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Calibration of fish counts in
video surveys: a case study from
the Southeast Reef Fish Survey

Nathan M. Bacheler*, Kyle W. Shertzer, Zebulon H. Schobernd
and Lewis G. Coggins Jr.

Beaufort Laboratory, Southeast Fisheries Science Center, National Marine Fisheries Service, Beaufort,
NC, United States
Changes to sampling gears or vessels can influence the catchability or

detectability of fish, leading to biased trends in abundance. Despite the

widespread use of underwater video cameras to index fish abundance and the

rapid advances in video technology, few studies have focused on calibrating data

from different cameras used in underwater video surveys. We describe a side-by-

side calibration study (N = 143 paired videos) undertaken in 2014 to account for a

camera change in the Southeast Reef Fish Survey, a regional-scale, multi-species

reef fish survey along the southeast United States Atlantic coast. Slope estimates

from linear regression for the 16 species included in the analyses ranged from

0.21 to 0.98, with an overall mean of 0.57, suggesting that original cameras

(Canon Vixia HF-S200) observed an average of 43% fewer fish than newer

cameras (GoPro Hero 3+). Some reef fish species had limited calibration

sample sizes, such that borrowing calibration information from related or

unrelated species was justified in some cases. We also applied calibrations to

11-year video time series of relative abundance of scamp Mycteroperca phenax

and red snapper Lutjanus campechanus (N = 13,072 videos), showing that

calibrations were critical to separating changes in camera sightability from true

changes in abundance. We recommend calibrating data from video cameras

anytime changes occur, and pairing video cameras to the extent possible to

control for the spatial and temporal variability inherent in fish populations and

environmental conditions. Following these guidelines, researchers will be able to

maintain the integrity of valuable long-term video datasets despite intentional or

unavoidable changes to video cameras over time.

KEYWORDS

fishery-independent survey, calibrate, reef fish, catchability, index of abundance,
camera, video, survey
Introduction

Estimating the abundance of marine fish or invertebrates over large spatial or temporal

scales is typically accomplished with data from scientific surveys, and these abundance

estimates or indices are critically informative inputs to stock assessments (Dennis et al.,

2015; Maunder and Piner, 2015). A wide variety of sampling gears have been used by
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scientific surveys to estimate fish abundance (Murphy and Jenkins,

2010; Goethel et al., 2022). Trawls are typically used on

unconsolidated sediments and can often be used to estimate

absolute abundance or density of fish given the known area

sampled (Kimura and Somerton, 2006). On untrawlable habitats

like natural or artificial reefs, numerous gears have been used but

the resulting abundance estimates are often relative (i.e., indices of

abundance) because estimating the area over which sampling

occurs is challenging (Maunder and Punt, 2004; Bacheler et al.,

2022a). It is nearly universally assumed that indices of abundance

from survey data vary in proportion to the actual abundance of the

population; in other words, catchability (i.e., the efficiency of a

sampling gear) is nearly always assumed to be constant over space

and time, even though its absolute value is generally unknown

(Hangsleben et al., 2013).

There are several reasons why catchability of a survey gear may

not be constant over time. Catchability is often considered to be the

product of availability (i.e., proportion of the stock occurring in the

survey area) and gear efficiency (i.e., the proportion of animals

caught or detected that are available to the gear; Arreguıń-Sánchez

(1996)). Changes in the spatial footprint of a survey or seasonal or

diurnal migrations of a species of interest influence that species’

availability to the survey (Aguzzi and Company, 2010). Moreover,

environmental variability can influence the efficiency of sampling

gears (Bacheler et al., 2014; Bacheler and Shertzer, 2020), which, if

left unaccounted for, will be confounded with temporal trends in

abundance (Tyre et al., 2003). Another reason why catchability can

vary in a survey is due to changes in gears, vessels, or sampling

characteristics over time (Pelletier, 1998; Cadigan and Dowden,

2010; Thorson and Ward, 2014). These changes may be

unavoidable (e.g., when a survey vessel or outdated equipment

needs to be replaced), while other changes may be discretionary

(e.g., due to improved performance or ease of use of new gears).

Regardless, any of these changes require calibration between the old

and new sampling methodologies because any change in gears or

vessels can influence the relative catch rates (Pelletier, 1998; Kimura

and Somerton, 2006).

Over the last few decades, underwater video has become a

common tool for indexing the abundance and distribution of fish

species in many places throughout the world (Mallet and Pelletier,

2014; Whitmarsh et al., 2017; Bacheler and Ballenger, 2018).

Underwater video has evolved into a valuable sampling gear that

can be standardized to provide indices of abundance for a wide

variety of pelagic and demersal fish species (Priede and Merrett,

1996; Heagney et al., 2007; Brooks et al., 2011; Santana-Garcon

et al., 2014; Bacheler and Ballenger, 2018). Some video surveys use

unbaited cameras while others are baited, and different fish

communities may be sampled based on bait choices (Harvey

et al., 2007; Dorman et al., 2012).

While improvements have been made to most sampling gears

over time, underwater video cameras have evolved particularly

dramatically over the last half century (Mallet and Pelletier,

2014). The original cameras used to quantify fish species diversity

and abundance were large (~ 1 m high, 0.5 m in diameter), low

quality, and needed a connection to a power supply on land or ship

(Kumpf and Lowenstein, 1962; Myrberg et al., 1969). Nowadays,
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underwater video cameras are small, cheap, reliable, fully digital,

record in high definition, and have small and long-lasting batteries

(Struthers et al., 2015). Just as changes to trawl nets or the vessels

dragging them influence the catchability of fish, the improvements

of video cameras over time likely improved the sightability of fish

(i.e., ability to see fish that are present). Even within the advanced

underwater video cameras available today, there is enormous

variability in video size, shape, color, quality, and light sensitivity

that can influence the sightability offish. Despite the vast changes in

video cameras over time and the fact that numerous fishery-

independent surveys use video cameras, there are few published

examples where fish counts have been calibrated between cameras

(but note that calibrations commonly occur when measuring fish

length; Harvey and Shortis, 1998; Balletti et al., 2014; Letessier et al.,

2015; Shafait et al., 2017).

Here, we describe a calibration study that was undertaken to

account for a camera change in the Southeast Reef Fish Survey

(SERFS), a large-scale fishery-independent trap and video survey

that provides key relative abundance data for many reef-associated

fish species along the southeast United States Atlantic coast

(hereafter, SEUS) between North Carolina and Florida. There

were four objectives of our work. The first objective was to

describe the statistical design and methodological approach of our

calibration experiment with paired camera given the paucity of

examples in the literature. Our second objective was to estimate

species-specific calibration factors for multiple economically

important reef fish species in the SEUS. Our third objective was

to consider alternatives to species-specific calibrations when sample

sizes were limited, for instance, by borrowing information from

related or unrelated species. The fourth objective was to evaluate

two approaches for applying calibration factors between video

cameras: calibrating the data before inclusion in a standardization

model or after standardization has occurred (i.e., calibrating the

index itself). Through this case study, we describe the importance of

video calibrations, detail the lessons learned from our video

calibration experiment, and provide guidance to researchers

around the world on how to calibrate for changes in video

sampling gears.
Materials and methods

Objective 1: calibration experiment design

Video data for this study were provided by SERFS, a regional-

scale trap and video survey occurring in the SEUS. SERFS is made

up of three groups that sample reef fish species collaboratively using

identical methods. The first group is the Marine Resources

Monitoring, Assessment, and Prediction program, housed at the

South Carolina Department of Natural Resources, which has been

funded by the National Marine Fisheries Service (NMFS) to sample

with chevron traps in the region since 1990. The second group is the

Southeast Area Monitoring and Assessment Program – South

Atlantic Region reef fish complement, which has provided

additional funding to South Carolina Department of Natural

Resources to conduct reef fish surveys in the region since 2009.
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The third group is the Southeast Fishery-Independent Survey,

which was created by NMFS in 2010 to work with their partners

listed above to increase fishery-independent sample sizes in the

SEUS and incorporate underwater video into the survey.

SERFS used a simple random sampling design to select stations

for sampling each year. Approximately 2,000 stations were

randomly selected for sampling each year out of a sampling

frame of approximately 4,300 stations on known hardbottom reef

habitat. A majority of stations sampled each year and included in

our analyses were randomly selected for sampling, but some

stations not selected for sampling were sampled opportunistically

to increase sampling efficiency. A small number of new hardbottom

sampling stations were discovered and sampled each year, and were

included in our analyses if hardbottom was observed on video.

Sampled stations were always separated by at least 200 m in a given

year to provide independence between samples. Five research

vessels have been used to carry out this work: the R/V Palmetto,

R/V Savannah, NOAA Ship Nancy Foster, NOAA Ship Pisces, and

NOAA Ship SRVx Sand Tiger. All video sampling occurred during

daylight hours between the spring and fall each year.

For 20 years, SERFS used chevron traps alone to sample reeffish

species in the SEUS. Chevron traps are large, arrowhead-shaped

traps that were baited with Brevoortia spp. and soaked for ~90 min

(Figure 1). Beginning in 2011, all chevron traps deployed by SERFS

included two attached cameras – one placed over the trap mouth

that looked outward and used to count fish and quantify seafloor

habitat, and one placed over the trap nose that also looked outward,

but this second camera was only used to quantify seafloor habitat in

the opposite direction of the first camera. In 2011–2014, Canon

Vixia HF-S200 video cameras in Gates HF-21 housings were

attached over the mouth of the trap and used to count fish. In

2015, GoPro Hero 3+ cameras replaced the Canon cameras because
Frontiers in Marine Science 03
GoPros are smaller, cheaper, higher resolution, and have a larger

field of view, which we expected would increase fish counts relative

to Canon cameras (Figure 2).

To address our first objective and account for this camera

switch, we conducted a calibration experiment during the 2014

field season. We attached Canon Vixia HF-S200 and GoPro Hero 3

+ cameras side-by-side on traps, looking outward over the trap

mouth (Figures 1, 2). In addition to pairing video cameras in space,

we also paired video reading in time (see below). A total of 143

chevron traps were deployed in 2014 that included both video

cameras placed side-by-side over trap mouths, looking outward.

Two video cameras malfunctioned, leaving 141 paired video

samples that were available for reading. Of these, 54 paired

samples were deemed to have sufficient numbers of priority fish

species (e.g., red snapper) from cursory examinations to make

complete reading of these calibration videos worthwhile.
Objective 2: estimating calibrations for reef
fish species

We focused our analyses on economically-important species of

reeffish species across various families that had sufficient calibration

sample sizes (minimum sample size threshold:N ≥ 4). Note that two

species of lionfish Pterois spp. (i.e., devil firefish Pterois miles and

red lionfish Pterois volitans) exist in the SEUS and are difficult to

distinguish visually (Hamner et al., 2007), so they were treated as a

single species here.

All videos were read using the MeanCount approach, which was

calculated as the mean number of individuals of a particular species

that was observed in a series of snapshots within a video (Schobernd

et al., 2014). Schobernd et al. (2014) showed that MeanCount was
FIGURE 1

Side-by-side calibration experiment conducted by the Southeast Reef Fish Survey along the southeast United States Atlantic coast in 2014. Canon
Vixia HF-S200 and GoPro Hero 3+ cameras were attached to baited traps side-by-side looking outward and read for fish at exactly the same times
using the MeanCount approach (Schobernd et al., 2014).
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proportional to actual abundance using laboratory, simulation, and

field data, while other common video reading metrics like MaxN

(i.e., MinCount; Ellis and DeMartini, 1995) were often nonlinearly

related to actual abundance (but see Campbell et al., 2018). Here, we

followed SERFS video reading protocol: all species were counted on

a total of 41 snapshots, starting 10 min after the trap landed on the

bottom and spaced 30 seconds apart for a total of 20 min (Bacheler

et al., 2020). Four video readers with extensive training in fish

identification read these calibration videos, and a portion of videos

from each reader were read by other readers to ensure accuracy.

Species-specific calibration factors were estimated using linear

models. Linear models related the MeanCounts of a particular

species on Canon cameras (MeanCountCanon) as the response

variable to the counts of that species on GoPro cameras

(MeanCountGoPro) as the predictor variable as follows:

MeanCountCanon = a + b(MeanCountGoPro) (1)

where a is the model intercept and b is the slope. We also

provide the R2 value for each model, which indicates how

predictable Canon counts are from GoPro counts. Note that we

are using Canon counts as the response variable and GoPro counts

as the predictor variable here, implying that our slope and intercept

estimates would be used to reduce GoPro counts to make them

comparable to Canon counts (see Results below). Alternatively, we

could have used GoPro counts as the response variable and Canon

counts as the predictor variable, in which case slope and intercept
Frontiers in Marine Science 04
estimates would be used to increase Canon counts to make them

comparable to GoPro counts. Ultimately, we are interested in using

these data to develop time series of relative abundance, which were

robust to the direction of calibration. These and all following

analyses were conducted in R (R Core Team, 2021).
Objective 3: limited sample sizes

Calibrations for species with relatively low sample sizes were in

some cases poorly estimated (see Results below), so our third

objective was to evaluate whether borrowing information from

related or unrelated species might be warranted in some cases.

Ideally, sufficient data will be collected for all species of interest

during calibration experiments, but in our case, despite collecting

143 paired calibration videos, some important but rare species had

quite low sample sizes.

One potential solution for estimating calibrations for species

with low sample sizes is to apply an overall calibration calculated

across all species. This approach would only be justified if variability

among families was low. To evaluate whether this was the case, we

calculated family-level calibrations for each of the family groupings

in our calibration dataset, using linear models as described in

Equation 1 above. Similar calibrations among families would

suggest low variability among taxa and therefore an overall

calibration might be substituted for species with low sample sizes.

Alternatively, significant variability among families would suggest

applying an overall calibration to taxa would not be valid. Note that

commonly observed species will tend to drive family-level

calibrations much more so than rarer species.

Another possible solution is to apply the family-level

calibrations to species with low sample sizes. In this situation,

there may be behavioral or anatomical similarities among species

of a particular family that could justify borrowing information from

related species. For families containing more than one species with

sufficient calibration sample sizes, we compared family-level

calibrations to those of each species within that family. Similar

calibrations for species within a family might justify the use of a

family-level calibration for species with insufficient sample sizes. In

contrast, if there is sufficient variability in calibrations among

species within a family, applying a family-level calibration to any

particular species is likely not justified.
Objective 4: compare approaches to apply
calibrations when developing indices of
relative abundance

Our fourth objective was to evaluate two approaches for

applying calibrations: calibrating the data before inclusion into a

standardization model or after standardization has occurred.

Calibrating at the data level would be preferable in various

situations where standardization models are not being used, for

example, in ecological studies or specific research projects.

Alternatively, calibrating a final index of abundance is much

faster and easier and would be preferable in most cases where
FIGURE 2

Differences in field of view between two underwater video cameras,
paired in space and time, from a sample of the Southeast Reef Fish
Survey off Jacksonville, Florida, taken in 2014. (A) Image from a
Canon® Vixia HF-S200 video camera in Gates underwater housing.
(B) Image from GoPro Hero 3+ camera in stock underwater
housing. Numbers are shown so readers can identify and compare
the same individual fish in each image: (1) almaco jack Seriola
rivoliana; (2) red snapper Lutjanus campechanus.
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video data are being standardized with a statistical model. It was

unclear, however, if these two methods of applying calibrations

provided standardized indices of abundance that are equivalent.

To evaluate this objective, we tested whether indices of

abundance from two representative species varied based on how

the calibrations were applied (i.e., at the data or index level). We

used SERFS video data in 2011–2021 for scamp Mycteroperca

phenax and red snapper Lutjanus campechanus. These species

were selected because they have displayed opposite patterns in

relative abundance during the 2011–2021 time frame, with red

snapper increasing (SEDAR, 2021a) and scamp declining

(SEDAR, 2021b).

Here we followed the standardization procedures used for

SERFS video data in the stock assessments of these two species

(SEDAR, 2021a; SEDAR, 2021b). The response variable was

SumCount, defined as the total number of individuals (scamp or

red snapper) observed across all frames of a unique video sampling

event. For these analyses, SumCount was used instead of

MeanCount because the negative binomial distribution operates

on discrete variables (MeanCount is continuous), but we note that

SumCount relates linearly to MeanCount because the number of

frames per event is constant. The distribution of SumCount for

most species contained a large proportion of zeros and had an

extended tail of positive values. Therefore, the modeling approach

applied a zero-inflated negative binomial (ZINB) formulation, in

which a negative binomial sub-model describes the count data and a

binomial sub-model describes the occurrence of positive versus zero

counts (Zeileis et al., 2008; Zuur et al., 2009). Explanatory variables

included year (y), season (t), depth (d), latitude (lat), temperature

(temp), water clarity (wc), current direction (cd), biotic density (bd),

and substrate composition (sc; see Bacheler et al. (2014) for details).

Year was necessarily included, because for an index of abundance,

the year effect is of primary interest. The other variables were

included or excluded based on a step-wise backward model

selection procedure, starting with the full model formulation and

then removing variables that did not contribute to explaining

variance in the data, based on the Akaike information criterion

(AIC) and likelihood ratio tests (Zuur et al., 2009). For this

procedure, the initial full model was:

SumCount = y + t + d + lat + temp + wc + cd + bd + sc   j
y + t + d + lat + temp + wc + cd + bd + sc :

(2)

In this formulation, variables to the left of the vertical bar apply

to the negative binomial sub-model and variables below it apply to

the binomial sub-model. The final model included only those

variables that were retained after applying the model selection

procedure. Model fitting used the zeroinfl function in the countreg

package of R (Zeileis and Kleiber, 2017).

Uncertainty in the resulting index of abundance was computed

using a bootstrap procedure with N = 1000 replicates. For each

replicate, a new data set of the original size was created by drawing

video observations (rows) at random with replacement. The final

model configuration was fitted to each replicate data set, and

resulting variability (i.e., 95% confidence intervals) in the relative

abundance was computed for each year.
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The calibration method was applied in two different ways, either

at the index level or the data level. To calibrate at the index level, the

index was first computed from the original, uncalibrated data. Then,

the species-specific linear model (Equation 1) was applied to the

standardized index for years 2015 and onward. To account for

uncertainty in the calibration itself, parameters of the linear model

were included as part of the bootstrap process described above. This

was accomplished by drawing at random a new intercept and slope

for each bootstrap iteration, in which each draw came from a

bivariate normal distribution with means equal to the parameter

point estimates and the covariance matrix as estimated by the linear

regression. For both species, the point estimate of the intercept was

negative, which is expected given that GoPro cameras have a wider

field of view and therefore more fish should be observed on GoPros

than on Canons. Thus, to preserve that feature in the bootstrap

procedure, we truncated the bivariate distribution to provide only

negative intercept values.

To calibrate at the data level, the data themselves were adjusted

prior to fitting the models. For each positive observation of SumCount

in 2015-2021 in the original data, a calibrated SumCount value was

drawn from a binomial distribution, B(ni,   pi). Here, ni is the original

SumCount for observation i, and pi was determined by the linear

regression (Equation 1) as:

pi = (a + bni)=ni (3)

In the bootstrap process, uncertainty in the regression

parameters (a and b) were incorporated using the same bivariate

normal distribution as in the index-level calibration. The index was

fitted to each calibrated data set, but the final index did not require

any adjustment.
Results

Objective 1: calibration experiment design

A total of 27 fish species were observed and counted across the

54 calibration videos collected in 2014. The most commonly

observed species on calibration videos was gray triggerfish Balistes

capriscus (N = 41 videos), followed by vermilion snapper

Rhomboplites aurorubens (N = 40), red snapper (N = 31), and

black sea bass Centropristis striata (N = 28; Table 1). The least

commonly observed species among those included in our analyses

were red grouper Epinephelus morio (N = 4), mutton snapper

Lutjanus analis (N = 6), and hogfish Lachnolaimus maximus (N =

8). Eleven fish species were counted on calibration videos but

excluded from all analyses because they did not reach the

minimum sample size threshold.
Objective 2: estimating calibrations for reef
fish species

Sixteen species met our minimum sample size threshold of

being observed on at least 4 calibration videos, and calibrations were
frontiersin.org
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variable among these species (Table 1; Figure 3). Slope estimates

ranged from 0.214 for mutton snapper to 0.978 for hogfish, but 8 of

16 species and generally those species with the largest sample sizes

had slope estimates within a fairly narrow range of 0.440 to 0.740

(Table 1). The slope of the overall model that included all 16 species

was 0.572, suggesting that, on average, 42.8% fewer fish were

observed on Canon compared to GoPro cameras. Species-specific

model intercepts ranged from -0.31 (white grunt Haemulon

plumierii) to 0.09 (black sea bass), with 11 of 16 being negative as

expected given we are calibrating a camera that observed more fish

(i.e., GoPro) to a camera that observed fewer fish (i.e., Canon;

Table 1). All but one species-specific R2 value was greater than 0.70,

and 11 of 16 were at least 0.90, suggesting GoPro counts predicted

Canon counts well for most species (Table 1; Figure 3).
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Objective 3: limited sample sizes

The 16 species included in our analyses were represented by 8

families, and these family-level calibrations were generally similar to

the species-specific calibrations of members of those families. Five

of the eight families only included a single species, so in these cases,

the species-level calibrations were identical to the family-level

calibrations (i.e., Balistidae, Haemulidae, Labridae, Scorpaenidae,

Sparidae; Table 1). The Carangidae family included two species,

Lutjanidae included five species, and Serranidae included four

species. Family-level slope estimates ranged from 0.293

(Serranidae) to 0.978 (Labridae), with Lutjanidae and Sparidae

having slopes most closely resembling the slope of the overall

model (Figure 4). Family-level intercepts ranged from -0.31
TABLE 1 Calibration information for the 16 reef fish species with a sample size (N) of at least 4, their associated families, and a fit across all 16 species
(“overall calibration”) as part of the 2014 side-by-side calibration study by the Southeast Reef Fish Survey along the southeast United States Atlantic coast.

Taxa Scientific name N Reduce GoPro counts Increase Canon counts

Slope Intercept R2 Slope Intercept R2

Overall calibration 299 0.572 -0.06 0.89 1.562 0.25 0.89

Balistidae 41 0.446 0.01 0.93 2.080 0.07 0.93

Gray triggerfish Balistes capriscus 41 0.446 0.01 0.93 2.080 0.07 0.93

Carangidae 40 0.709 -0.01 0.94 1.327 0.03 0.94

Almaco jack Seriola rivoliana 25 0.619 0.00 0.87 1.420 0.01 0.87

Greater amberjack Seriola dumerili 15 0.722 -0.03 0.93 1.294 0.06 0.93

Haemulidae 19 0.884 -0.31 0.94 1.064 0.46 0.94

White grunt Haemulon plumierii 19 0.884 -0.31 0.94 1.064 0.46 0.94

Labridae 8 0.978 -0.02 0.90 0.934 0.03 0.90

Hogfish Lachnolaimus maximus 8 0.978 -0.02 0.90 0.934 0.03 0.90

Lutjanidae 100 0.581 -0.06 0.96 1.659 0.17 0.96

Vermilion snapper Rhomboplites aurorubens 40 0.546 -0.10 0.91 1.663 0.31 0.91

Red snapper Lutjanus campechanus 31 0.610 -0.10 1.00 1.635 0.18 1.00

Gray snapper Lutjanus griseus 14 0.737 -0.04 0.95 1.290 0.08 0.95

Lane snapper Lutjanus synagris 9 0.906 -0.04 0.86 0.973 0.05 0.86

Mutton snapper Lutjanus analis 6 0.214 0.05 0.27 1.938 -0.06 0.27

Scorpaenidae 14 0.726 -0.09 0.74 1.041 0.28 0.74

Lionfish Pterois spp. 14 0.726 -0.09 0.74 1.041 0.28 0.74

Serranidae 53 0.293 0.07 0.79 2.699 0.09 0.79

Black sea bass Centropristis striata 28 0.288 0.09 0.77 2.683 0.23 0.77

Scamp Mycteroperca phenax 12 0.622 -0.03 0.96 1.543 0.07 0.96

Gag Mycteroperca microlepis 9 0.295 0.01 0.96 3.269 -0.02 0.96

Red grouper Epinephelus morio 4 0.757 -0.18 0.90 1.238 0.25 0.90

Sparidae 24 0.604 -0.14 0.94 1.553 0.34 0.94

Red porgy Pagrus pagrus 24 0.604 -0.14 0.94 1.553 0.34 0.94
frontie
“Reduce GoPro counts” indicates a model relating counts from GoPro cameras to Canon cameras, whereas “Increase Canon counts” indicates a model relating counts from Canon cameras to
GoPro cameras.
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(Haemulidae) to 0.07 (Serranidae), and the intercept for Lutjanidae

(-0.06) again most closely matched the intercept of the overall

model (Table 1; Figure 4). The R2 values for the family-level

calibrations ranged from 0.74 to 0.96, with most being at least

0.90 (Table 1).

There were three families that contained more than one species,

so calibrations from each of these families were compared to each of

the species comprising these families. For Lutjanidae, the two

species with the largest sample sizes (i.e., vermilion and red

snapper) had calibration slope estimates that were very similar to

one another (0.064 difference) and to the family-level calibration (<

0.040; Figure 5). For the remaining lutjanids, as species-specific

sample sizes declined, the degree to which their slopes diverged

from the family-level calibration increased, with the slope for

mutton snapper (N = 4) being most different from Lutjanidae

(0.367 difference; Figure 5). For Serranidae, the slope for black sea

bass (0.288) and gag Mycteroperca microlepis (0.295) appeared to

drive the overall family-level slope (0.293), while the slopes for

scamp (0.622) and red grouper (0.757) were very different. Species

in the family Carangidae had similar slopes, with the lowest being

almaco jack Seriola rivoliana (0.619) and the highest being greater
Frontiers in Marine Science 07
amberjack Seriola dumerili (0.722), with an overall family-level

slope of 0.709 (Figure 5).
Objective 4: determining optimal approach
to apply calibrations

A total of 13,072 videos were included in the scamp and red

snapper analyses used to compare two approaches for applying

calibrations (Table 2). Sampling was generally consistent across

years except for 2020, when no sampling occurred due to the

COVID-19 pandemic (Table 2). After model selection, the final

scamp negative binomial sub-model included all predictor variables

except season, depth, biotic density, and substrate composition,

while the scamp binomial sub-model included all variables except

current direction. For red snapper, all variables were included in

final models except temperature in the negative binomial sub-

model and water clarity in the binomial sub-model.

Using 2011–2021 video data from SERFS (Table 2), the nominal

index of abundance for scamp declined between 2011 and 2013,

increased in 2014 and 2015, and declined again from 2015 until
FIGURE 3

Species-specific calibrations of Canon® Vixia HF-S200 and GoPro Hero 3+ cameras for 16 reef-associated fish species along the southeast United
States Atlantic coast in 2014. Only species observed on at least 4 videos were included here. Slope, intercept, and the R2 value were estimated using
linear models.
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2021 (Figure 6). The standardized index of abundance for scamp

completely removed the nominal increase that was evident between

2013 and 2014, instead declining across all years except between

2014 and 2015, when cameras were switched from Canon (2011–

2014) to GoPro (2015–2021) in the survey. Calibrating the

standardized scamp video index using both approaches removed

the increase in relative abundance between 2014 and 2015 entirely,

suggesting that increase was due to the increased video counts of

scamp on GoPro cameras (relative to Canon cameras) and not an

actual increase in abundance. Most importantly, calibrating scamp

video data before standardization at the data level, or after

standardization at the index level, had very little influence on the

resulting scamp index of abundance (Figure 6).

In contrast to scamp, red snapper increased substantially over

the course of the study. The nominal red snapper index of

abundance increased nearly linearly in all years except between

2015 and 2016, when abundance slightly declined (Figure 6). The

standardized index was somewhat different from the nominal index,

being lower in 2011–2014 and slightly higher in 2015–2021.

Calibration of the standardized index increased abundance in

2011–2014 and decreased abundance in 2015–2021. Consistent

with the results for scamp, the standardized red snapper index of

abundance was mostly unaffected by which calibration approach

was used (Figure 6).
Discussion

Underwater video cameras are widely used to monitor fish

abundance and biodiversity (Mallet and Pelletier, 2014), and these
Frontiers in Marine Science 08
cameras have evolved drastically over the last few decades (Struthers

et al., 2015). For any video survey, the benefits of utilizing improved

technology may at some point outweigh the benefits of maintaining
A

B

C

FIGURE 5

Calibrations between Canon Vixia HF-S200 and GoPro Hero 3+
cameras for various species within three families (A) Lutjanidae; (B)
Serranidae; (C) Carangidae from data collected by the Southeast
Reef Fish Survey along the southeast United States Atlantic coast in
2014. The overall calibration is shown in gray, family level
calibrations are shown by black dotted lines, species’ calibrations are
shown by solid colored lines, and the 1:1 relationship is indicated by
thin black dashed line. Number in legend indicates sample size for
each taxa.
FIGURE 4

Family-specific calibrations between GoPro Hero 3+ and Canon
Vixia HF-S200 cameras from data collected by the Southeast Reef
Fish Survey along the southeast United States Atlantic coast in 2014.
The overall relationship was estimated using data across all families.
Trendlines were estimated using a linear model fit to data across all
species within each of the eight families listed.
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the original gear, yet little to no attention has been given to

calibrating video cameras when switches or replacements have

occurred. Calibrating different video cameras that are used in

fisheries surveys or ecological studies is critical because small

differences in camera lenses, sensors, and other characteristics can

influence the ability of readers to identify individual fish and

therefore affect fish sightability. For instance, a greater field of

view of a camera will increase the volume of water sampled, but will

also make all objects appear somewhat smaller and thus harder to

identify. Therefore, it is critical that researchers carry out empirical

calibrations using their cameras, study areas, and target species;

theoretical calibrations based on the respective water volume

sampled for each camera are unlikely to track closely with

empirical calibration results. Video counts are assumed to reflect

the true abundance of fish in a way that is not confounded by

differing sightabilities of cameras, and this can only be achieved

using calibration experiments.

There were substantial differences in fish count calibrations

among species from Canon and GoPro cameras. There are likely

three main reasons why variability in calibrations was observed

among species. The first reason was sample size, whereby species

with higher sample sizes had more similar calibrations than species

with low sample sizes, whose calibration relationships were much

more variable. The second reason was likely due to behavioral

variability among species. Some reef fish species are strongly

attracted to baited gears, some are indifferent, and some are wary

and keep their distance. For example, most species displaying

attraction to baited gears (e.g., most lutjanids, carangids, red porgy

Pagrus pagrus, gray triggerfish; Bacheler et al., 2022b) had moderate

calibration slopes (i.e., 40-50% fewer fish seen on Canon cameras

compared to GoPro) because they could be easily viewed by cameras

and differences in fields of view between cameras was the primary

determinant of the calibration relationships. Black sea bass, on the
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other hand, were strongly attracted to bait (Bacheler et al., 2013) but

highly demersal, leading GoPro cameras with a wider field of view to

see individuals close to the camera and on the bottom that Canon

cameras could often not see (i.e., 71% fewer individuals observed on

Canon cameras). The third reason that may explain some of the

variability among species could be differences in their appearance

(e.g., size, shape, and color) that might make some species more

readily visible and identifiable on some cameras compared to others.

For instance, some distinctly shaped fish could be identified far in the

background on some cameras compared to nondescript species,

which could also influence calibration relationships.

A challenge with video surveys that target multiple species is

that calibration factors need to be estimated for all species, but

estimating calibrations for rare species can take considerable effort.

We evaluated among- and within-family variability in video

calibrations to determine if calibrations for related or unrelated

species could be used for rare species. Results were species- and

family-specific and difficult to generalize. For instance, the behavior

of almaco jack, greater amberjack, and banded rudderfish Seriola

zonata in family Carangidae is similar (i.e., shoaling, strong

curiosity about bait and sampling gears; Campbell et al., 2021),

and the resulting calibrations were likewise similar, suggesting that

rarely encountered Seriola spp. could justifiably borrow a carangid

family-level calibration. That was not the case for species in the

family Serranidae, whose calibration slopes were highly variable.

Even two species in the same genus of Serranidae like scamp and

gag had very different calibration slopes (0.327 difference),

suggesting that borrowing calibration information within the

family Serranidae is not prudent. These results suggest the safest

approach is to collect enough calibration data so that slopes can be

estimated well for even the rarest species.

We showed that calibrating video data before standardization or

calibrating the index after standardization had a negligible influence
TABLE 2 Annual video sampling information for the Southeast Reef Fish Survey, 2011–2021, included in the analyses.

Year Camera N Calibration
N

Mean latitude
(°N; range) Mean depth (m; range)

2011 Canon Vixia HF-S200 580 0 30.7 (27.2 – 34.5) 42 (15 – 94)

2012 Canon Vixia HF-S200 1,083 0 31.9 (27.2 – 35.0) 40 (15 – 105)

2013 Canon Vixia HF-S200 1,221 0 31.3 (27.3 – 35.0) 38 (15 – 98)

2014 Canon Vixia HF-S200 1,382 143 31.9 (27.2 – 35.0) 39 (16 – 109)

2015 GoPro Hero 3+ 1,405 0 31.9 (27.3 – 35.0) 39 (15 – 110)

2016 GoPro Hero 3+ 1,404 0 32.2 (27.2 – 35.0) 41 (16 – 115)

2017 GoPro Hero 3+ 1,424 0 32.0 (27.2 – 35.0) 40 (15 – 111)

2018 GoPro Hero 3+ 1,654 0 32.0 (27.2 – 35.0) 40 (16 – 114)

2019 GoPro Hero 3+ 1,545 0 32.1 (27.2 – 35.0) 41 (14 – 110)

2020 NA 0 0 – –

2021 GoPro Hero 3+ 1,374 0 31.9 (27.2 – 35.0) 38 (16 – 109)

Overall – 13,072 143 31.9 (27.2 – 35.0) 40 (14 – 115)
N is the number of videos collected and analyzed each year and “Calibration N” is the number of paired calibration videos (i.e., Canon Vixia HF-S200 and GoPro Hero 3+) collected. No videos
were collected in 2020 due to the COVID-19 pandemic.
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on the final index of abundance. This is a particularly encouraging

result because it provides researchers flexibility in how to calibrate

among video cameras – in some cases it may be easier to calibrate at

the data level, whereas in others it is likely much easier to calibrate

after index standardization. Note that when calibrating a camera

seeing fewer fish to a camera seeing more fish, it is not

straightforward to increase the lower camera counts to make

them consistent with the higher counts when calibrating at the

data level, because it is unclear how to expand when counts are zero

on the original camera. To avoid that issue here when calibrating at

the data level, we reduced the more recent, higher counts to make

them comparable to the earlier, lower counts. In most cases, though,
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it would probably be preferable to calibrate the previous gear to

match the newer gear even if it does not make a difference for a

relative index.

Calibration is challenging because sampling gears are often not

conducive to being paired in space and time. For instance, trawls are

often calibrated by comparing catches from the same general water

body in the same season, being pulled near one another at the same

time, or being dragged on the same line in succession (Mahon and

Smith, 1989; Miller, 2013; Benoit and Cadigan, 2014). Given that

fish and environmental conditions are patchily distributed in space

and time, often at small scales (Ciannelli et al., 2010; Bacheler et al.,

2017), a large amount of residual variation is typically introduced

around the estimated calibration factor when gears are not paired in

space or time (Pelletier, 1998). Cameras are much more conducive

to being paired, given their small size. When calibrating two

cameras, we recommend pairing their deployments so that the

spatial and temporal variability inherent in fish abundance and

environmental conditions can be completely controlled for, and

counting fish from the paired samples in exactly the same way (i.e.,

choosing the same sequential images to analyze). If camera systems

are contained in stand-alone metal frames or landers (e.g., Cappo

et al., 2004; Merritt et al., 2011; Bacheler and Shertzer, 2015; Amin

et al., 2017), it will be necessary to develop a way for these different

systems to be paired (i.e., attaching two landers together side-by-

side) while not changing the efficiency of each gear compared to

when they are deployed independently.

Indices of abundance for scamp and red snapper were improved

considerably by accounting for a camera change in 2015 and using a

statistical model to standardize video counts among years. Many

fishery-independent surveys have used design-based estimators

where average catch rates within predetermined sampling strata

in a sampling design are calculated, and then an area-weighted sum

of abundance in each stratum is produced (Smith, 1990). Due to

some downsides of the design-based approach, it has become more

common to use statistical models to control for variability in

sampling or environmental conditions during the survey (e.g.,

Helser et al., 2004; Maunder and Punt, 2004; Bacheler and

Ballenger, 2018). In our study, nominal (i.e., design-based) indices

for scamp and, to a lesser extent, red snapper were different and

more variable than standardized indices of abundance (i.e., model-

based), the latter of which appeared able to control for

environmental variability and changes in the spatial and temporal

aspects of sampling among years. Nonetheless, only when the

calibration between cameras was accounted for properly did the

indices of abundance show smooth declining or increasing trends as

expected, highlighting the importance of video calibration studies.

There were some shortcomings of our approach. First, higher

calibration sample sizes would have improved calibration

relationships, particularly for less commonly observed but

important species like red grouper, gag, and hogfish. For instance,

red grouper has been observed on 1.4% of videos collected by SERFS

in recent years (Bacheler et al., 2019), so approximately 1,429 paired

calibration videos would be required to attain an N = 20 for that

species. If it is impossible to collect that many calibration videos, we
A

B

FIGURE 6

Indices of abundance for (A) scamp Mycteroperca phenax and (B)
red snapper Lutjanus campechanus calculated four different ways:
(1) a nominal index where no standardization or calibration occurred
(gray filled points and line), (2) a standardized index that did not
include calibration for a camera switch that occurred between 2014
and 2015 (black filled points and line), (3) a standardized index that
included video data that were pre-calibrated before inclusion in a
standardization model (blue-green filled points, line, and shaded
95% confidence interval), and (4) a standardized index that was
post-calibrated at the index level (yellow filled points, line, and
shaded 95% confidence interval). Overlapping 95% confidence
intervals are shown in green.
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provide a framework for potentially borrowing information from

related or unrelated species. A second shortcoming is that we used

linear models to relate video counts from one camera to another,

when in fact relationships may be nonlinear. In preliminary

analyses, we compared linear and nonlinear model fits, which

were similar for most species but additional parameters were

required for nonlinear models, so linear models were almost

always selected by Akaike information criterion (Burnham and

Anderson, 2002). Therefore, linear models were used for all

comparisons. Third, we selected scamp and red snapper for

application of the video calibration (Objective 4), but we cannot

conclude that these examples represent all other species. We chose

these species for two reasons: (1) indices of abundance were

developed for these two species for recent assessments (SEDAR,

2021a; SEDAR, 2021b), and (2) they showed opposite patterns of

relative abundance over time, with scamp declining and red snapper

increasing, which may have affected calibrations.

Changes in sampling gears can strongly influence the

catchability of fish (Arreguıń-Sánchez, 1996), leading to biased

spatial or temporal trends in relative abundance (Maunder and

Punt, 2004). This is especially the case for underwater cameras that

are now used widely to provide relative abundance information for

various species of fish (Mallet and Pelletier, 2014). Video gears are

rapidly evolving, getting smaller and cheaper with higher resolution

(Struthers et al., 2015), yet there has been a paucity of examples

where calibrations between different video sampling gears occurred.

We showed that a camera switch in SERFS in 2015 resulted in much

higher fish counts on the new camera compared to the old, which

necessitated a calibration experiment to maintain the temporal

continuity of the SERFS video survey. We recommend calibrating

data from video cameras any time changes occur, and pairing video

cameras to the extent possible to control for the spatial and

temporal variabil ity inherent in fish populations and

environmental conditions. Following these guidelines, researchers

will be able to maintain the integrity of valuable long-term video

datasets despite changes in their sampling gear that occur out of

necessity or by choice.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The animal study was reviewed and approved by U.S.

Government Principles for the Utilization and Care of Vertebrate

Animals Used in Testing, Research, and Training.
Frontiers in Marine Science 11
Author contributions

NB and ZS obtained funding for the calibration experiment,

NB, ZS, and LC conceived the research project, ZS coordinated the

field data collection, LC, KS, and NB analyzed data, NB and KS

drafted the manuscript, and all authors contributed ideas and

editorial work on the manuscript. All authors contributed to the

article and approved the submitted version.
Funding

This work was funded by the National Marine Fisheries Service.
Acknowledgments

We thank SERFS staff members at the South Carolina

Department of Natural Resources and the National Marine

Fisheries Service, various volunteers, and the captains and crew of

the research vessels for data collection. We also thank R. Cheshire

and K. Craig for providing comments on earlier versions of

this manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Author disclaimer

Mention of trade names or commercial companies is for

identification purposes only and does not imply endorsement by

the National Marine Fisheries Service, NOAA. The scientific results

and conclusions, as well as any views and opinions expressed

herein, are those of the authors and do not necessarily reflect

those of any government agency.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1183955
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bacheler et al. 10.3389/fmars.2023.1183955
References
Aguzzi, J., and Company, J. B. (2010). Chronobiology of deep-water decapod
crustaceans on continental margins. Adv. Mar. Biol. 58, 155–225. doi: 10.1016/B978-
0-12-381015-1.00003-4

Amin, R., Richards, B. L., Misa, W. F. X. E., Taylor, J. C., Miller, D. R., Rollo, A. K.,
et al. (2017). The modular optical underwater survey system. Sensors 17, 2309.
doi: 10.3390/s17102309
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