
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Deepak R. Mishra,
University of Georgia, United States

REVIEWED BY

Michelle Jillian Devlin,
Centre for Environment, Fisheries and
Aquaculture Science (CEFAS),
United Kingdom
David Bushek,
Rutgers, The State University of New
Jersey, United States

*CORRESPONDENCE

Krti Tallam

ktallam7@stanford.edu;

krtital@gmail.com

RECEIVED 13 March 2023

ACCEPTED 30 May 2023
PUBLISHED 22 June 2023

CITATION

Tallam K and White E Jr (2023)
The role of diseases in unifying the
health of global estuaries.
Front. Mar. Sci. 10:1185662.
doi: 10.3389/fmars.2023.1185662

COPYRIGHT

© 2023 Tallam and White. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 22 June 2023

DOI 10.3389/fmars.2023.1185662
The role of diseases in unifying
the health of global estuaries

Krti Tallam1* and Elliott White Jr2

1Department of Biology, Stanford University, Stanford, CA, United States, 2Department of Earth
System Science, Stanford University, Stanford, CA, United States
Establishing a universal indicator of estuary health is an ongoing challenge for

coastal ecology that is mademore pressing due to the threat that climate change

and anthropogenic activity pose to them. Historically, estuarine health was

measured through basic physical, chemical, and biological traits, which have

been used to routinely monitor estuaries for more than 30 years. However, it is

unclear if they are dynamic enough to accurately assess ecosystem health

changes driven by the pressures of climate change and anthropogenic activity.

Measuring estuarine health indicators and noting incipient indicators relevant to

the evolving threats of climate- and anthropogenic-related stressors on

estuarine ecosystems is vital for safeguarding them into the future. Monitoring

the presence and vitality of disease in estuarine ecosystems may prove to be a

significant indicator of estuarine health. Here we review 22 years of literature

(354 papers) to identify the role of marine diseases as critical indicators of long-

term estuary health compared to traditional methods, with the goal of identifying

a key indicator and underlying unifier of other health metrics. As indicators of

both general ecosystem health and of multiple other stressors, diseases play a

disproportionately significant role in estuary health in the face of climate- and

anthropogenic-related stressors. Marine diseases are a unifier of structural and

functional estuary health indicators and must be observed and modeled further.

KEYWORDS

aquatic disease, coastal health, marine diseases, estuary health, climate change,
anthropogenic stressors
1 Introduction

1.1 Effects of climate change and anthropogenic
activity on estuaries

The ongoing climate crisis and anthropogenic stressors represent significant threats to

global coastal zones (Whitfield and Elliott, 2002; Robb, 2014; Cloern et al., 2016; Peng et al.,

2021). Estuaries are among the most important environments of the coastal zone that are at

the interface of terrestrial and marine habitats, which create some of the most biologically

productive environments on earth (Montagna et al., 2012). These are complex, yet critical

ecotones for coastal integrity (White and Kaplan, 2017; Bradley, 2017; Liu et al., 2021). As

biodiversity hotspots, they provide up to $5.4 trillion (1.8 x 108 hectares globally at 28,916
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2007$/ha) in multiple ecosystem services (i.e., habitat provisioning,

nutrient regulation, storm surge attenuation, etc.) that support

human life near and far from the coast (Cyrus and Forbes, 1996;

Turner et al., 2006; Costanza et al., 2014a; Bradley, 2017). More than

half of the global human population lives within 100 km of the coast

with more people moving toward coastlines every year (Niemi et al.,

2004). Increased coastal and watershed development has led to

more frequent, anthropogenically-driven loading of toxic

substances, overload of nutrients and subsequent algal blooms,

hypoxia, beach closures, and damage to coastal fisheries

(Costanza et al., 2014b). Further, climate change has led to

changes in pH levels, a rise in sea levels, losses of coastal wetlands

and estuaries, and saltwater intrusion into coastal aquifers

(Mastrocicco et al . , 2019) . Both cl imate change and

anthropogenic sources of stress have a negative impact on

estuarine health.

The combination of anthropogenic and climate change related

stress drives a significant need to develop robust measure of

estuarine health. However, coastal resources have primarily

been monitored on a stressor-by-stressor basis (e.g., hypoxia,

nutrient loading, or dissolved oxygen). Previous research has

individualistically measured the physical, chemical, biological, and

aesthetic elements of estuaries and the anthropogenic modifications

they can undergo, but little research has made interdisciplinary

links among and between forms of modification (Cooper, 2001;

Paerl et al., 2006). To fully measure the complexities of coastal

systems, studies demonstrating interdisciplinary measures of

estuary health will help the field of coastal ecology establish

primary indicators of estuary health in the context of rapidly

shifting environmental conditions.
1.2 Measures of estuary health

Substantial challenges persist in the integration of estuarine

health indicators, which makes comparing outcomes of indicators

difficult. Estuary health is an ecologically complex concept that can

encompass multiple environmental parameters with direct and
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indirect effects (Turpie et al., 2013; Bradley, 2017). Indicators of

estuary health often aggregate multiple variables into one metric

with a strong emphasis on faunal benthic populations (e.g., clams,

shrimps, and worms) due their sensitivity to environmental

conditions (Table 1). For example, the AZTI marine biotic index

(AMBI) is a tool to quantitatively assess estuary health based on

sample counts of benthic fauna that has been used on every

continent, except for Antarctica (Bazairi et al., 2005; Medeiros,

2012; Ranasinghe and Salas, 2012; Wenqian et al., 2012). However,

it is unclear if these existing indicators are dynamic enough to

accurately assess the sometimes rapid effects of anthropogenic and

climate change driven modification such as acidification or the

development of hypoxic zones (Bianchi and Allison, 2009; Cai et al.,

2021) with studies sometimes showing divergent conclusions on

different aspects of the same system (Teixeira et al., 2012; Valença

and Santos, 2012; Seibel and Childress, 2013; Borja et al., 2019).

In recent decades, ocean conditions (e.g., pH and salinity

changes, nonnative species invasions and hypoxia) have shifted

dramatically due to climate and anthropogenic stressors (He and

Silliman, 2019). Many of these conditions have led to lower

environmental resilience, which has resulted in more frequent

marine disease outbreaks (Graham et al., 2021; Groner et al.,

2021; Thorstad et al., 2021). Diseases are underlying indicators of

many critical aspects of marine health, while also providing insights

into the relationship between indicators and resulting effects

(Lafferty et al., 2008; Groner et al., 2016; Harvell, 2019). For

instance, global connectivity through trade has allowed diseases to

enter new regions with little resistance or chance of resilience

(Abelson et al., 2020). This has shed light on marine diseases as a

possible key relevant estuary health indicator (Harvell, 1999;

Lafferty, 2004).
1.3 The role of marine diseases and
keystone species interactions in estuaries

Monitoring infectious diseases as indicators of estuarine health

has recently gained attention given their impact on both host and
TABLE 1 Indicators of estuary health across the literature.

Indicator Reference

benthos fauna Bazairi et al., 2005; Medeiros, 2012; Ranasinghe and Salas, 2012; Wenqian et al., 2012

infaunal trophic indices Word, 1990

infaunal quality indices Kennedy et al., 2011

benthic response indices Smith et al., 2001

biotic integrity indices Deegan et al., 1997

integration of ecological, human, economic indicators Rapport et al., 1998

physical and chemical indicators O’Brien et al., 2016

measures of sustainability Costanza, 1991

links between political objectives and management Fairweather, 2009

environmental management legislation and policies Karr, 1987
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non-host populations of flora and fauna (Harvell et al., 2002).

Parasitism, the mechanism by which diseases are spread by

pathogens and parasites (Lafferty and Mordecai, 2016), is the

most common consumer strategy in estuaries. Parasites can

control host population densities, regulate critical keystone

species, influence competitive outcomes (i.e., species invasions),

and regulate vital ecosystem engineers via trait- or density-

mediated effects (Behrens, 2004; Miura et al., 2006; Kuris et al.,

2008; Lafferty et al., 2008; Rossiter, 2013; Broecke et al., 2019).

Estuarine food webs are closely linked to parasites as they are prey

in over half of trophic interactions in global estuaries (Hechinger

et al., 2011; Byers, 2020). Nonetheless, research on the causes and

dynamics of disease spread and outbreaks in estuaries is lacking

(McLaughlin et al., 2020). Studying marine disease dynamics offer a

unique opportunity to link functional and structural indicators of

estuary health in the context of the influences of climate and

anthropogenic stressors on estuaries. In this context, interactions

between marine diseases and keystone species could be critical for

assessing estuarine health. Estuarine keystone species help define

and support the function and structure of entire ecosystems,

which make their response to parasitic interactions critical for

overall ecosystem health (Chadwick, 2021). Keystone species

disproportionately affect the abundance and distribution of other

species within an ecosystem; meaning their central functional role

can influence complex dynamics. When a disease impacts the

abundance, structure, behavior, or resilience of a keystone species

in an estuary, trophic cascading effects can lead to long-term

changes in ecosystem structure and function (Castello et al., 1995;

Eviner and Hawkes, 2008; Preston et al., 2016; Schultz, 2016;

Harvell, 2019; Tuohy et al., 2020). For example, their devastating

effects on estuarine keystone species have already been documented

to include three species of California abalone (Crosson et al., 2014),

two species of Caribbean coral (Precht et al., 2002), and one species

of west coast sea star (Montecino-Latorre et al., 2016). In each case

infectious disease introduction and spread were driven and

facilitated by a rapid change in environmental conditions,

compared to the historical record. A deeper understanding of the

integrated structure and function of an estuary, the role of keystone

flora and fauna, and the relationship between estuary health and

climate change are key relationships that must be further explored

to protect, manage, and conserve estuaries in the 21st century. In

this review, we seek to understand how estuarine health has been

measured in the past with a focus on the frequency of pathogens as

an indicator of estuarine health.
2 Methods

2.1 Systematic quantitative literature review

We conducted a systematic, quantitative literature review on

estuary health studies published between 2000 to 2022 during

February to September of 2022. This range was selected to

analyze the literature at the turn of the 21st century, which aligns

with increased documentation of marine disease outbreaks as a

prominent part of the literature (Tracy, 2019). We searched four
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large databases for relevant publications (i.e., Google Scholar,

NOAA National Centers for Coastal Ocean Science, Web of

Science, and PubMed) using 14 sets of search terms related to

marine diseases and estuary health starting with the keyword

“health” in combination with the following terms: ‘marine’,

‘estuary’, ‘intertidal zone’, ‘keystone estuary species’, ‘estuary

disease’, ‘marine disease’, ‘intertidal zone disease’, ‘estuary

resilience’, ‘climate change and estuaries’, ‘marine ecotone’. Note

that in our results (Section 3), we use “pathogens” as a proxy for

marine disease dynamics because pathogens have clearer definition

in the current literature (Ward and Lafferty, 2004; Balloux and van

Dorp, 2017).

The initial search resulted in 3,107 relevant publications in total

(Figure 1). An additional 46 primary sources were found within the

cited literature of five relevant reviews, which resulted in a total of

3,153 studies (Orth et al., 2006; Lafferty et al., 2008; Groner et al.,

2016; Harvell, 2019; McLaughlin et al., 2020). We removed 1,679

duplicate publications, which left a total of unique 1,474

publications. Publications included in our final review centered

on marine health by focusing on a minimum of one assessment type

of the Estuary Health Index (i.e., Heydorn’s assessments, Ramm’s

Community Degradation Index, Cooper’s Estuarine Health Index,

CERM’s Index of Physical Health, Van Driel’s Estuary Habitat

Integrity Index, Whitfield’s qualitative assessment, or Harrison &

Whitfield’s Estuarine Fish Community Index; Turpie et al., 2013).

Thematic relevance of each paper’s abstracts, methods, and

discussions/conclusions sections were determined using the text

analysis software Google Cloud Natural Language Processing (NLP)

with the REST API (Natsiavas et al., 2017; Ozturk et al., 2022). This

software was chosen because it provides real-time analysis of

insights stored in unstructured text, especially in the medical and

health sciences (Google Cloud, 2023). Using thousands of pre-

trained classifications, we fed in the 14 sets of key search terms into

the natural language processing model and asked for all

publications relevant on these bases.

A total of 1,120 publications were excluded due to key words

focusing on either non-marine systems or on diseases that primary

originate and circle within the human community, as well as for

other reasons such as focus on economic impacts (e.g., property
FIGURE 1

Summary of the systematic review search process based on our
search from Feb-Sept 2022.
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damage and business losses), beach closures, or harmful algal

blooms, all of which are not relevant for or do not meet our

eligibility criteria. Although keystone species have been frequently

studied, we use the software to analyze their frequency in the

context of ecosystem health. The relevance review resulted in a

final total of 351 publications that fit our criteria for selection. After

selecting these studies, we ran the natural language processing

model on both groups of papers once again, for verification. We

ran the software on all 1,120 publications that were excluded, for

verification, and on all 351 papers included in the final model, to

ensure that we had selected the most pertinent pool of publications

for our purposes. An additional systematic search of the literature

was conducted in February of 2023, to account for new publications

prior to manuscript submission, netting 3 more publications for a

total of 354 publications. Additional information gathered from the

final publications included the type of study (i.e., genetic,

experimental, review, observational, or modeling studies), the

period of documentation (i.e., the year of publication), and core

themes of the literature (i.e., human stressors, climate, economic,

and ecological impacts).

The resulting studies were broken down into six estuary health

indicator categories (i.e., hydrologic alteration, landcover/land use

change (LCLUC), chemical pollutants, nutrient pollution, invasive

species, and pathogens) to analyze temporal trends in estuarine

health studies (Turpie et al., 2013; NOAA, 2022a). We further

dissected each category with relation to four primary, complex

natural and anthropogenic factors that have influenced humans to

manage ecosystems across time (i.e., human stressors, climate

change, economic impacts, and ecological impacts; Hoegh-

Guldberg and Bruno, 2010; Chi et al., 2018). We ensured that any

category of health measured in our study could fit into one of these

four overarching factors (Moss et al., 2010). Study type were

categorized into experimental, observational, review, genetics, or

modeling based-studies (Röhrig et al., 2009) (Table 1).

Finally, we documented the number of health studies that

addressed keystone species of estuarine ecosystems. We compared

this to studies that focused specifically on keystone species and

estuary ‘natural processes’, specifically on their ‘general role’ in

estuary ecosystems, or specifically on ‘environmental or

anthropogenic factors’. For the last category, studies were

distinguished based on whether the key term “health” was

discussed in the context of environmental or anthropogenic

factors. Mann-Kendall tests were performed to assess the

significance of trends over time.
3 Results

3.1 Most prominent health issues
in estuaries

Over the past 22 years, estuarine health studies focused on

pathogen dynamics have increased in their share of estuarine health

literature more rapidly compared to other types of studies

(Figure 2). Prior to 2007 there were a total seven studies focused

on pathogens, however, there has been a year after year increase up
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to 2022 with 30 being published in that year. Invasive species studies

show a similar increasing temporal trend (Mann-Kendall p-value <

0.05) with an increase in number studies of 23 between 2000-2022.

Hydrologic alteration and LCLUC experienced similar temporal

declines in relevance with each declining by 12 and 15 studies

between 2000-2022, respectively. Finally, chemical, and nutrient

pollution both have increasing temporal trends with chemical

pollutants becoming the most common study type by 2022.

Pathogen focused studies were weighted primarily towards

genetics, review, and experimental studies, with near to no

observational or modeling studies (Figure 3). Pathogens also

observed several gaps in the literature across time, such as during

2001, 2003, 2004, 2007, 2010, and 2017. We observed the highest

number of studies pertaining to pathogens between 2018 to 2022.

This category is also experiencing an increasing variety of studies

being conducted in more recent years, especially because there is

now groundwork laid out for observational and modeling studies to

occur (Mann-Kendall p-value < 0.05). We observed that draining,

damming, dredging, and filling demonstrated a mix of study types

throughout the twenty-two years, with no gaps throughout the

years as well. Habitat conversion and habitat loss demonstrated

more modeling studies between 2000 to 2012; toxic substances

showed more weight towards modeling, genetics, and experimental

studies; nutrient pollution and eutrophication showcased more

observational studies throughout the years; and invasive species

demonstrated a mix of all types of studies with observational and

review studies occurring consistently throughout time. All these

categories also demonstrated no temporal gaps in their appearance

in the literature.
FIGURE 2

Trends in core issues of estuary health over twenty-two years.
FIGURE 3

Looking deeper into core issues of estuary health across time.
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3.2 Pathogens and complex natural and
anthropogenic factors and their
relationship to ecosystem management
across time

We further analyzed the potential drivers for the change in study

prevalence over time. Presently, economic impacts are driving the most

increase in pathogen related studies, but human stressors, ecological

impacts, and climate change are all slowly increasingly over time as well

(Figure 4). Compared to other categories, we observed that economic

impact studies were driving several of the conversations in the literature

far more than human stressors, climate change, or ecological impacts

(with an economic impact studies Mann-Kendall significance of p <

0.05). Out 354 studies we analyzed, only 75 focused specifically on

keystone species from 2000-2022 (Figure 5). Only five percent of those

total studies focused on keystone species and health, while keystone

species in the primary context of natural processes (32 percent), of their

general ecosystem role (39 percent), or of environmental or

anthropogenic stressors (24 percent) made up most of the studies that

focused specifically on keystone species in context of economic impact.
3.3 The broader picture

The increasing frequency and lack of predictability of climate

and anthropogenic stressors can serve as a call to action for

increasing the understanding of estuarine health and its

integration across multiple components of the system. Although

estuary health has been quantified through a variety of indicators

(Turpie et al., 2013), our understanding of the role of pathogens in

this dynamic remains poorly studied. Even in the early 2000s, the

study of pathogens in estuary ecosystems was largely missing

(Table 1). It wasn’t until roughly 2010 that we noticed a spike in

the literature for pathogen dynamics in estuaries. Even so, studies

show heavy bias towards commercially important systems, such as

pathogens that result from and impact aquaculture. We also

observed a greater need for more quantitative studies of estuary

health, given a tilt primarily towards review and experimental

studies, historically. The publications from this study also made
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note of the need for repeated quantitative ecological assessments

(i.e., interannual or annual surveys, drone-based data surveys, etc.)

to detect and measure estuary health trends (Cai et al., 2021). Giari

and Lafferty both also note, on separate occasions, that pathogens

have also had historic influences on the biodiversity, ecosystem

makeup, evolution, and functionality of estuaries, and therefore,

understanding their role in estuary health is going to be critical for

the long-term well-being of estuaries. There is a need to reconsider

and adjust quantitative indicators that are relevant to the emerging

threats of climate- and anthropogenic-related influences on

estuarine ecosystems. Marine diseases (pathogens) are a key

indicator and underlying unifier of health metrics for estuaries

and are going to be vital to our understanding of coastal and estuary

responses in the face of climate change and anthropogenic stressors.
4 Discussion

Marine diseases are a unifier of structural and functional estuary

health indicators that must be studied further. Our review of

twenty-two years of literature unveiled disproportionate research

on more traditional ecological indicators of estuary health and

minimal updates in the indices used to measure estuary health in

the face of climate change and anthropogenic stressors. Several

studies highlighted urgent needs for practitioners to incorporate

climate change adaptation into conservation and management in

accordance with well-researched frameworks (Chevillot et al., 2019;

O’Regan et al., 2021). Our review also found a significant increase in

pathogen inclusion in the literature since 2007, and are becoming a

vital indictor of estuary health (Couch and Fournie, 2021). Still, the

studies since 2007 are primarily review- and experimental-based

and the increased literature calls for more modeling and

observational studies going forward. Our recommendation is that
FIGURE 4

A closer look at potential drivers for the change in “pathogen” study
prevalence across time.
FIGURE 5

Dissecting keystone species in the context of core processes within
estuarine ecosystems.
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the best way to begin incorporating pathogen dynamics into future

literature is to begin with a focus on keystone species, given their

disproportionately influential roles with regards to ecosystem

stability, resilience, and health.

We observed that estuaries were most often studied in the context

economic impacts (Figure 3). Apart from disease, the different

indicators of estuary health had consistent presence in the literature.

Disease was sporadically studied as a driver of estuary health change

with a significant increases in pathogen-based studies occurring after

2007 (Lafferty and Mordecai, 2016). Further, the initial increase was

largely driven by review and experimental studies with a subsequent

wave of increases due to observational and modeling studies. This may

have been motivated by the new literature being generated for marine-

based diseases, which can use published data for parameterization and

interpretation (Hoenig et al., 2017; Trochta et al., 2022). Finally, our

data show that studies do not often make the connection between

pathogen dynamics and keystone species.

As we have attempted to show, the disease literature lags the

more salient environmental changes of its time. Although marine

diseases (pathogens) are no different in that capacity, they are of

particular concern and urgent importance because they play

incredibly dynamic roles in the environment (Sobocinski et al.,

2022). Estuaries are not only complex ecotones that glean insight

into the nature of freshwater and saltwater ecosystems in the face of

climate change, but they can serve the same purpose with regards to

their connection between the most fundamental of ecosystems -

land and sea. They are incredibly unique in this regard, so their very

richness coinciding with anthropogenic habitation is a significant

threat to both terrestrial and marine environments. At the same

time, they can therefore provide many answers to underlying

questions of climate change and anthropogenic stress.
4.1 Estuarine health literature dynamics in
the context of environmental change

The emphasis of estuarine health in the literature tends to

follow the most pressing environmental challenges of that time

(Zoffoli et al., 2020). Until the last few decades, many estuary

habitats in North America were drained and developed for

agriculture and urban expansion (Abrahim and Parker, 2002;

Yang and Liu, 2005). In the United States alone, 38 percent of

estuaries and wetlands associated with coastal regions have been

converted for urban expansion or permanently lost (NOAA,

2022b). The effect of this history is highlighted in our results,

with most studies focusing on impacts of draining, damming,

dredging, and filling of estuaries in the context of habitat loss and

conversion. Nutrient pollution has been one of the most important

threats to the water quality of estuaries with resulting

eutrophication contributing to harmful algal blooms and anoxic

conditions that impacts wild and commercial flora and fauna

(Fowles et al., 2018). Invasive species were also a large part of the

literature (Figure 1), especially given that estuaries and coasts are

particularly susceptible, for instance through shipping and boating

(Ruiz et al., 2000), aquarium trade (Padilla andWilliams, 2004), and

aquaculture (Williams and Grosholz, 2008). While each of the
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previously mentioned estuary health indicators have been in the

literature consistently over our period of observation, pathogen

outbreaks appears to have increased with more frequent

environmental disease outbreaks since the early 2000s (Patz et al.,

2000). The reason this is notable is because pathogen outbreaks can

cause severe, large-scale, and sometime irrecoverable damage to

already complex ecosystems like estuaries (Lafferty, 2004).

Previously not considered in most estuary health indices

(Table 1), pathogen dynamics play important roles in ecosystems

than we previously understood. Studies indicate that they will be an

area of ongoing concern with increasingly severe climate change

and anthropogenic stress (Rama et al., 2022). We notice the

pathogens category underwent the most significant growth in the

number of studies conducted over the last twenty-two years of

the six observed categories, from 0 in 2000 to nearly 35 by 2022.

Marine disease (pathogen) dynamics make indirect appearances in

about 38 percent of the overall 354 studies simply because of the

ubiquitous nature of pathogen dynamics (Lafferty et al., 2008;

Lafferty and Mordecai, 2016). Although these numbers are still

relatively minimal in the large scheme of estuary health, they

motivate more research into the potentially unique role pathogen

dynamics play between structural and functional components of

estuary health (Harvell, 2019).
4.2 Understanding how pathogens
integrate into the current literature

Our review indicates that marine diseases inclusion in the literature

has increased since 2007 and are becoming vital indictors of estuary

health. Currently, economic losses are the primary driver of pathogen

inclusion in the literature both prior to and following the growing body

of disease literature (Kennish, 2002; Malham K, et al., 2014). Pathogens

were included in the literature as paired with disease outbreaks resulting

in mass die-offs of commercial fish catch, losses in employment

opportunities, and threats to coastal blue carbon storage, water

quality, flood protection, and coastal infrastructure (Chesney et al.,

2000; Hoagland et al., 2002; Short, 2004; Thronson and Quigg, 2008; de

Jesús Crespo et al., 2019; Thorhaug et al., 2019). Opportunistic marine

pathogens are ubiquitous in the environment and cause disease in

immune-compromised or stressed hosts. Although this has shown that

disease can be a natural part of all ecosystems, an increasing number of

cases show shifts in the balance between the host, pathogen, and the

environment. Just like mass die-offs of commercial fish, mass die-offs of

wild marine populations can also persist. Furthermore, the rapid

changes occurring in our world’s oceans right now, coupled with

other anthropogenic stressors, will likely lead to more opportunistic

diseases in the marine environment (Burge et al., 2013).

Human stressors were the next major category that pathogen-based

studies were categorized under, which is associated with economic

losses (Elliott and Whitfield, 2011). Studies discussed pathogens and

disease outbreaks in the context of anthropogenic activities increasing

fecal bacteria loads, pathogenic viruses and nutrients in rivers, and

estuaries and coastal areas being targets of point and diffuse sources

such as sewage discharges and agricultural runoff (Kennish, 2022).

Studies also discussed this in the context of a variety of physical,
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chemical, and biological processes (often disturbed or influenced by

humans) inducing the co-flocculation of microorganisms, with mineral

particles and organic matter resulting in the likelihood of pathogenic

outbreaks (Malham et al., 2014). This is critical, as anthropogenic

stressors are leading to rising temperatures, eutrophication, ocean

acidification, habitat destruction and loss of biodiversity, and extreme

weather events, which are in turn leading to disease outbreaks inmarine

environments (Sobocinski et al., 2022).

Studies with a focus on climate change increased in frequency after

2010 (Weber, 2016), which may indicate a shift in research priorities

(Scanes et al., 2020a). Several studies analyze data from long-term

monitoring programs, noticing unusual rates of temperature change,

warming, and acidification. It has been noted that the response of

estuaries to disease outbreaks in the face of climate change can be

dependent on estuary morphology (Gillanders et al., 2022). Studies

found that lagoonal and riverine estuaries are both acidifying and

warming at rates faster than historically seen, partially due to shallow

average depths and limiting oceanic exchanges (Scanes et al., 2020b).

Finally, multiple studies related to climate also noted that models,

measured on an order of magnitude faster than global ocean

predictions and atmospheric models, may not be as useful for

predicting the response of estuaries to climate change – an incredibly

critical observation for modeling and management (Ruggiero et al.,

2010; Scanes et al., 2020b; Chilton et al., 2021; Lonsdale et al., 2022).

This means that predicting the response of estuaries to global climate

change remains speculative. We severely need a new generation of

indicators for marine waters (Niemi et al., 2004).

The studies produced since 2007 are primarily review- and

experimental-based, however more modeling and observational

studies are needed going forward to fully capture the effect of

pathogens in estuaries. Data that quantify the impacts of

environmental parameters on a disease or diseases in estuary flora

and fauna can provide new and importantly, critical, insights into

how disease interacts with host populations. More observational

and modeling studies can offer linkages between disease patterns

and disease outbreaks in the spotlight of climate change and larger

climate controlling processes. Greater research focused on modeling

and observations might reveal more detail on the strong effect

pathogens have on population levels in estuaries, which might be

critical if keystone species are affected. Few observational or

modeling studies, especially long-term studies, exist to describe

these relationships (Lafferty et al., 2008; Bushek et al., 2012). If we

are going to successfully manage complex ecosystems like estuaries,

we will need to better understand the impetus for and types of

pathogen-based research in estuarine systems.
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4.3 The role of keystone species in
the literature

Our recommendation is that the best way to begin

incorporating pathogen dynamics into future literature is to

initially focus on keystone species, given their disproportionate

influence on ecosystem stability, resilience, and health (Table 2).

When a pathogen or disease outbreak stresses the function,

structure, or resilience of a keystone species in an estuary, there

are bound to be long-term impacts or potential changes to

ecosystem structure and/or function (Castello et al., 1995; Schultz,

2016; Graham et al., 2021). Of the documented literature, 21

percent mention keystone species with 9 percent of those 74

studies focusing on interactions between parasites and keystone

species. Changes in the abundance of keystone species due to a

disease outbreak can have major cascading effects in ecosystem

function and community composition. This has already been

documented with sea otters in coastal California being affected by

pathogens (Ostfeld et al., 2008) and the rocky intertidal zone

starfish Pisaster ochraceus (Hajishengallis et al., 2012) falling

victim to pathogenic disease outbreaks. There is indication in the

literature that if the relationship between keystone species and the

microbial ecology of an environment could be elucidated further,

there could be essential insights made into the structure of marine

pathogenic communities and their interplay with their environment

and hosts (Estes and Palmisano, 1974; Ostfeld et al., 2008;

Hajishengallis et al., 2012; Danilović et al., 2022). Such thematic

findings, along with the dearth of literature on this interaction,

highlight a crucial need for significantly more study.
4.4 Future monitoring

Through a quantitative systematic literature review, we have

examined the ecological hypothesis that pathogen dynamics have

experienced an upward trend over the past two decades. Based on

the key conclusions drawn from this analysis, we propose that

forthcoming marine health monitoring programs should place

pathogen dynamics at the core of their surveillance efforts,

recognizing it as a central and unifying factor in assessing the

well-being of global estuaries. Considering the intricate impacts of

global climate change on diseases, comprehensively tracking, and

comprehending the layered dynamics of marine diseases, including

their occurrence patterns, will be crucial for conserving ecosystems

that face increasing anthropogenic and climate-related stressors.
TABLE 2 Representation of how the identified priorities can be utilized in the assessment of estuarine health.

Priority Assessment Approach

Disease Prevalence and Severity Regular monitoring surveys of keystone species.

Pathogen Identification and Characterization Molecular techniques for pathogen identification and characterization.

Environmental Monitoring Continuous monitoring of water quality, temperature, salinity, and nutrient levels.

Host-Pathogen Interactions Research on climate and environmental factors influencing disease.

Long-term Surveillance Establishing monitoring programs to detect disease trends and evaluate mitigation measures.
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Based on the comprehensive review of literature on marine

diseases and their relationship with global estuaries, we have

identified several key priorities and approaches that should be

considered in the development of future high-quality marine

health monitoring programs. These priorities are crucial for

assessing and safeguarding the health of estuarine ecosystems.

Here, we present a list of these priorities along with a suggested

table that demonstrates their potential use in the assessment of

estuarine health:
Fron
1. Disease Occurrence and Distribution Mapping:

• Develop a standardized approach to map the occurrence and

distribution of marine diseases within estuaries.

• Utilize spatial analysis techniques to identify disease hotspots

and track changes over time.

• Establish a database to collect and share disease occurrence

data across estuaries globally.

2. Long-term Monitoring of Disease Trends:

• Implement long-term monitoring programs to assess

temporal trends in disease prevalence and intensity.

• Utilize standardized sampling protocols and diagnostic

techniques for consistent and comparable data collection.

• Analyze trends to identify patterns, seasonality, and potential

drivers of disease dynamics.

3. Multi-disciplinary Approaches:

• Foster collaborations between researchers, practitioners, and

stakeholders from different disciplines (e.g., marine

ecology, public health, climate science) to gain a

comprehensive understanding of disease dynamics.

• Integrate socio-economic and ecological data to assess the

impacts of diseases on estuarine communities and ecosystems.

4. Early Warning Systems:

•Develop early warning systems that incorporate environmental

and biological indicators to predict disease outbreaks.

• Establish real-time monitoring networks for continuous data

collection and timely response to emerging disease events.

5. Ecosystem Health Indicators:

• Identify and monitor key indicator species and ecological

parameters that reflect the overall health of estuaries.

• Link disease occurrence and severity to ecosystem health

indicators, providing a holistic assessment of estuarine well-

being.
To facilitate a better understanding of these priorities, we have

compiled a table (Table 1) that outlines their respective utilization

in the assessment of estuarine health. This table serves as a practical

tool for designing and implementing effective monitoring

programs. By integrating these priorities into estuarine health

assessments, monitoring programs can effectively track and

respond to the evolving dynamics of marine diseases. Moreover,

these efforts should be carried out within the broader context of

understanding the impacts of climate change on disease dynamics,

and how they intersect with other anthropogenic stressors. This
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comprehensive approach will enable the conservation and

management of estuarine ecosystems under increasing threats

from both natural and human-induced stressors.
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(2020). Sentinel-2 remote sensing of zostera noltei-dominated intertidal seagrass
meadows. Remote Sens. Environ. 251, 112020. doi: 10.1016/j.rse.2020.112020
frontiersin.org

https://doi.org/10.1002/aqc.3624
https://doi.org/10.1007/s12237-008-9056-5
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2019.1718
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2019.1718
https://doi.org/10.1139/cjfas-2021-0094
https://doi.org/10.7717/peerj.8428
https://meridian.allenpress.com/jcr/article-abstract/29/5/1111/204332/ Explaining-the-Spectral-Red-Edge-Features-of
https://meridian.allenpress.com/jcr/article-abstract/29/5/1111/204332/ Explaining-the-Spectral-Red-Edge-Features-of
https://doi.org/10.1016/j.marpolbul.2012.06.003
https://doi.org/10.1371/journal.pbio.0020120
https://doi.org/10.1002/wcc.377
http://open.oriprobe.com/articles/29031173/The_suitability_of_AMBI_to_benthic_quality_assessm.htm
http://open.oriprobe.com/articles/29031173/The_suitability_of_AMBI_to_benthic_quality_assessm.htm
http://open.oriprobe.com/articles/29031173/The_suitability_of_AMBI_to_benthic_quality_assessm.htm
https://doi.org/10.1002/ehs2.1258
https://doi.org/10.1111/j.1095-8649.2002.tb01773.x
https://doi.org/10.1007/s12237-007-9031-6
https://doi.org/10.1080/01431160500219224
https://doi.org/10.1016/j.rse.2020.112020
https://doi.org/10.3389/fmars.2023.1185662
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	The role of diseases in unifying the health of global estuaries
	1 Introduction
	1.1 Effects of climate change and anthropogenic activity on estuaries
	1.2 Measures of estuary health
	1.3 The role of marine diseases and keystone species interactions in estuaries

	2 Methods
	2.1 Systematic quantitative literature review

	3 Results
	3.1 Most prominent health issues in estuaries
	3.2 Pathogens and complex natural and anthropogenic factors and their relationship to ecosystem management across time
	3.3 The broader picture

	4 Discussion
	4.1 Estuarine health literature dynamics in the context of environmental change
	4.2 Understanding how pathogens integrate into the current literature
	4.3 The role of keystone species in the literature
	4.4 Future monitoring

	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


