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The thermal discharge of Daya Bay Nuclear Power Plant has a certain impact on

the ecological environment of the adjacent waters. In order to understand and

evaluate changes in the fish egg community structure in the adjacent waters of

Daya Bay Nuclear Power Plant and their relationship with environmental factors,

four surveys were conducted to investigate fish eggs in January (winter), March

(spring), August (summer) and November (autumn) of 2020. A total of 100,985

fish eggs were collected and 17 taxa were identified, belonging to five orders, 14

families and 17 genera. Among them, Perciformes and Clupeiformes were the

main contributing taxa to fish egg species and abundance in the waters adjacent

to Daya Bay Nuclear Power Plant. The number of fish egg species ranged from

high to low was summer, spring, autumn and winter; the average abundance

ranged from high to low was spring, summer, winter and autumn. The results

showed that except in winter, the average abundance of fish eggs was greater in

northeast area than in southwest area. The Shannon-Weiner species diversity

index (H’), Pielou evenness index (J’) and Margalef richness index (d) were

significantly different between seasons, but none were significantly different

between areas. The results of NMDS analysis showed that there were

significant differences in fish egg communities between seasons. Surface

seawater temperature the average abundance of fish eggs was positively

correlated in the results of all four seasons. Although the entrainment effect of

nuclear power plant water intake and thermal pollution of partial waters owing to

thermal discharge can cause some loss of fish eggs, fish resources can still be

effectively maintained.
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1 Introduction

Daya Bay is a typical subtropical semi-enclosed bay in the

northern South China Sea, covering an area of approximately 600

km², with a winding coastline, many islands, diverse habitats and

subtropical characteristics, and is an important breeding ground for

fish. In 1983, Daya Bay was designated as a provincial aquatic

resources breeding reserve by the People’s Government of

Guangdong Province (Wang et al., 2003). With rapid economic

development, Daya Bay and the surrounding areas were also

classified as an important economic development zone in

Guangdong Province. Petrochemical, plastic, printing and other

industries have been established in the area (Song et al., 2004). In

addition, the demand for electricity in the areas surrounding Daya

Bay is high. Daya Bay Nuclear Power Plant (DNPP, comprising two

nine hundred-thousand-kilowatt class units) and Ling’ao Nuclear

Power Plant (LNPP) Phase I and II (four-million-kilowatt class

units) have been built on the north shore at Dapeng’ao in the

southwest of Daya Bay Reserve. The discharge of used once-through

cooling seawater is up to approximately 315 m3/s. The tidal

difference in Daya Bay is small and the water exchange

conditions are at the lower to middle level. In recent years,

marine fishery resources have been at risk of decline owing to

increased human activities and climate change (Lotze et al., 2006;

Stelzenmüller et al., 2010; Dahlke et al., 2020). The establishment of

the DNPP and LNPP is certain to have an impact on the ecological

environment of the adjacent waters (Wu and Wang, 2007).

Therefore, studying the effects of thermal discharge from DNPP

on early fish resources is helpful to understand the response of the

fish egg communities in terms of spatial and temporal distribution

in the adjacent waters of DNPP.

The early stages of fish development are divided into three

periods: fish egg, larva and juvenile (Zhang et al., 1985); individual

fish at this stage are referred to as early fish resources (Cao et al.,
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2007). As the early developmental stages in the life history of fish,

fish eggs, larvae and juveniles are of great significance in energy

transfer in the marine ecosystem. Fish eggs, larvae and juvenile fish

are not only major prey, but also important primary consumers.

They play an important role in connecting the food web of the

marine ecosystem (Wan and Jiang, 1998; Xiao et al., 2017). Fish

eggs comprise the initial stage of fish development with no

movement ability, relying only on external forces such as water

flow and wind for movement. The influence of environmental

changes on eggs is obvious (Rakocinski et al., 1996; Chambers

and Trippel, 1997), with temperature and salinity the main

influencing factors. Water temperature dominates the life history

of fish (Selleslagh and Amara, 2008), affecting the number,

distribution and population structure of fish eggs by influencing

adult gonad development and reproductive migration (Xiao et al.,

2010), as well as having significant effects on fish egg

metamorphosis and incubation rate (Liu et al., 2015). Salinity

affects the distribution of fish eggs by influencing hatching and

reproduction processes (Song et al., 2016; Long et al., 2021). At

present, there are few studies on the effects of DNPP thermal

discharge on the spatial and temporal distribution of the fish egg

communities, thus it is of great importance to carry out relevant

investigations in Daya Bay to maintain the balance of the marine

ecosystem and enable sustainable utilization of fishery resources.
2 Materials and methods

2.1 Study area

There were 19 stations in this study. The adjacent waters of

Daya Bay Nuclear Power Plant were divided into the southwest area

(SWA, control area) and the northeast area (NEA, thermal

discharge impact area) (Figure 1). The number of sampling
FIGURE 1

Sampling stations in the adjacent waters of DNPP.
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stations in winter, spring, summer and autumn was 10, 13, 11 and

12, respectively. Samples were collected from stations in both the

SWA and NEA in each season. The sampling range was 114.5319°

E–114.6295° E, 22.5287° N–22.6635° N. In January, March, August

and November 2020, four sampling trips were conducted to

investigate the early fish resources in the waters adjacent to

DNPP. As shown in Figure 1, S3 is the area of the thermal

discharge outfall from the nuclear power plant.
2.2 Sampling and experimental procedures

Surface seawater salinity (SSS), surface seawater temperature

(SST) and depth (Dep) were measured at each station using a

conductivity, temperature and depth (CTD) instrument (SonTek

CastAway, Xylem Analytics, Beijing, China). Surface seawater was

collected with a water sampler, dissolved oxygen (DO) was

measured using a YSI ProPlus (Xylem Analytics). Suspended

solids (SS) were measured by weight method and Chlorophyll-a

(Chl-a) was measured by spectrophotometric method. Suspended

solids and Chlorophyll-a were measured according to The

specification for marine monitoring (GB 17378.4-2007) and

Specifications for oceanographic survey (GB/T 12763.6-

2007), respectively.

Two large plankton nets (net length 280 cm, inner diameter of

net mouth 80 cm, net mouth area 0.5 m2) one placed on each side of

the boat, were used to collect fish eggs, by trawling horizontally for

10 minutes at a towing speed of approximately 1.5 kn, with the net

mouth submerged below the sea surface (Lin et al., 2010). The fish

eggs were mainly distributed in the surface layer, so the horizontal

trawl produced a better result in collecting a more representative

sample of eggs.

The samples collected at each station were divided into two

bottles, then one was fixed in 5% formalin solution for

morphological identification in the laboratory and the other fixed

in 95% alcohol for species identification by molecular biological

means. The fish egg specimens in the samples were picked,

identified and counted in the laboratory. Identification was

mainly based on the morphological characteristics of the fish

eggs, with reference to the spawning period of the fish (Wan

et al., 2010). The samples with a large number of fish eggs were

sampled to count. Fish egg density was calculated by dividing the

number of eggs harvested per net by the volume of water filtered by

the trawl. The volume of water filtered = trawl speed × trawl time ×

net mouth area. The general sequence for morphological

identification of fish eggs is to observe the shape of the fish eggs

first. The round eggs were more, and then they were distinguished

by size, the presence or absence of special structures of the egg

membrane, the development of embryos, the position and number

of oil globules, and the shape and position of the pigment. DNA

barcoding was the sequencing analysis of PCR and product

amplification using a standard DNA sequence to enable accurate

and rapid species identification. Fish egg specimens were first

identified by cytochrome C oxidase subunit I (COI) to achieve

the lowest level of taxonomic. Using a local DNA barcode library

(Hou et al., 2018) and the Barcode of Life Data (BOLD) system, as
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well as a search tool similar to that used by Hubert et al. (2015)

based on Basic Local Alignment Search Tool (BLAST), 15 eggs and

larvae were randomly selected for the first DNA extraction and

amplification in each horizontal and vertical trawl. If the number of

specimens in a sample was greater than 60, perform 2 times.

Extraction and amplification were stopped when the success rate

of DNA extraction and sequence amplification dropped below 20%

(Hou et al., 2021).
2.3 Data analysis

The species number and abundance of each type offish egg were

calculated for each sample. The abundance is expressed as the

number of fish eggs (ind.) per 1,000 m3, calculated according to the

following formula:

Di =
1000� Ni

0:3� S� Ci

where S is the area of the cone net mouth (m2), Ci is the difference

between the indicated number of revolutions from the mechanical

Flow Meter counter at the beginning and end of sampling at the ith

collection, Di is the average abundance of fish eggs collected at the

ith collection (ind./1,000 m3), Ni is the number of fish eggs collected

at the ith collection (ind.) and 0.3 is the formula coefficient for

calculating the volume of water filtered.

The Shannon-Weiner species diversity index (H’) (Shannon

and Weaver, 1998), Pielou evenness index (J’) (Pielou, 1969),

Margalef richness index (d) (Jiang et al., 2011) and dominance

(Y) were used to analyze fish egg communities in this study, using

the following formula:

H 0 = −o
S

i=1
Pi( ln Pi)

J 0 =
H 0

ln S

d =
S − 1
lnN

Y =
ni
N

� fi

where Pi is the ratio of the ith fish egg abundance to the total

abundance in the sampling site, S is the total number of species in

the sampling site, N is the total abundance in the sampling site, ni is

the ith fish egg abundance and fi is the occurrence frequency of the

ith fish egg. The criterion for dominant species is Y ≥ 0.02 (Xu and

Chen, 1989).

ArcGIS 10.3 (Esri, Redlands, CA, USA) and Origin 2021

(OriginLab Corporation, Northampton, MA, USA) and R 4.1.0 (R

software, the R foundation for statistical computing, https://www.r-

project.org/foundation/) were used for plotting graphs. One-way

ANOVA, independent-samples t-test and Spearman’s correlation

analysis was performed using SPSS 26 (IBM SPSS Statistics for

Windows, Armonk, NY, USA). Nonmetric multidimensional
frontiersin.org
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scaling (NMDS) analysis was performed on the fish egg community

structure in each of the four seasons using R 4.1.0.To avoid the

influence of occasional/rare species, the analysis of fish egg

community structure did not include species that occurred less

than three times in four seasons (Rao et al., 2020). In this study, fish

egg communities was analyzed using R 4.1.0. First, the fish egg

abundance was transformed by Hellinger transformation and

environmental factors were standardized, and detrended

correspondence analysis (DCA) was performed on the fish egg

abundance in each of the four seasons. All the first gradient lengths

were less than four, so redundancy analysis (RDA) was used.
3 Results

3.1 Environmental factors

One-way ANOVA and independent-samples t-tests were

performed on the environmental factors between seasons and

between areas, respectively (Table 1). With the exception of

depth, other environmental factors were significantly different

between seasons, but none of the environmental factors differed

significantly between areas. The station with highest SST in winter,

spring and summer was S3, while in autumn was S7, both of which

were in and near the thermal discharge outfall. SSS was highest in

spring and lowest in summer, and the station with the highest SSS

was S3 both in winter and summer. DO was highest in autumn and

lowest in summer. The station with the highest concentration of SS

in winter, spring and autumn was S3, and in summer was S17. Chl-a

concentration was highest in autumn and lowest in summer.
3.2 Fish egg communities

3.2.1 Composition of fish egg species
A total of 100,985 fish eggs were collected in this survey. Among

them, 17 taxa of eggs were identified, belonging to five orders, 14

families and 17 genera, 12 of which were identified to species level

(Table 2). Perciformes accounted for the highest proportion of the

total species, with eight species, accounting for 47.1%. Clupeiformes

had four species, accounting for 23.5%. Scorpaeniformes and
Frontiers in Marine Science 04
Pleuronectiformes had two species each, accounting for 11.8%.

Anguilliformes had one species, accounting for 5.9%. The highest

number of species was found in summer with nine, followed by

spring and autumn with eight and seven, respectively; and the

lowest number of species in winter with four (Figure 2). There were

three, five, two and five dominant species in winter, spring, summer

and autumn, respectively. The dominant fish egg species (Y ≥ 0.02)

showed significant seasonal variation. Among them, Nematalosa

japonica was the dominant species in three seasons. In winter, fish

eggs community was dominated by Acanthopagrus schlegelii,

Nematalosa japonica and Solea ovata. Acanthopagrus schlegelii

and Nematalosa japonica were still dominant in spring,

accompanied by three new dominant species — Leiognathus sp.,

Scorpaena sp. and Stolephorus sp. In summer, there were two new

dominant species, Photopectoralis bindus and Stolephorus

commersonnii. Five species were defined as dominant species in

autumn, and the most dominant species was Stolephorus

commersonnii (Table 3).

3.2.2 Fish egg abundance
The average abundance of fish eggs in the adjacent waters of

DNPP in the four seasons was 7,686 ± 22,637.26 ind./1,000 m3.

Among them, the average abundance of Perciformes was the

highest (6,859.07 ± 20,904.55 ind./1,000 m3, 86.8%), followed by

Clupeiformes (470.66 ± 1033.22 ind./1000 m3, 6.0%),

Scorpaeniformes (382.27 ± 1,205.42 ind./1,000 m3, 4.8%),

Pleuronectiformes (90.82 ± 258.09 ind./1,000 m3, 1.1%) and

Anguilliformes (36.09 ± 151.78 ind./1,000 m3, 0.5%), with the

remainder being unidentified species (64.74 ± 190.87 ind./1,000

m3, 0.8%). The seasonal and spatial distributions of fish egg

abundance in the adjacent waters of DNPP are shown in

Figure 3. The highest average abundance was in spring (19,674.02

± 39,046.91 ind./1000 m3), followed by summer (6,378.37 ±

13,167.76 ind./1000 m3), winter (2,354.03 ± 4831.58 ind./1000

m3) and the lowest in autumn (343.53 ± 404.26 ind./1000 m3).

Except in winter, the average abundance offish eggs in the SWA

was lower than that in the NEA in all other seasons. The average

abundance of fish eggs in the SWA was highest in winter and in the

NEA was highest in spring, and was lowest in autumn in both the

SWA and NEA. According to analysis of the average abundance

over four seasons, the average abundance of fish eggs in the SWA
TABLE 1 Mean and standard deviation of environmental factors in the waters adjacent to DNPP.

Factors Unit
Seasons Areas

Winter Spring Summer Autumn SWA NEA

Depth m 10.7 ± 4.4 12.9 ± 3.7 12.8 ± 3.3 13.2 ± 3.3 13.5 ± 4.3 11.6 ± 2.9

SST °C 20.6 ± 1.2c 23.7 ± 1.0b 30.7 ± 0.4a 24.5 ± 1.0b 24.4 ± 3.8 25.3 ± 3.6

SSS PSU 32.83 ± 0.10b 33.33 ± 0.14a 30.63 ± 0.45d 32.21 ± 0.16c 32.29 ± 0.91 32.28 ± 1.18

DO mg/L 7.16 ± 0.53a 7.14 ± 0.37a 6.40 ± 0.39b 7.87 ± 0.76a 7.15 ± 0.45 7.16 ± 0.92

SS mg/L 3.73 ± 1.45b 2.79 ± 1.52b 1.63 ± 2.07c 6.50 ± 1.91a 3.43 ± 2.62 3.90 ± 2.43

Chl-a mg/m3 1.23 ± 0.52b 1.42 ± 0.85b 1.22 ± 0.46b 3.89 ± 1.71a 2.08 ± 1.45 1.88 ± 1.62
fr
Different letters in the same line between seasons/areas indicate significant differences in environmental factors (P< 0.05).
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(2,426.23 ± 4,265.67 ind./1,000 m3) was lower than that in the NEA

(12,105.45 ± 30,018.65 ind./1,000 m3).

3.2.3 Species diversity indexes
One-way ANOVA and independent-samples t-test were

respectively performed on the Shannon-Weiner diversity index

(H'), Pielou evenness index (J') and Margalef richness index (d)

between seasons and between areas (Table 4). All species diversity

indexes (H', J', d) were significantly different between seasons but

none were significantly different between areas. In particular,H’ was

significantly higher in spring than in summer and winter (P ≤

0.021), J' was significantly higher in autumn than in spring, summer

and winter (P ≤ 0.002), and d was significantly higher in spring than

in summer and winter (P ≤ 0.037). The species diversity indexes (H',

J', d) was higher in spring and autumn than in summer and winter.

3.24 Analysis of fish egg community structure
NMDS analysis based on the Bray-Curtis distance was performed

for the fish egg community structure in the four seasons by adding

confidence ellipses with 95% confidence intervals. The analysis did

not include species that occurred less than three times in the four

seasons of the survey combined and a quadratic root transformation

was performed on fish egg abundance. The stress value was 0.059,

indicating the validity of NMDS analysis (Figure 4). The results

showed that the fish egg communities were approximately divided

into four groups, corresponding to the four seasons, indicating

significant differences between seasons.
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3.3 Relationship between the fish
egg communities and environmental
factors in Daya Bay

RDA was performed on fish egg abundance and environmental

factors after transformation in each of the four seasons (Figure 5).

In winter, the first axis was mainly related to depth, SST, SSS and

Chl-a concentration, and the second axis was mainly related to DO

and SS. The average abundance of Acanthopagrus schlegelii was

negatively correlated with SST and SSS, and in contrast to Solea

ovata, the abundance of Nematalosa japonica was high where Chl-a

concentration was high. In spring, the first axis was mainly related

to DO, and the second axis was mainly related to depth, SST and

SSS. The abundance of Leiognathus sp. was high in deep water and

high DO and that of Acanthopagrus schlegelii was positively

correlated with SST in spring, in contrast to winter. In summer,

the first axis was mainly related to SST, and the second axis was

mainly related to SSS. The abundance of Photopectoralis bindus was

higher where SST and Chl-a concentrations were high, while the

opposite was true for Stolephorus commersonnii. In autumn, the

first axis was mainly related to SS, and the second axis was mainly

related to depth and Chl-a concentration. The abundance of

Photopectoralis bindus and Nematalosa japonica was high in

shallow water and high Chl-a, while the opposite was true for

Stolephorus commersonnii and Cynoglossus sp.

Spearman correlation analysis was performed between species

diversity indexes (H', J', d), fish egg abundance (N) and environmental
TABLE 2 List of fish eggs in the adjacent waters of DNPP.

Number Orders Species Abbreviation

1 Perciformes Leiognathus sp. Le sp.

2 Acanthopagrus schlegelii Acsc

3 Photopectoralis bindus Phbi

4 Scolopsis vosmeri Scvo

5 Callionymus curvicornis Cacu

6 Sillago sihama Sisi

7 Synanceia horrida Syho

8 Sciaenops ocellatus Scoc

9 Clupeiformes Nematalosa japonica Neja

10 Stolephorus sp. St sp.

11 Stolephorus commersonnii Stco

12 Escualosa thoracata Esth

13 Scorpaeniformes Scorpaena sp. Sc sp.

14 Thysanophrys celebica Thce

15 Pleuronectiformes Solea ovata Soov

16 Cynoglossus sp. Cy sp.

17 Anguilliformes Muraenesox sp. Mu sp.

18 / Unidentified Unidentified
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factors (Table 5). The results showed that the same environmental

factors had different effects onH', J', d and fish egg abundance in different

seasons. In winter, H', J' and d were all significantly and positively

correlated with SST. In spring, H' was significantly and negatively

correlated with Chl-a concentration; d was significantly and positively

correlated with depth; and fish egg abundance was significantly and

positively correlated with SS. In summer,H', J', d and fish egg abundance

were not significantly correlated with environmental factors. In autumn,

fish egg abundance was highly significantly and positively correlated with

SSS. In the results of all four seasons, H' was highly significantly and

positively correlated with SSS, and significantly and positively correlated

with DO; J' was highly and positively correlated with DO and SS.
Frontiers in Marine Science 06
4 Discussion

4.1 Characteristics of fish egg communities

Lin et al. (2010) concluded that the dominant species in Daya

Bay were mainly Perciformes and Clupeiformes. Similarly, Wang

et al. (2010) conducted four fisheries resource surveys and found

that Perciformes were dominant in Daya Bay. Based on data from

bottom trawl surveys of four cruises, Guo et al. (2018) conducted in

Daya Bay between 2015 and 2016, showed that Perciformes were

overwhelmingly dominant. Our study had similar results that the

Perciformes and Clupeiformes had the highest number of species

and the highest average abundance.
FIGURE 2

Seasonal and spatial variation of the species number of fish egg in the adjacent waters of DNPP.
TABLE 3 Dominant species in each season in the adjacent waters of DNPP.

Dominant species
Dominance

Winter Spring Summer Autumn

Acanthopagrus schlegelii 0.84 0.34

Nematalosa japonica 0.05 0.02 0.03

Solea ovata 0.02

Leiognathus sp. 0.46

Scorpaena sp. 0.02

Stolephorus sp. 0.02

Photopectoralis bindus 0.92 0.17

Stolephorus commersonnii 0.02 0.23

Sillago sihama 0.05

Cynoglossus sp. 0.03
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The annual average number of fish eggs in Daya Bay fluctuates

greatly from year to year. From March 1994 to February 1995, Lin

and Zhan, (2000) conducted a survey of early fish resources in the

adjacent waters of DNPP, and the annual average number of eggs

was 236.0 eggs/net, and the annual average number of eggs

harvested from 1984 to 1993 ranged from 46.9 to 660.1 eggs/net.

The DNPP was established in 1994, and the average number of fish

eggs harvested before and after its establishment did not exceed the

historical fluctuation range, but was within the fluctuation range,

indicating that the number of eggs in the adjacent waters of DNPP
Frontiers in Marine Science 07
remained normal even though it was affected by thermal discharge.

The average abundance of fish egg in 2020 was at the higher level of

the fluctuating range of historical surveys. The increase of fish eggs

in Daya Bay did not represent an improvement in fish stocks, but

rather a result of a change in the structure of the species, because the

proportion of Leiognathidae eggs increased, while the proportion of

economic fish decreased.

Numerous studies have shown that the number and abundance

of fish eggs are both higher in spring and summer than in autumn

and winter, and the results of this study were consistent with
A B

DC

FIGURE 3

Seasonal and spatial distribution of the abundance of fish egg in the adjacent waters of DNPP (A: Winter; B: Spring; C: Summer; D: Autumn).
TABLE 4 Mean and standard deviation of Shannon-Weiner diversity index (H’), Pielou evenness index (J’) and Margalef richness index (d) in the
adjacent waters of DNPP.

Indexes
Seasons Areas

Winter Spring Summer Autumn SWA NEA

H’ 0.475 ± 0.308b 0.888 ± 0.272a 0.292 ± 0.191b 0.727 ± 0.529ab 0.600 ± 0.444 0.625 ± 0.393

J’ 0.477 ± 0.240bc 0.579 ± 0.157b 0.272 ± 0.170c 0.863 ± 0.407a 0.563 ± 0.320 0.529 ± 0.286

d 0.273 ± 0.149b 0.471 ± 0.161a 0.287 ± 0.134b 0.348 ± 0.327ab 0.360 ± 0.267 0.345 ± 0.174
Different letters in the same line between seasons/areas indicate significant differences in environmental factors (P< 0.05).
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previous studies (Xiao et al., 2013; Li et al., 2014; Mota et al., 2017).

In this investigation, jellyfish were present in all four seasons. The

abundance of fish eggs, larvae and juveniles was negatively

correlated with the abundance of jellyfish owing to the predation

and competition between them. The average abundance of jellyfish

was highest and the average abundance of fish eggs was lowest in

winter, but the average abundance of fish eggs was mainly related to

the different spawning periods and the optimum environmental

conditions for the fish. A number of studies have demonstrated that

jellyfish predate on fish eggs, larvae and juveniles, forming a

predatory relationship (Underwood and Seymour, 2007; Riascos

et al., 2014). Meanwhile, jellyfish, fish larvae and juveniles have

similar feeding habits, forming a competitive relationship (Ajiboye

et al., 2011; Nagata and Morandini, 2018).
4.2 Effects of environmental factors on
major species

Acanthopagrus schlegelii were mainly found in deeper water in

winter, but mainly in shallower water near the shore in spring,

probably related to the fact that Acanthopagrus schlegelii spawned

near the shore in spring. The study by Lin et al. (2010) showed that
FIGURE 4

NMDS analysis based on the data of fish egg abundance.
A B

DC

FIGURE 5

RDA ordination plot of the relationship between fish egg communities and environmental factors (A: Winter; B:Spring; C: Summer; D: Autumn).
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Sparidae eggs in Daya Bay were overwhelmingly dominant in

winter and were also present in March, while none were found in

May, which is consistent with the results of this study, and similar

results were found in the geographically close Hong Kong and its

adjacent waters (Deng et al., 2001; Law and Sadovy de

Mitcheson, 2017).

In this survey, Leiognathidae were present in spring, summer

and autumn. In this study, the average abundance of Leiognathidae

eggs was 54.57%, 91.99% and 24.87% in spring, summer and

autumn, respectively, and the species was dominant in all three

seasons. The results of Lin et al. (2010) showed that in spring,

summer and autumn of 2004, the number of eggs of Leiognathidae

was 71.7%, 73.1% and 86.0%, respectively, with an overwhelming

dominance of number. The increase of Leiognathidae populations

was related to environmental changes, such as warming of water

due to thermal discharge, which may facilitated the reproduction of

some small pelagic fishes (Lin and Zhan, 2000).

The average abundance of Stolephorus commersonnii in the

NEA was higher, probably in higher salinity waters, fish eggs can

float, absorbing oxygen and increasing the hatching rate of eggs (Lu

et al., 2020). The environment in which Stolephorus commersonnii

occur was dominated by higher temperature and salinity (Tian

et al., 2017), which was similar to the results of this study.
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The Sillago sihama are mainly found in estuaries and nearshore

waters (Qiu et al., 2020). In our study, the stations with high

abundance of Sillago sihama were mainly in the shallow inshore

waters on the western side of Daya Bay. The inshore waters of Daya

Bay are shallow, rich in nutrient salts and abundant in bait, which is

conducive to the growth of Sillago sihama.
4.3 Impact of the once-through cooling
system of the nuclear power plant on the
fish egg community

The once-through cooling system in nuclear power plant operation

needs to extract a large amount of seawater as circulating cooling water.

When cooling seawater enters the cooling system, larger marine

organisms (generally larger than 3 mm) carried into the cooling

system will be intercepted by the filter screen and other devices, while

smaller marine organisms (generally smaller than 3 mm) will be carried

into the cooling water system pipeline with the seawater, resulting in a

certain loss of marine biological resources. The total circulating water

volume of the existing six units of DNPP and LNPP is about 315 m3/s.

Approximately 125.9 m3/s of new circulating water will be added after

the completion and operation of the LNPP Phase III project. The total
TABLE 5 Spearman correlation analysis between species diversity indexes (H’, J’, d), fish egg abundance (N) and environmental factors.

Seasons Indexes
Correlation coefficients

Dep SST SSS DO SS Chl-a

Winter H’ -0.588 0.689* 0.517 -0.519 -0.068 0.500

J’ -0.429 0.698* 0.433 -0.502 -0.128 0.400

d -0.378 0.723* 0.333 -0.460 -0.230 0.117

N -0.311 -0.235 0.167 0.218 0.587 0.350

Spring H’ 0.523 0.047 0.510 0.256 -0.156 -0.573*

J’ 0.362 -0.139 0.266 0.416 -0.147 -0.281

d 0.559* 0.114 0.508 0.025 -0.300 -0.522

N -0.431 0.268 -0.053 -0.432 0.569* 0.066

Summer H’ -0.479 -0.497 0.103 -0.335 0.036 -0.164

J’ -0.482 -0.519 0.438 -0.409 0.176 -0.036

d -0.128 0.235 -0.515 -0.024 -0.115 -0.224

N 0.061 -0.316 -0.006 -0.322 0.248 0.382

Autumn H’ 0.167 0.050 -0.134 -0.417 -0.067 -0.217

J’ 0.417 0.467 -0.185 -0.333 -0.117 -0.450

d 0.083 -0.233 -0.361 -0.500 -0.233 -0.267

N -0.100 0.500 0.798** 0.650 0.600 0.300

Four seasons H’ 0.047 -0.185 0.495** 0.340* 0.260 0.095

J’ 0.090 -0.237 0.273 0.500** 0.403** 0.255

d 0.044 0.064 0.277 -0.024 -0.116 -0.207

N -0.246 0.201 0.204 -0.292 -0.057 -0.016
* denotes P< 0.05, ** denotes P< 0.01.
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cooling water intake and discharge capacity for the operation of the eight

nuclear power plant units will then be approximately 440 m3/s, which

will increase the entrainment effect on marine organisms in Daya Bay

reserve and partially weaken the supplemental function of aquatic

resources in the waters adjacent to the nuclear power plant.

The results of this survey showed that the number of fish eggs

was at a high level of normal fluctuation in the historical survey of

Daya Bay. Even in S3, which is the closest to the nuclear power plant

thermal discharge outlet, we were able to collect a number of fish

eggs with an average abundance up to 2,603.65 ind./1,000 m3. In

addition, this survey also found that fish tend to spawn in the

thermal discharge plume area (0.5–3°C temperature rise). Areas S6-

S7-S8-S9-S10-S11 (temperature rise 1–3 °C) and S14-S15-S16-S17

(temperature rise< 1 °C) showed dense distribution areas of fish

eggs, with average abundance up to 6,806.90 ind./1,000 m3 and

22,720.74 ind./1,000 m3, respectively. The effect of thermal

discharge on fish is a complex process, and different fish species

have different abilities to adapt to and perceive temperature

differences, but generally fishes prefer a slightly higher

temperature for spawning than their usual environment (Evans

et al., 1986; Lin and Zhan, 2000; Jiang et al., 2016). The temperature

rise frontal area of thermal discharge is a mixed area of cold and

warm water, where plankton is more abundant. As a result, fishes

are abundant and also prefer to spawn here.

The distribution of fish eggs is influenced not only by the

spawning behavior of brood stocks and various environmental

and ecological factors, but also by physical factors such as sea

currents (Zhang, 1996; Lu et al., 2020). The temperature rise frontal

area formed by the DNPP thermal discharge is in the central

spawning and breeding ground of Daya Bay, which has the

characteristic of a topographic vortex due to the influence of the

thermal discharge plume and the central islands. Both fish eggs and

larvae are better able to remain in the vortex to develop and grow,

and are less likely to be entrained in the west side of the water

intake. Thus it can be seen that there is no obvious effect of nuclear

power plant thermal discharge on fish spawning and breeding.
5 Conclusions

In this study, differences in environmental factors, average fish

egg abundance and species diversity indexes (H', J' and d,

respectively) were all more significant between seasons than

between areas. The results of NMDS analysis also revealed

significant differences in the fish egg communities between seasons.

Fish eggs of the dominant species (Y ≥ 0.02) showed significant

seasonal variation. Perciformes and Clupeiformes were the main

contributing taxa to fish egg species and abundance in the adjacent

waters of DNPP. The results of RDA and Spearman’s correlation

analysis demonstrated that SST had different effects on the fish egg

communities in different seasons. Areas of thermal discharge at the

temperature rise front tend to form spawning grounds. In addition,

the flow field created by the nuclear power plant thermal discharge

plume and the central islands make it less likely that fish eggs will be

entrained into the water intake. Although the entrainment effect of

the nuclear power plant water intake and thermal pollution of partial
Frontiers in Marine Science 10
waters owing to thermal discharge can cause some loss of fish eggs,

the temperature front formed by the dispersion of thermal discharge

is conducive to the formation offish spawning grounds. The function

of supplement of fish resources in the waters adjacent to nuclear

power plant can still be effectively maintained.
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