

The key variables that influence the port’s choice of

repositioning strategy are hi and Hi, so in this section, we try to

analyze them. The influence of the change of Hi on three strategies

are shown in Table 4:

The increase of hi means the increase in the storage cost of unit

empty containers in ports. In terms of Table 4, with the increase of

hi, the total cost, storage cost, lease cost, and carbon emission cost of

ports will all increase under the three strategies. For the proportion

of empty-container sources, that depending on the port’s own

storage will decrease, yet those depending on other ports as well

as on leasing companies will both increase because when the storage

cost of a unit empty-container increases, the port has to reduce its

own storage, thus enhancing its dependence on other ports and on

the leasing company.

The influence of s ‘s change on three strategies is shown

in Table 5:

The higher s is, the higher Hi becomes, which means a higher

barrier between ports for empty-container repositioning. According

to Table 5, with the increase of s , the total cost, storage cost, lease
cost, and carbon emission cost of ports will all increase under the

threshold-repositioning strategy. As to the proportion of empty-

container sources, those depending on their own storage and ports

will increase, while those depending on leasing companies will
Frontiers in Marine Science 10
decrease. This is due to the fact that the higher the repositioning

barrier, the advantage of the threshold-repositioning strategy

becomes less obvious compared to the nonrepositioning strategy.
6 Conclusion

The unbalanced distribution of empty containers among ports

has become one of the most important adverse factors affecting the

normal operation of ports. Strengthening the cooperation of empty-

container repositioning between ports is of great significance for

improving port efficiency and is also conducive to the construction

of low carbon ports. We have built three optimization models for

empty-container repositioning between multiple ports, taking into

account that the input and output of empty containers are random

variables and that there is a threshold for the port to transfer empty

containers. We calculated the probability of the empty-container

inventory of each port, calculated the probability that the port

depends on its own empty-container inventory, on other ports, and

on leasing companies, respectively, to meet the empty-container

demand, and calculated the costs of port empty-container storage,

repositioning, leasing, and carbon emission. The port costs under

the threshold-repositioning strategy, nonreposition strategy, and

complete-repositioning strategy were also compared. The main

conclusions of this paper are as follows:
TABLE 3 Results from two strategies.

Threshold-repositioning strategy Nonrepositioning strategy Complete-repositioning strategy

TC 1,881.9 2,269.3 1,745.6

TCH 1,424.2 1,983.7 1,253.2

TCZ 190.3 – 211.2

TCW 206.2 142.8 224.4

TCc 61.2 82.7 56.8

qi 0.93, 0.92, 0.91 0.95, 0.0.93, 0.94 0.89, 0.86, 0.87

bi 0.04, 0.03, 0.03 –, –, – 0.11, 0.11, 0.10

gi 0.03, 0.05, 0.06 0.05, 0.07, 0.06 0.02, 0.03, 0.03

Si 74, 38, 42 84, 46, 66 63, 35, 40
TABLE 2 Other data of the three ports.

Port 1 Port 2 Port 3

hi ($) 24 24 24

ϵi ($) 201 201 201

s 0.2 0.2 0.2

ch ($/TEU) 1 1 1

cz ($/TEU) 0.5 0.5 0.5

Vmax
i   (K · TEU) 208.3 185.8 171.7

li   (K · TEU=h) N (40, 1) N (30, 1) N (30, 1)

mi   (K · TEU=h) N (35, 1) N (25, 1) N (25, 1)
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Fron
(1) For the costs of ports, the empty-container storage of the

port is the lowest under the nonrepositioning strategy,

followed by the threshold-repositioning strategy. So the

port can only lease more empty containers or meet the

demand through repositioning from other ports, causing

higher leasing costs; repositioning costs under the

complete-repositioning strategy are the highest among

the three strategies. However, the total cost of the port is

the lowest under the complete-repositioning strategy. The

increase in unit empty-container storage cost of the port

will lead to an increase in total cost, storage cost, lease cost,

and carbon emission cost under three strategies. Also, the

higher the barrier blocking empty-container repositioning

between ports is, the higher the total cost, storage cost,

repositioning cost, and carbon emission cost there will be.

(2) For the probability that the port will choose each kind of

empty-container source, under the nonrepositioning

strategy, it will depend more on its own storage and

leasing company than under the threshold-repositioning
tiers in Marine Science 11
strategy and complete-repositioning strategy. When the

unit empty-container storage cost increases, the ports will

depend less on their own storage and more on other ports

as well as the leasing company. Also, the higher the barrier

for repositioning is, the less the port will depend on its own

storage and on other ports, while depending more on the

leasing company.
From the above, we can conclude that the repositioning strategy

can efficiently reduce the total cost of empty containers for the port

and reduce carbon emissions. The lower the repositioning barrier

between ports is, the more obvious the advantages of the

repositioning strategy become.

The study in this paper still has some limitations. For example,

in the calculation of empty-container storage cost, we take the

storage charge as a constant, yet it is actually not so in reality. As a

matter of fact, the ports will often give some days without charging

and then take charges after a certain period of time, which is not

indicated in this study. We have not considered the time limit for
TABLE 4 Analysis of the influence of the change of hi‘s on three strategies.

hi Threshold-reposition strategy Non-reposition
strategy Complete-reposition strategy

TC

20 1697.9 1963.6 1567.3

24 1881.9 2269.3 1745.6

28 2264.8 2661.8 2036.9

TCH

20 1296.0 1689.2 1181.8

24 1424.2 1983.7 1253.2

28 1703.6 2262.4 1484.6

TCZ

20 161.9 — 131.7

24 190.3 — 211.2

28 221.4 — 230.3

TCW

20 184.4 137.2 201.4

24 206.2 142.8 224.4

28 266.6 199.7 255.7

TCC

20 55.6 70.4 52.4

24 61.2 82.7 56.8

28 73.2 94.3 66.3

qi

20 0.94,0.92,0.94 0.95,0.94,0.96 0.90,0.91,0.91

24 0.93, 0.92, 0.91 0.95,0.0.93,0.94 0.89,0.86, 0.87

28 0.90,0.90,0.89 0.93,0.90,0.92 0.86,0.83,0.84

bi

20 0.04,0.03,0.02 —,—,— 0.08,0.07,0.07

24 0.04, 0.03, 0.03 —,—,— 0.11,0.11,.0.10

28 0.05,004,0.05 —,—,— 0.11,0.13,0.11

gi

20 0.02,0.05,0.04 0.05,0.96,0.94 0.02,0.02,0.02

24 0.03, 0.05, 0.06 0.05,0.07,0.06 0.02, 0.03, 0.03

28 0.05,0.06,0.06 0.07,0.10,0.08 0.03,0.04,0.05
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empty-container repositioning between ports. In practice, due to

strict shipment date constraints, empty-container repositioning at

the port should have a time window. In future research, we hope to

carry out further exploration in the following aspects: First, consider

the time of the empty container stored in the port, because the

storage charge is relevant to the time. Second, to include the

shipping company in our optimization model of empty-container

repositioning, adding a repositioning responding time limit to the

situation of the sailing date. Third, it should be reflected in

the model that, according to carbon-reducing policies, only when

the carbon emissions exceed a certain level will the government levy

a carbon tax on ports.
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TABLE 5 Analysis of the influence of s ‘s change on three strategies.

s Threshold-reposition strategy Non-reposition strategy Complete-reposition strategy

TC

0.1 1937.3 2126.5 1745.6

0.2 2026.9 2126.5 1745.6

0.3 2088.3 2126.5 1745.6

TCH

0.1 1328.1 1983.7 1253.2

0.2 1424.2 1983.7 1253.2

0.3 1443.6 1983.7 1253.2

TCZ

0.1 212.6 — 211.2

0.2 190.3 — 211.2

0.3 171.3 — 211.2

TCW

0.1 198.3 142.8 224.4

0.2 206.2 142.8 224.4

0.3 236.7 142.8 224.4

TCC

0.1 57.5 82.7 56.8

0.2 61.2 82.7 56.8

0.3 61.9 82.7 56.8

qi

0.1 0.90, 0.90, 0.89 0.95,0.0.93,0.94 0.89,0.86, 0.87

0.2 0.93, 0.92, 0.91 0.95,0.0.93,0.94 0.89,0.86, 0.87

0.3 0.94, 0.92, 0.94 0.95,0.0.93,0.94 0.89,0.86, 0.87

bi

0.1 0.08, 005, 0.07 —,—,— 0.11,0.11,.0.10

0.2 0.04, 0.03, 0.03 —,—,— 0.11,0.11,.0.10

0.3 0.04,0.03,0.02 —,—,— 0.11,0.11,.0.10

gi

0.1 0.02, 0.05, 0.04 0.05,0.07,0.06 0.02, 0.03, 0.03

0.2 0.03, 0.05, 0.06 0.05,0.07,0.06 0.02, 0.03, 0.03

0.3 0.02, 0.05, 0.04 0.05,0.07,0.06 0.02, 0.03, 0.03
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