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Growth, biochemical indices and
transcriptomic profile of Chinese
mitten crab (Eriocheir sinensis)
respond to different ratios of
dietary carbohydrates to lipids

Rantao Zuo, Bin Wen, Yusheng Jiang, Shu Huang and Qilin Yi*

Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture &
Rural Affairs), Dalian Ocean Univefigrsity, Dalian, China
Introduction: Although carbohydrates and lipids are important energy substances

for Chinese mitten crab (Eriocheir sinensis), little is known about their synergistic

effect on the growth, energy utilization characteristics andmechanisms involved in

this process.

Methods: A 58-d feeding experiment was conducted to investigate the effects of

dietary carbohydrate to lipid ratio (C/L) on the growth performance, biochemical

indices, and metabolism-related differential gene expression of juvenile E.

sinensis in both intermolt (InM) and premolt (PrM) stages. Five experimental

diets were formulated with increasing dietary C/L (1.34, 2.39, 3.59, 5.52 and 9.42).

Results: The results showed that the weight growth rate of juvenile E. sinensis

was highest in dietary C/L3.59 group, which was significantly higher than that in

the other groups. As dietary C/L increased, the hepatic glycogen contents

increased, but triglyceride contents decreased in the hepatopancreas of E.

sinensis in the InM. In both two molting stages, the activities of glycogen

synthase and fatty acid synthase paralleled with their contents, respectively.

Crabs in the InM showed higher contents of triglyceride and the activities of

glycolytic rate-limiting enzymes but lower contents of hepatic glycogen than

those in the PrM, especially in the C/L 1.34 and C/L 3.59 groups. In all dietary

groups, the activities and transcription of gluconeogenesis and fatty acid

synthesis related enzymes were significantly higher in the InM than those in

the PrM. KEGG analysis showed that differential genes were enriched in fatty acid

biosynthesis, fatty acid metabolism, oxidative phosphorylation pathway, pentose

phosphate pathway, pyruvate metabolism and steroid biosynthesis between

different dietary groups and molting stages.

Discussion: To conclude, the optimal dietary C/L was estimated to be 3.59 for

juvenile E. sinensis based on the survival and growth performance. Compared to

PrM, E. sinensis in the InM was more active in the carbohydrate metabolism

(glycolysis and gluconeogenesis) and fatty acid synthesis, with more triglyceride

and less glycogen accumulated in the hepatopancreas.This study could

contribute to better understanding the carbohydrate and lipid metabolism
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between different molting stages, and optimizing the precise feed formulation

for juvenile E. sinensis.
KEYWORDS

carbohydrate to lipid ratio, Eriocheir sinensis, growth performance, biochemical
indices, transcriptomic analysisprofile
1 Introduction

Because of high nutritional value and delicious taste, Chinese

mitten crab (Eriocheir sinensis) has been very popular among

Chinese consumers for centuries. In recent years, there is a rapid

development of crab aquaculture in China, the production of

Chinese mitten crab has been steadily increasing, with the China

Fisheries Yearbook reporting that it has reached 800 thousand tons

per year (Song et al., 2019). Molting is necessary for the growth,

development, and reproduction of E. sinensis Panganiban et al.,

1995; Jung et al., 2013; Huang et al., 2015).

Protein is an important nutrient for sustaining the normal

growth and physiological process of aquatic animals (Johnston

et al., 2003). The ever-increasing price of protein ingredients such

as fish meal and soybean meal seriously limits the sustainable

development of aquaculture industry (Moreira et al., 2008; Lee

et al., 2012). As non-protein energy sources, carbohydrates and

lipids have the characteristics of low price, easy access and low

nitrogen pollution (Gao et al., 2010; Wang et al., 2014).

Furthermore, carbohydrates and lipids are closely related to the

nutritional metabolism and immunological regulation of aquatic

animals (Nakano et al., 1998; Borba et al., 2006; Dong et al., 2018).

However, excessive dietary lipids and carbohydrates can cause

metabolic disorder, reduced growth rate and even threaten the

health status of aquatic animals (Borges et al., 2009; Zhang et al.,

2013; Qiang et al., 2017; Li et al., 2020).

It is considered that carbohydrates and lipids have an

inseparable close relationship between each other, and an

imbalance may negatively affect the growth, feed conversion,

and body composition of aquatic animals (Chen et al., 2021;

Miller et al., 2023). Carbohydrates are converted into lipid and

stored in the body when their contents beyond the optimal

requirement for energy supply (Chen et al., 2021). Similarly,

lipids can replace carbohydrates for energy supply when the

carbohydrate content is insufficient (Meng et al., 2013).

Therefore, the steady state of carbohydrates and lipids

metabolism is particularly important. It was previously found

that the supplementation of carbohydrates or lipids can

improve the growth performance and disease resistance of E.

sinensis (Chen et al., 2016; Wen et al., 2021). Molting is an

important biological process closely related to the growth of

crustaceans. The molting cycle could be divided into three vital

stages including intermolt (InM), premolt (PrM) and postmolt

(PoM) (Gao et al., 2015). The premolt (PrM) is a preparation

stage for upcoming molting and energy consumption, and the
02
intermolt (InM) is the longest period in a molting cycle during

which accumulates energy for next molting (Huang et al., 2015).

However, to the best of our knowledge, little is known about the

synergistic effect of carbohydrates and lipids on the growth and

dietary administration and mechanisms involved in this

process. Thus, this study was conducted to investigate the

effects of the dietary carbohydrate to lipid ratio (C/L) on the

survival , growth, biochemical indices in E. s inensis .

Furthermore, digital gene expression (DGE) analysis was used

as a transcriptome sequencing method to measure high-

throughput relative gene expression, and to identify genes

related to glucose metabolism (glycolysis, gluconeogenesis

and glycogen synthesis) and lipid metabolism (fatty acid

synthesis and fatty acid oxidation) in E. sinensis at different

molting stages.

The goals of this study were to determine: i) the optimal C/L for

juvenile E. sinensis; ii) the characteristics of energy utilization at

different molting stages; and iii) preliminary mechanisms involved

in carbohydrates and lipids metabolism in E. sinensis.
2 Materials and methods

2.1 Ethics statement

In this study, all the operational procedures were granted by

ethical rules of Dalian Ocean University and relevant rules

of China.
2.2 Experimental diets

The ratios of different C/L in the diets were designed according

to Li et al. (2022). Five isoproteic and isoenergetic feeds with

different ratios of C/L were formulated by adjusting the amounts

of soybean oil and corn starch in the formulation (Table 1) (), which

were named C/L1.34, C/L2.39, C/L3.59, C/L5.52, and C/

L9.42, respectively.

The feeds were manufactured by following the procedures

described by Luo et al. (2008). The solid ingredients (<150 mm)

were first mixed evenly, which were then mixed well with the oil and

water. After that, a twin screw granulator (Jinan Dingrun

Machinery Company, Jinan, China) was used to produce feed

pellets (1.5 mm ×1.0 mm). After dying, the feeds were cooled,

packed, and stored at -20°C.
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2.3 Feeding procedures

Crabs were purchased from Jiangsu Haitong Aquatic Products

Co. Ltd. (Nantong, China) and transported to the experimental base

of Dalian Ocean University. After two weeks of acclimation, healthy

and intact crabs (initial body weight: 1.09 ± 0.01 g) were randomly

allocated to 15 plastic tanks (96L). Each tank was stocked with 25

individuals. Each diet was assigned to three tanks (25 crabs/tank) at

random. Plastic tubes and nets were used as shelters to avoid

cannibalism between individuals.

E. sinensis juveniles were fed to apparent satiation at 9:00 and

18:00 every day. At the beginning of feeding, a small number of

feeds were thrown into the tanks to attract the attention of crabs.

Crabs gathered quickly and ingest the feeds. When most of them

dispersed, it indicated that crabs approached to the state of

satiation.The residual feeds, feces, shells, and carcass in the tanks

were cleaned up every day by syphoning. In total, 2/3 of the water

was exchanged every two days. The following water conditions were
Frontiers in Marine Science 03
maintained during the 58d-feeding experiment: temperature, 18–

22°C; dissolved oxygen, above >8 mg/L; and ammonia-N, below

0.05 mg/L.
2.4 Sampling procedures

Experimental animals were counted and weighed following a

24h period of starvation. Before sampling, food intake and activity

of animals were monitored every day. Crabs with vigorous food

intake were thought to be at the intermolt (InM). When the food

intake gradually decreased and then stopped, they were thought to

be at the intermolt (InM).

In each tank, three crabs in intermolt (InM) and premolt (PrM)

were chosen out and placed in an ice box for anesthesia.

Subsequently, hepatopancreas were dissected and pooled into the

sterile centrifuge tube. The hepatopancreas were used to determine

the contents of biochemical indices, activities of metabolic enzymes,
TABLE 1 Ingredients and nutrient composition of the experimental diets.

Ingredients Dietary carbohydrate to lipid ratio

1.34 2.39 3.59 5.52 9.42

Fish meala 23.00 23.00 23.00 23.00 23.00

Soybean mealb 20.00 20.00 20.00 20.00 20.00

Casein 12.00 12.00 12.00 12.00 12.00

Beer yeastc 5.00 5.00 5.00 5.00 5.00

Soybean lecithin 0.50 0.50 0.50 0.50 0.50

Mineral mixtured 2.00 2.00 2.00 2.00 2.00

Vitamin mixturee 2.00 2.00 2.00 2.00 2.00

Monocalcium phosphate 1.00 1.00 1.00 1.00 1.00

Choline chloride 0.20 0.20 0.20 0.20 0.20

Chromium sesquioxide 0.10 0.10 0.10 0.10 0.10

Calcium propionate 0.10 0.10 0.10 0.10 0.10

Ethoxyquin 0.01 0.01 0.01 0.01 0.01

Soybean oil 9.00 6.00 4.00 2.00 0.00

Corn starchf 10.50 18.00 23.50 28.50 33.70

Microcrystalline cellulose 14.59 10.09 6.59 3.59 0.39

Proximate analysis

Crude protein 39.78 39.81 39.82 39.84 39.85

Carbohydrate 16.54 23.80 28.33 33.51 36.93

Crude lipid 12.34 9.96 7.89 6.07 3.92

Energy (MJ/kg) 17.53 17.49 17.53 17.50 17.50
frontie
aFish meal: crude protein 68.1% dry matter, crude lipid 10.2% dry matter, Qingdao Qihao Biotechnology Company (Qingdao, Shandong Province, China).
bSoybean meal: crude protein 43.4% dry matter, crude lipid 1.9% dry matter, Qingdao Qihao Biotechnology Company (Qingdao, Shandong Province, China).
cBeer yeast: crude protein 42.6% dry matter, crude lipid 1.0% dry matter, Jinan Huamu Feedstuff Company (Jinan, Shandong Province, China)
dMineral mixture (mg or g kg-1 diet): CuSO4·5H2O, 10 mg; Na2SeO3 (1%), 25 mg; ZnSO4·H2O, 50 mg; CoCl2·6H2O (1%), 50 mg; MnSO4·H2O, 60 mg; FeSO4·H2O, 80 mg; Ca (IO3)2, 180 mg;
MgSO4·7H2O, 1200 mg; zeolite, 18.35 g.
eVitamin mixture (mg or g kg-1 diet): vitamin D, 5 mg; vitamin K, 10 mg; vitamin B12, 10 mg; vitamin B6, 20 mg; folic acid, 20 mg; vitamin B1, 25 mg; vitamin A, 32 mg; vitamin B2, 45 mg;
pantothenic acid, 60 mg; biotin, 60 mg; niacin acid, 200 mg; a-tocopherol, 240 mg; inositol, 800 mg; ascorbic acid, 2000 mg; microcrystalline cellulose, 16.47 g.
fCorn starch: carbohydrate 85.1% dry matter, Shenyang Leishi Starch Co. Ltd. (Shenyang, Liaoning Province, China).
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and high-throughput relative gene expression. All tubes with

samples were frozen by liquid nitrogen and then stored at -80°C.
2.5 Proximate analysis

The contents of moisture, crude protein, lipid and ash were

analyzed following the AOAC (1995). All the samples were dried to

constant weight at 105°C to calculate moisture contents. Then,

Kjeldahl method was used to determine the protein contents.

Soxhlet method was used to determine the lipid contents. Ash

was determined by calculating the remaining weight of samples

after they were burned at 550°C. Finally, the contents of

carbohydrates in a sample were calculated by subtracting the

weight of moisture, protein, lipid and ash.
2.6 Determination of biochemical
indices and metabolic enzymes
activities of hepatopancreas

The hepatopancreas was mixed with freezing saline (0.85%

NaCl) at a ratio of 1/9, which was then homogenated under the

ice-water bath. Then, the homogenate was centrifuged (9000 g) at 4°

C for 10 min. After that, the supernatant was separated and

transferred into new centrifuge tubes. The supernatant was then

analyzed for the biochemical indices and metabolic enzymes.

The concentration of biochemical indices including hepatic

glycogen (HG) and triglyceride (TG), and the activities of

metabolic enzymes including glycogen synthase (GS), hexokinase

(HK), pyruvate kinase (PK), fatty acid synthesis (FAS), acetyl-CoA

carboxylase (ACC), phosphoenolpyruvate carboxykinase (PEPCK),

and carnitine palmitoyltransferase (CPT) were measured by

following the instructions of the kits of Nanjing Jiancheng

Bioengineering Institute (Nanjing, China).
2.7 RNA-Seq and differential
expression analysis

The transcriptome sequencing of the hepatopancreas of E.

sinensis at the InM and PrM stages in the C/L1.34, C/L3.59 and

C/L9.42 groups was performed by using the Illumina Nova seq 6000

(Biomarker Technologies, Beijing, China). The transcriptome

assembly was done with DIAMOND, and the assembled unigenes

were then annotated based on multiple databases, including Nr

(NCBI non-redundant protein sequences), Swiss-Prot (a manually

annotated and reviewed protein sequence database), KOG/COG

(clusters of orthologous groups of proteins), GO (Gene Ontology)

and Pfam (a large collection of protein families). Q30 was used as an

indicator to measure the quality of sequencing data (Kozich et al.,

2013). The unigenes were mapped to the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database to annotate their potential

metabolic pathways. Differentially expressed gene sets were
Frontiers in Marine Science 04
obtained from the different samples using the DESeq2 software.

To identify differentially expressed genes (DEGs) across samples,

the fold change (the ratio of expression levels between two samples)

≥1.5 and p value<0.05 were set to be the thresholds.
2.8 Real-time PCR of related genes

Trizol (TIANGEN, China) was used to extract total RNA from

the hepatopancreas of E. sinensis, and then the gDNA Eraser

(Takara, Japan) was used to remove gDNA contamination in the

first reaction of cDNA synthesis. The first strand of cDNA was

synthesized by using 1 mg total RNA as template and oligo dT-

adaptor as primers according to the protocol of manufacturer

(TaKaRa, China). The synthesis reaction was performed at 37°C

for 15 min, and terminated by heating at 85°C for 5 s. After the

integrity was checked, total RNA was reverse transcribed to cDNA,

which was used for the templates of RT-PCR. Fast Start Essential

DNA Green Master was used to prepare the reaction system by

following the instructions. The primer sequences can be referred in

Table 2. A LightCycler®96 (Roche group, Basel, Switzerland) was

used to perform the RT-PCR, which was programmed as follows:

95°C (10 min); 95°C (15 s), 60°C (60 s) for 40 cycles; 95°C (10 s), 65°

C (60 s); and 97°C, 1 s. The 2-DDCT method (Dhanasekaran et al.,

2010) was used to calculate the relative mRNA expression levels.
2.9 Formulas and statistical analysis

Weight growth rate  WGR,%ð Þ = Wf −Wi

� �� 100=Wi

Survival rate  SR, %ð Þ = Nf � 100=Ni

Where Wi and Wf are the initial and final average weights of

crabs in each tank, respectively. Ni and Nf are the initial and final

numbers of crabs in each tank, respectively.

The interaction effects between dietary C/L and molting stage

were analyzed by a two-way analysis of variance (ANOVA) in SPSS

23.0 (Redmond, WA, USA) for Windows. All data was presented in

the form of means ± standard error (n=3). If a statistical significance

(P < 0.05) was detected, Tukey’s multiple range test was applied to

compare the means between dietary groups. Statistical significance

was considered when P values <0.05.
3 Results

3.1 Survival rate and growth performance

The SR of E. sinensis was higher than 90%, with no statistical

significance observed between dietary groups (P > 0.05). The WGR

was significantly affected by dietary C/L (P < 0.05). The highest

WGR was observed in the C/L3.59 group (131%), which was

significantly higher than that in the C/L1.34, C/L2.39, C/L5.52

and C/L9.42 groups (P < 0.05) (Table 3).
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3.2 Glycogen and triglyceride contents in
the hepatopancreas

There was no significant interactive effect (P > 0.05) between dietary

C/L and molting stage on the contents of hepatic glycogen and

triglyceride in the hepatopancreas of E. sinensis. In the two molting

stages, the hepatic glycogen contents significantly increased with

increasing dietary C/L (P < 0.05). The highest hepatic glycogen

contents were observed in dietary C/L9.42 groups in the two molting

stages, which were significantly higher than that in the C/L1.34 group (P

< 0.05). In dietary C/L3.59 groups, hepatic glycogen contents in the InM

were significantly higher than that in the PrM (P < 0.05) (Figure 1A).
Frontiers in Marine Science 05
As the dietary C/L increased, triglyceride contents in the InM

showed a decreased tendency (P > 0.05). In all dietary C/L groups,

triglyceride contents in InM were all higher than that in PrM, with

statistical significance only observed in the C/L3.59 group (P <

0.05) (Figure 1B).
3.3 Metabolic enzymes activities
of hepatopancreas

There was a significant interaction between dietary C/L and

molting stage on the activities of HK, PK and FAS in juvenile E.
TABLE 3 Effects of different dietary carbohydrate to lipid ratio (C/L) on weight gain rate (WGR) and survival rate (SR) of juvenile E. sinensis.

Dietary C/L W0 W1 WGR (%) SR (%)

1.34 1.09 + 0.00 2.30 + 0.02 112.11 + 1.34b 92.00 + 0.00

2.39 1.10 + 0.01 2.27 + 0.17 108.27 + 2.97ab 96.00 + 2.31

3.59 1.10 + 0.01 2.54 + 0.02 131.34 + 0.21c 97.33 + 0.21

5.52 1.10 + 0.01 2.23 + 0.05 111.47 + 2.35b 92.00 + 4.62

9.42 1.10 + 0.02 2.19 + 0.13 100.75 + 6.61a 96.00 + 2.31
fr
Values are presented as means ± standard error (SE) (n=3). Values with different superscript letters in the same column are significantly different at P<0.05.
TABLE 2 Primer sequences of the genes used for real-time PCR.

Genes Position 5’–3’ Primer sequence Accession No.

FAS Forward AGGTTCACCACAATGCCAAAATTGG VN_GLEAN_10001849

Reverse GCTTCCTTGAGAGTGTCTTCATG

G6PD Forward GCAAGATCTGACCTTACCATTGAGC Eriocheir_sinensis_newGene_23950

Reverse GGCTTTTTCCGTTCCAACCTTCG

PEPCK Forward ACCCCAACTCCCGCTTCTGTAC VN_GLEAN_10005379

Reverse CATGATGACCTTGGCCTTGTGTTC

Ndufa6 Forward CCCCAAGAATGAGAGAAGATGGAC VN_GLEAN_10003252

Reverse GTGACTATTCTTTCCTCTGCCGC

CPT Forward TGTTGAAGCCTGACCTTCCA MH037158

Reverse GGTTGTAGCAGCAGCCATAC

ACAA2 Forward CACCCTACGCTGTCAGGAACATTC VN_GLEAN_10001117

Reverse CAGACTCCATTCACTACTGAACAAGC

Elovl6 Forward TACTTCGTACTGTTCGCTCGCTT KT779219

Reverse TTACCCTTGGTGCTCTTTCCTT

Aco Forward CTCAGAAGCGTTCAATGCGTTAAGG Eriocheir_sinensis_newGene_17770

Reverse GGTGAGGAGACCAAAACTGTACC

Acly Forward CAAACTGTCCTGTCCACTCATACG VN_GLEAN_10005945

Reverse GGGGATAGGTGTTTGGAAGATTGTG

b-actin Forward GCATCCACGAGACCACTTACA KM244725.1

Reverse CTCCTGCTTGCTGATCCACATC
FAS, fatty acid synthesis; G6PD, glucose-6-phosphatedehydrogenase; PEPCK, phosphoenolpyruvate carboxykinase; Ndufa6, NADH, ubiquinone oxidoreductase subunit A6;
CPT, carnitine palmitoyltransferase; ACAA2, acetyl-coenzyme A acyltransferase 2; Elovl6, elongase of very long chain fatty acid 6; Aco, acetyl coenzyme A oxidase; Acly, ATP citrate lyase.
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sinensis (P < 0.05). At both molting stages, the activities of GS

significantly increased with increasing dietary C/L (P < 0.05), but no

statistical significance was observed between InM and PrM in all

dietary groups (P > 0.05) (Figure 2A).

As the dietary C/L increased, the activities of HK

significantly increased (P < 0.05) in the PrM but decreased in

the InM (P > 0.05) (Figure 2B). The highest activities of PK in the

InM were observed in the C/L3.59 group, which were

significantly higher than those in the other groups (P < 0.05)

(Figure 2C). In dietary C/L1.34 and C/L3.59 groups, HK and PK

activities in the InM were higher than those in the PrM

(Figures 2B, C).

As the dietary C/L increased, the activities of FAS significantly

decreased in the InM (P < 0.05). FAS activities in the C/L9.42 group

in the InM were significantly lower than those in the

PrM (Figure 2D).

The activities of ACC, PEPCK and CPT were not significantly

affected by different dietary C/L, with higher values observed

in the InM than those in the PrM in all dietary groups

(Figures 2E–G).
Frontiers in Marine Science 06
3.4 Transcriptome analysis between dietary
C/L groups or molting stage

A total of 118.16 Gb of Clean Data was obtained from

transcriptome analysis of 18 samples. Q30 base percentage of all

samples in this study were above 91.86%, which showed that all data

were qualified. The DEG number between each two different groups

at the same dietary C/L level in different molting stages was

analyzed, and the results were shown in Table 4. In the

comparison among these nine groups, the DEG number between

C/L1.34 of InM and C/L1.34 of PrM was the most, and the DEG

number between C/L3.59 of PrM and C/L9.42 of PrM was the least.

Feeding with dietary C/L1.34 has more DEGs between InM and

PrM than that feeding with dietary C/L3.59 and C/L9.42. The

number of DEGs was higher between feeding dietary C/L3.59 and

C/L9.42 in InM, and higher between C/L1.34 and C/L3.59 in PrM.

To further assign the putative functions to DEGs, KEGG analysis

was performed. KEGG enrichment results showed that the DEGs

were mainly enriched in biological processes, such as metabolic

process (GO:0008152), cellular process (GO:0009987) and
DA B

E F G

C

FIGURE 2

Effects of different dietary carbohydrate to lipid ratio on metabolic enzymes activities of hepatopancreas of juvenile E. sinensis in different molting
stage. Values are presented as means ± standard error (SE) (n=3). Different upper-case letters on the bars represent a significance in the values
between the two molting stages within the same dietary group (P<0.05). Different lower-case letters on the bars represent a significance in the
values between dietary groups with the same molting stage (P<0.05). GS: glycogen synthase (A), HK, hexokinase (B), PK, pyruvate kinase (C), FAS,
fatty acid synthesis (D), ACC, acetyl-CoA carboxylase (E), PEPCK, phosphoenolpyruvate carboxykinase (F), CPT, carnitine palmitoyltransferase (G).
A B

FIGURE 1

Effects of different dietary carbohydrate to lipid ratio on biochemical criterion of hepatopancreas of juvenile E. sinensis in different molting stage.
Values are presented as means ± standard error (SE) (n=3). Bars with different upper-case letters differ significantly from each other in the same
dietary C/L groups (P<0.05). Bars with different lower-case letters differ significantly from those of other dietary C/L groups in the same molting
stage (P<0.05). Hepatic glycogen contents (A), Triglyceride contents (B).
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TABLE 4 Effects of different dietary carbohydrate to lipid ratio and molting cycle on DEG number and analysis of KEGG pathway in juvenile
E. sinensis.

Different groups DEG
Number

Up-regu-
lated

Down-regu-
lated

KEGG
ID

Description of KEGG
pathway

EnrichmentScore Pvalue

C/L1.34 of InM vs C/L1.34
of PrM

3615 1965 1650 ko00190 Oxidative phosphorylation -0.602 0.002

ko01212 Fatty acid metabolism -0.576 0.004

ko00590 Arachidonic acid metabolism -0.572 0.015

ko00061 Fatty acid biosynthesis -0.719 0.021

ko01040 Biosynthesis of unsaturated fatty
acids

-0.612 0.041

C/L3.59 of InM vs C/L3.59
of PrM

498 238 260 ko00500 Starch and sucrose metabolism -0.625 0.002

ko00190 Oxidative phosphorylation 0.459 0.002

ko00052 Galactose metabolism -0.538 0.004

ko00590 Arachidonic acid metabolism -0.533 0.004

ko00100 Steroid biosynthesis -0.758 0.004

C/L9.42 of InM vs C/L9.42
of PrM

1302 515 787 ko00531 Glycosaminoglycan degradation -0.738 0.002

ko00511 Other glycan degradation -0.710 0.002

ko00500 Starch and sucrose metabolism -0.599 0.003

ko00620 Pyruvate metabolism -0.651 0.005

ko00590 Arachidonic acid metabolism -0.554 0.009

C/L1.34 of InM vs C/L3.59
of InM

2675 1575 1100 ko01200 Carbon metabolism -0.505 0.002

ko00190 Oxidative phosphorylation -0.740 0.002

ko00071 Fatty acid degradation -0.545 0.017

C/L1.34 of InM vs C/L9.42
of InM

1590 719 871 ko00190 Oxidative phosphorylation -0.622 0.002

ko01212 Fatty acid metabolism -0.526 0.060

ko04070 Phosphatidylinositol signaling
system

-0.497 0.082

C/L3.59 of InM vs C/L9.42
of InM

2540 974 1566 ko00500 Starch and sucrose metabolism -0.617 0.002

ko00190 Oxidative phosphorylation 0.574 0.003

ko00010 Glycolysis/Gluconeogenesis 0.541 0.013

ko00052 Galactose metabolism -0.515 0.024

ko00100 Steroid biosynthesis -0.624 0.028

ko00561 Glycerolipid metabolism -0.474 0.031

ko01200 Carbon metabolism 0.364 0.046

C/L1.34 of PrM vs C/L3.59
of PrM

1291 773 518 ko00061 Fatty acid biosynthesis 0.747 0.007

ko00770 Pantothenate and CoA
biosynthesis

0.594 0.065

ko00020 Citrate cycle (TCA cycle) -0.485 0.100

ko00590 Arachidonic acid metabolism -0.438 0.103

C/L1.34 of PrM vs C/L9.42
of PrM

1745 1126 619 ko00040 Pentose and glucuronate
interconversions

-0.528 0.035

ko00500 Starch and sucrose metabolism -0.475 0.041

ko00600 Sphingolipid metabolism -0.451 0.069

(Continued)
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biological regulation (GO:0065007). With the enrichment of KEGG,

fatty acid biosynthesis (ko00061), fatty acid metabolis (ko01212),

moxidative phosphorylation (ko00190), pentose phosphate

pathway (ko00030) and pyruvate metabolism (ko00620) have

enriched more DEGs. For C/L 1.34, C/L 3.59 and C/L 9.42, the

DEGs between InM and PrM were enriched in oxidative

phosphorylation process (ko00190), steroid biosynthesis

(ko00100) and pyruvate metabolism (ko00620), respectively. For

In InM, the more DEGs were found between C/L 1.34 and C/L 3.59,

which were mostly enriched in oxidative phosphorylation process

(ko00190), and lower DEGs were found between C/L 1.34 and C/L

9.42. While, the C/L 1.34 and C/L 3.59 group had more DEGs in

PrM, which were enriched in starch and sucrose metabolism

(ko00500) and fatty acid metabolism (ko01212) (Table 4).
3.5 The mRNA expression of metabolism
related genes expression in E. sinensis

There was a significantly interactive effect (P< 0.05) between

dietary C/L and molting stage on the mRNA expression levels of all

selected genes in E. sinensis (Figure 3). It appears that the mRNA

expression levels of FAS, G6PD, PEPCK, Ndufa6, CPT, ACAA2,

Elovl6, Aco and Acly vary significantly depending on the dietary C/L

ratio. The expression levels of Fas, G6PD, PEPCK, Ndufa6 and Acly

at the InM were higher than that at the PrM (Figures 3A-D, I). The

expression levels of CPT at the InM post the dietary C/L1.34 and C/

L3.59 treatment were lower than that in the PrM stage, and the

trend in the C/L9.42 group was the opposite (Figure 3E). In each

dietary group, the expression level of Aco at the InM was lower than

that at the PrM (Figure 3H).

In the InM, the mRNA expression levels of Elovl6 and Aco in

the dietary C/L1.34 group were significantly higher than those in

dietary C/L3.59 and C/L9.42 groups (P < 0.05). The mRNA

expression levels of FAS, G6PD, CPT and Acly in the dietary C/

L3.59 group were significantly higher than those in the C/L1.34 and

C/L9.42 groups (P < 0.05). The expression levels of PEPCK, Ndufa6

and ACAA2 in the dietary C/L9.42 group were significantly higher
Frontiers in Marine Science 08
than those in the dietary C/L1.34 and C/L3.59 groups (P < 0.05)

(Figures 3A-H).

In the PrM, the mRNA expression levels of G6PD, Ndufa6,

Elovl6 and Aco post dietary C/L1.34 treatment were significantly

higher than those in the C/L3.59 and C/L9.42 groups (P < 0.05). The

mRNA expression levels of FAS, CPT and ACAA2 post the dietary

C/L3.59 treatment were significantly higher than those in the C/

L1.34 and C/L9.42 groups (P < 0.05). Besides, the mRNA expression

levels of PEPCK post the dietary C/L9.42 treatment were

significantly higher than those in the dietary C/L1.34 and C/L3.59

groups (Figures 3A-H).
4 Discussion

Carbohydrates and lipids are widely used as non-protein energy

sources in the formulated feeds (Xie et al., 2017; Dong et al., 2018;

Liu et al., 2020). Survival, growth performance, and feed cost are

usually taken into consideration when estimating the optimal

dietary lipids and carbohydrates in the diets. The present study

showed that, post the 58-day feeding trial, the SR of E. sinensis was

above 90% and was hardly affected by dietary C/L. Carbohydrates

and lipids can be effectively used to achieve ideal growth

performance by most crustaceans, such as Jasus edwardsii, Cherax

quadricarinatus (Zhu et al., 2013), E. sinensis (Bao et al., 2020; Wen

et al., 2021). In the present study, the optimal dietary C/L for

juvenile E. sinensis was estimated to be 3.59 based on WGR. This

was close to the optimal requirement of C/L for other aquatic

animals, such as blunt snout bream (Megalobrama amblycephala)

(Li et al., 2013), large yellow croaker (Larmichthys crocea) (Zhou

et al., 2016), bullfrog (Rana (Lithobates) catesbeiana) (Zhang et al.,

2016) and hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E.

lanceolatus) (Chen et al., 2021), but was higher than that for Jasus

edwardsii (Johnston et al., 2003) and Scylla paramamosain (Dong

et al., 2018), which was estimated to be 2.0 and 1.39-2.08,

respectively. Excessive carbohydrates or insufficient lipids reduced

feed palatability (Chen et al., 2021) and negatively affected the

normal metabolism of several aquatic animals, such asM. salmoides
TABLE 4 Continued

Different groups DEG
Number

Up-regu-
lated

Down-regu-
lated

KEGG
ID

Description of KEGG
pathway

EnrichmentScore Pvalue

C/L3.59 of PrM vs C/L9.42
of PrM

440 269 171 ko01212 Fatty acid metabolism -0.548 0.002

ko00500 Starch and sucrose metabolism -0.548 0.007

ko00561 Glycerolipid metabolism -0.482 0.010

ko00600 Sphingolipid metabolism -0.509 0.010

ko00061 Fatty acid biosynthesis -0.680 0.018

ko00564 Glycerophospholipid
metabolism

-0.394 0.031

ko01040 Biosynthesis of unsaturated fatty
acids

-0.540 0.040
fron
Values are presented as the P value=0.05, log2FC=1.5 (FC, fold change) (n=3).
tiersin.org

https://doi.org/10.3389/fmars.2023.1176976
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zuo et al. 10.3389/fmars.2023.1176976
(Ma et al., 2019) and C. quadricarinatus (Zhu et al., 2013). In this

study, the lipid level in the C/L9.42 was only 3.92%, which was

lower than the estimated requirement for E. sinensis (Li et al., 2013;

Zhang et al., 2016; Wen et al., 2021).

In this study, hepatic glycogen contents in the hepatopancreas

significantly increased, while triglyceride (TG) contents decreased

with increasing dietary C/L. Similar results have also been reported

orange-spotted grouper (E. coioides) (Wang et al., 2017), tilapia (O.

niloticus) (Xie et al., 2017) and red swamp crayfish (Procambarus

clarkii) (Li et al., 2022). Consistently, activities of glycogen synthase

(GS) increased while those of fatty acid synthesis (FAS and ACC)

decreased with increasing dietary C/L. CPT located in the

mitochondria is the rate-limiting enzyme for fatty acid oxidation,

and it plays an important role in the oxidation of fatty acids in E.

sinensis (Liu et al., 2018). In this study, the activities of CPT were

not significantly affected by the dietary C/L. On one hand, it could

be the decreased fatty acid synthesis that accounted for the

decreased contents of TG in the hepatopancreas of E. sinensis as

observed in this study. On the other hand, the increasing C/L could
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decrease the lipid transport efficiency that resulted in the decreased

retention of TG (Du et al., 2005; Gao et al., 2010).

Molting is an indispensable and ongoing physiological process

in the life-history of all crustaceans, especially for sustaining normal

growth, development and reproduction (Panganiban et al., 1995;

Jung et al., 2013; Huang et al., 2015). E. sinensis accumulates

substances and energy in the InM, which are used for the

formation of new exoskeletons in the PrM (Huang et al., 2015).

In the present study, the glycogen content increased while the TC

content decreased in PrM compared with that in InM. Glycolysis

and gluconeogenesis are two important activities of glucose

metabolism (Zhang et al., 2019). In this study, it was found that

the activities of glycolytic rate-limiting enzymes (HK and PK) in the

InM were promoted by low or moderate dietary C/L (1.34-3.59) but

were inhibited by the highest dietary C/L. This was consistent with

the findings of Chen et al. (2021) who found that glycolytic ability of

juvenile hybrid grouper was suppressed by excessive carbohydrates

in the diets. Notably, more carbohydrates were used for glycolysis in

the InM among the two molting stages at low or moderate C/L
B C

D E F

G H I

A

FIGURE 3

Effects of different dietary carbohydrate to lipid ratio on the mRNA expression of antioxidative genes of juvenile E. sinensis in different molting stage.
Values are presented as means ± standard error (SE) (n=3). Bars with different upper-case letters differ significantly from each other in the same
dietary C/L groups (P<0.05). Bars with different lower-case letters differ significantly from those of other dietary C/L groups in the same molting
stage (P<0.05). FAS relative mRNA expression (A), G6PD relative mRNA expression (B), PEPCK relative mRNA expression (C), Ndufa6 relative mRNA
expression (D), CPT relative mRNA expression (E), ACAA2 relative mRNA expression (F), Elovl6 relative mRNA expression (G), Aco relative mRNA
expression (H), Acly relative mRNA expression (I).
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levels. While in the highest C/L group, more carbohydrates were

used for glycolysis in the PrM than InM. This indicated that the

amounts of carbohydrates participating into glycolysis were not

only affected by dietary C/L, but also were affected by molting

stages. Feeding activity decreases and even stops during PrM and

molting, and begins again postmolt when the crustaceans are rigid

enough to handle food (Li et al., 2022). Thus, crustaceans rely

mainly on the internal nutrients reserved in the hepatopancreas

during PrM and molting (Niu et al., 2012). The energy released by

lipid oxidation is much higher than that of carbohydrates because

the relative contents of carbon and hydrogen in lipids are higher

than those of carbohydrates. Thus, lipids are more suitable

substances for instant and high demand of energy, especially for

the premolt and molting crabs. Since crabs in the InM can ingest

food normally, thy are prone to utilize glucose through glycolysis

and save lipids for later use in PrM stage. It was postulated that

steroids may be related to the regulation of glycolysis. The role of

PEPCK is to catalyze the conversion of oxaloacetate to

phosphoenolpyruvate, which is a key rate-limiting enzyme in the

gluconeogenesis pathway (Lu et al., 2018). In this study, PEPCK in

the PrM significantly decreased in both mRNA levels and activities

than those in the InM in all dietary groups. This indicated that

gluconeogenesis is more active in the InM of the E. sinensis. G6PDH

is a key enzyme involved in the production of NADPH in the

pentose phosphate pathway, and NADPH is necessary for

lipogenesis (Enes et al., 2009; Guerrero-Zárate et al., 2019; Liu

et al., 2020). In this study, the mRNA levels of G6PDH were higher

in the InM, which was consistent with the increased TC contents in

this stage of all dietary groups.

The information obtained from transcriptome analysis can

provide some molecular basis for crustaceans (Hu et al., 2015). In

this study, DEGs was used to perform transcriptome analysis on the

expression profile in the hepatopancreas of E. sinensis fed diets with

increasing C/L. The results showed that metabolic process terms

were over-represented in the InM and PrM, for instance, glycogen

biosynthetic process (GO:0005978) and fatty acid biosynthetic

process (GO:0006633). KEGG analysis demonstrated the top

enriched pathways include fatty acid biosynthesis (ko00061), fatty

acid metabolism (ko01212), oxidative phosphorylation (ko00190),

pentose phosphate pathway (ko00030) and pyruvate metabolism

(ko00620). Energy metabolism has become an indispensable part of

studying ion exchange and osmotic regulation in organisms (Hu

et al., 2015). In this study, glycolysis/gluconeogenesis, citric acid

cycle (TCA cycle) and fatty acid synthesis/degradation are

abundant pathways related to energy metabolism. Our research

has found some significant differentially expressed genes related to

energy metabolism. The tendency of nine genes (Figure 3) was

basically consistent with the transcriptome information after

identification by RT-PCR. FAS controls the synthesis of fatty

acids which catalyzes the lipid synthesis pathway by converting

carbohydrates into fatty acids (Chirala and Wakil, 2004; Mashima

et al., 2009). Compared with the PrM, the mRNA expression levels

of FAS at the InM were significantly up-regulated, indicating that E.

sinensis in the InM needs to accumulate more energy for utilization
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in the PrM (Huang et al., 2015). At the same time, FAS was also

clearly responding to changes in the dietary C/L in the diets. This

showed that the dietary C/L3.59 was more conducive to the

accumulation of lipid for E. sinensis. It has also confirmed that

lipids stored at the InM play an important role in the energy supply

of other non-eating molting stages of E. sinensis. G6PD is a key gene

involved in the pentose phosphate pathway (Yilmaz et al., 2006).

The role of PEPCK is to catalyze the conversion of oxaloacetate to

phosphoenolpyruvate, which is a key gene in the gluconeogenesis

pathway (Lu et al., 2018). We have observed that these two genes

involved in the conversion of carbohydrates and lipids were highly

expressed at the InM. It is worth noting that as the dietary C/L

increased, the expression levels of PEPCK showed an increasing

trend, while G6PD was the opposite at the PrM. Combined with the

content of hepatic glycogen, this showed that E. sinensis

accumulated more carbohydrates at the PrM, in other words,

carbohydrates were not used as the main energy source. The

expression level of PEPCK was higher at the InM than at the

PrM. This corresponds to the PEPCK activities, which indicates that

gluconeogenesis is more active at the InM than at the PrM, with

more glucose generated and then converted into glycogen. Both Aco

and Acly are involved in the regulation of the Citrate cycle (TCA

cycle) (ko00020). The CPT gene participates in the metabolic

pathway of AMPK/ACC/CPT, by degrading fatty acids to avoid

excessive liver lipid deposition (Liu et al., 2018; Tobita et al., 2018;

Fang et al., 2019). Within the appropriate range of dietary C/L

(1.34-3.59), the expression levels of CPT were significantly up-

regulated at the PrM of E. sinensis. This indicated that lipid was

broken down at the PrM when E. sinensis needs a lot of energy to

prepare for molting (Huang et al., 2015). However, the mRNA

expression level of CPT could be restricted by dietary high

carbohydrate or low lipid. Taken together, these results indicated

that E. sinensis utilizes carbohydrates as an energy source in the

InM, while fatty acids and lipids are used in the PrM.
5 Conclusion

A moderate dietary C/L (3.59) achieved the best growth

performance of juvenile E. sinensis. Dietary C/L increased glycogen

synthesis but decreased lipid synthesis in the hepatopancreas.

Compared to PrM, E. sinensis in the InM was more active in the

carbohydrate metabolism (glycolysis and gluconeogenesis) and fatty

acid synthesis, with more triglyceride and less glycogen accumulated

in the hepatopancreas. This may indicate that juvenile crabs are

prone to utilize carbohydrates for energy supply through glycolysis in

the InM and store lipids for later energy use in the PrM. Moreover,

the transcriptomic analysis showed that compared with C/L 1.34 and

C/L 9.42, the differentially expressed genes between InM and PrM

were enriched not only in energy metabolism, but also in steroid

biosynthesis in C/L 3.59, which indicated that C/L 3.59 might

promote the steroid biosynthesis at PrM stage contributing to

growth performance. These results could be helpful for optimizing

the feed formulation for this species in different molting stages.
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