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and rearing water
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1College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China, 2Guangdong
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In this study, the inhibitory effect of different doses of hydrogen peroxide nano-

silver ion composite disinfectant (HPS) on DIV1 and bacteria was analyzed, and

the antibacterial activity of three disinfectants, HPS, potassium monopersulfate

(KMPS) and calcium hypochlorite (Ca(ClO)2), was compared. In addition, 16S

rDNA amplification sequencing technology was used to analyze the effects of

these three disinfectants on the intestinal microflora of Litopenaeus vannamei

and the structure and composition of water microflora. The results showed that

HPS did not positively affect the survival rate of prawns infected with DIV1, which

needs to be verified in future studies. In the experimental design range, the higher

the dosage of HPS, the more obvious the killing effect on the number of Vibrio

and total bacteria in rearing water, and the two showed a negative correlation.

5,104 OTUs were obtained based on 16S rDNA high-throughput sequencing, of

which 3,012 (59.01%) and 1,475 (28.90%) OUTs were annotated at the phylum

and genus levels, respectively. Proteobacteria, Firmicutes, Actinobacteriota,

Bacteroidetes, and Cyanobacteria dominated the water samples at the phylum

level. At the genus level, the dominant bacterial genera in the intestinal bacterial

community of shrimp were Photobacterium, Vibrio, and Ruegeria. The most

dominant bacteria genera in water samples were Vibrio, Ruegeria,

Pseudoalteromonas, and Nautella. In the water samples, the composition and

structure of the Ca(ClO)2 microbial community were relatively simple, and the

species richness and diversity of Ca(ClO)2 were significantly lower than those of

HPS and KMPS disinfectant groups at 12 h and 24 h (p < 0.05). In terms of

inhibiting the diversity and richness of the microbial community, Ca(ClO)2 had a

significant effect (p < 0.05), but the intestinal microbial community diversity of

shrimp treated with HPS was higher than that of the other two groups. It is worth

noting that, compared with the three disinfectants, HPS has the strongest killing
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effect on Vibrio and total bacteria, and has a certain positive significance for

maintaining the stable state of the microbial community. This study provides a

scientific basis for applying HPS in aquaculture and broadens the application

range of HPS.
KEYWORDS

hydrogen peroxide nano-silver ion, calcium hypochlorite, potassium monopersulfate,
disinfectant, Vibrio, microbial community
1 Introduction

Aquaculture is one of the world’s fastest-growing food

production areas (Bayliss et al., 2017; FAO, 2022). Currently, half

of the world’s aquatic products come from aquaculture. With the

pollution of the marine aquatic environment and the decline of the

wild fishing industry, aquaculture is playing an increasingly

important role in the sustainable food supply and has become an

important supplement to ensure the world’s food security. According

to the statistics of the Food and Agriculture Organization of the

United Nations (FAO) (FAO, 2022), the world’s aquaculture output

in 2020 reached 122,578.5 thousand tons. As the world’s largest

aquaculture country, China’s aquaculture output accounted for 57.5%

of the world’s total, providing a large amount of high-quality animal

protein for people. Prawn is the backbone industry of aquaculture. In

2020, the total production of crustacean aquaculture in the world was

11,237.0 thousand tons, while the total production of Litopenaeus

vannamei and Penaeus monodon in the world was 5812.2 thousand

tons and 717.1 thousand tons, accounting for 51.7% and 6.4% of the

total production of crustacean aquaculture, respectively, creating

huge economic benefits.

In recent years, in pursuit of higher economic benefits, prawn

farmers have been promoting high-density aquaculture, which has

induced a series of ecological problems such as the deterioration of

aquaculture waters and the imbalance of the ecological

environment in offshore waters, which in turn has led to the

frequent occurrence of prawn farming diseases, especially viral

and bacterial diseases, seriously threatening the sustainable

development of the s prawn farming industry.

The effective treatment of aquaculture water has become a major

technical difficulty. Traditional aquaculture water treatment mainly

uses physical filtration and chemical disinfection to eliminate and

reduce pathogens, purify water, and control disease outbreaks. The

main chemical disinfectants commonly used in aquaculture are

potassium permanganate (KMnO4) (Abed et al., 2019), calcium

hypochlorite (Ca(ClO)2) (Lewis, 2010), povidone-iodine (PVP-I)

(Zhang et al., 2023), hydrogen peroxide (H2O2) (Pedersen and

Pedersen, 2012), and potassium monopersulfate (KMPS) (Jin et al.,

2018). These chemical disinfectants are strongly bactericidal and are

active in farm epidemic prevention, wastewater decontamination, and

medical and environmental disinfection. However, more and more

evidence shows that most chemical disinfectants contain harmful

byproducts in the disinfection process, such as trihalomethane (THM)
02
and haloacetic acid (HAA), which are byproducts of chlorinated

disinfectants and potassium persulfate composite disinfectants, and

even residues caused by incomplete reactions of the disinfectants

themselves, which may lead to chemical pollution and adverse health

side effects, and there are safety risks (Smith et al., 2010; Ao et al., 2016;

Kali et al., 2021).

Hydrogen peroxide (H2O2), in line with the principles of green

chemistry, is an environmentally friendly, highly active, and safe

disinfectant that does not produce harmful byproducts (Pedersen

and Pedersen, 2012) and can be widely used in health care and

veterinary environments and is licensed by the European Commission

(SCENIHR, 2009). H2O2, which exerts its disinfection efficacy through

the efficient oxidation of hydroxyl radicals directly destroying

microbial cell membranes (Acosta et al., 2021), is commonly used in

aquaculture to treat some gill and skin infections (Adams et al., 2012;

Tkachenko et al., 2014), fulfilling the requirement to be a bactericidal

disinfection alternative in aquaculture (Schmidt et al., 2006).

As a promising broad-spectrum antimicrobial agent, silver

increasingly appears in various types of sterile antimicrobial

materials, making a splash in the food and medical fields and

becoming a focal point for antimicrobial material development. A

biomaterial coating based on silver ion implantation coating with

silicone has been reported to have a sustained antimicrobial effect that

effectively reduces the risk of infection in implantable procedures

(Heno et al., 2021). Silver implanted into polyethylene food packaging

film inhibited the ability of bacteria to adhere to the surface and exert

bactericidal effects as a potential protector of food quality and safety

(Lu et al., 2021). Tambur et al. successfully decorated nano silver

particles on functionalized multi-walled carbon nanotubes, and the

study confirmed that this novel material (Ag-MWCNTs) has better

antibacterial activity and effectively inhibited the activity of Bacillus

subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas

aeruginosa (Tambur et al., 2020). Studies have shown that the

antibacterial mechanisms of silver nanoparticles (AgNPs) and Ag+

are highly similar. On the one hand, AgNPs depend on electrostatic

adsorption on bacterial cell membranes, disrupting membrane

integrity and inhibiting protein activity, ultimately leading to

bacterial lysis and death (Antoine et al., 2006; Dai et al., 2016;

Hamad et al., 2020). On the other hand, the mechanism of Ag+

inhibition is through uptake by bacterial cell membranes, which

results in a series of reactions that inhibit cellular production of

adenosine triphosphate (ATP), block DNA replication channels, and

generate reactive oxygen species (ROS) (Nikolaj et al., 2005).
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Putting aside the fact that silver has good antibacterial properties,

many people still question the safety of silver as an antibacterial agent,

and the toxic effects of silver have attracted increasing attention from

the scientific and public communities. Trace amounts of silver are

harmless to humans, and the guidelines for drinking water quality

published by the World Health Organization stipulate that the

concentration of silver ions in drinking water is less than 0.1 mg/L

and does not threaten human health (WHO, 2004). By analyzing the

dermal toxicity and in vitro cytotoxicity of AgNPs, as well as the

biosafety exposure of AgNPs and nano-silver materials, scholars

showed that nano-silver ion skin disinfectants exhibit good killing

effects on both bacteria and fungi without causing skin irritation,

ensuring the safety of the application in skin management (Yan and

Wang, 2020).

Based on the excellent bactericidal properties of H2O2 and

silver, a new composite disinfectant, hydrogen peroxide nano-

silver ion (HPS), has attracted wide interest from scholars. It was

concluded that H2O2 and Ag
+ have a synergistic antimicrobial effect

(Pedahzur et al., 1997; Orta De Velasquez et al., 2008; Martin et al.,

2015), and the implantation of silver helps stabilize H2O2, slow

down the decomposition, and enhance the disinfection effect of

H2O2. Martin et al. (Martin et al., 2015) compared the antimicrobial

activity and mechanism of action of hydrogen peroxide nano-silver

ion and H2O2 and found that the former has stronger bactericidal

activity than the latter, confirming that the intervention of Ag+

increases the interaction of HSP with the bacterial cell surface.

Girolamini et al. determined that related parameters of Legionella,

Pseudomonas aeruginosa, and the heterotopic plate count (HPC)

were analyzed, suggesting that the new formulation of H2O2 and

silver salt (WTP828) was safe and effective as a potential alternative

to conventional disinfection methods (Girolamini et al., 2019).

Because of the high efficiency, stability, safety, and environmental

friendliness achieved by the HPS, it is increasingly used in the

disinfection and sterilization treatment of wastewater treatment,

medical equipment, and drinking water (Mahnel and Schmidt,

1986; Liang, 2016). Notably, no studies have applied this

compound disinfectant in aquaculture water disinfection.

This experiment aimed to investigate the antiviral effect of HPS

in shrimp and the inhibition of Vibrio and total bacteria in the

rearing water. The 16S rDNA amplicon sequencing technology was

applied to analyze and compare the differences of HPS, potassium

monopersulfate (KMPS), and Ca(ClO)2 on the microbiota of

shrimp intestine and microbiota of rearing water, the interactions

between them, and the regulatory pathways. This study is the first to

introduce a new hydrogen peroxide nano-silver ion composite

disinfectant into shrimp aquaculture, providing a scientific basis

for further research of HPS in aquaculture in the future.
2 Materials and methods

2.1 Experimental disinfectants and
shrimp feeding

The HPS used in the experiments was developed by Roam

Technology, Belgium, and the active ingredients and their contents
Frontiers in Marine Science 03
were H2O2 (7.5-7.9%) and Ag+ (0.042-0.053‰). KMPS and Ca

(ClO)2 (32% active chlorine) were obtained from the East Island

Marine Biology Research Laboratory, Guangdong Ocean University

(Zhanjiang, China). The L. vannamei and Marsupenaeus japonicus

used in the experiment were both obtained from the East Island

Marine Biology Research Base, with the average body weight of 7.43

± 0.51 g and 7.82 ± 0.73 g, respectively. Before the experiment,

shrimp with intact appendages and no damage were selected and

domesticated in a pre-oxygenated 0.3 m3 experimental bucket for 5

days. The artificial compound feed (Guangdong Yuequn

Biotechnology Co., Ltd., China) was fed thrice daily at 10% of the

shrimp’s body weight during this period. Water was changed once a

day, with a water change of approximately 100%, and water quality

parameters were checked and recorded, maintaining water

temperature at 28.0 ± 0.5 °C, salinity at 35.0 ± 0.6, pH 8.0 ± 0.1.
2.2 Preparation of DIV1 inoculant and
challenge experiment

The DIV1 inoculant was prepared and quantified using a

method previously published by scholars (Chen et al., 2019), and

the DIV1 disease material was obtained from our laboratory. Eighty

healthy M. japonicus were randomly selected and divided into four

groups for the attack experiment (20 shrimp per group), three of

which were injected with 50 ml of 107 copies/ng DNA of DIV1

inoculant at their third abdominal segment muscle, and the other

group was injected with 50 ml of phosphate-buffered saline (PBS, pH
7.4). Immediately after that, injected 50 ml of 0 g/m3, 5 g/m3, and 10

g/m3 of HPS to the three groups with DIV1-infected shrimp,

respectively, and the group that had been injected with PBS was

not injected HPS as a negative control. The injection method of

HPS is the same as that of DIV1 inoculant. After the injection,

mortality was observed and recorded every 6 h for 72 h, during

which no water exchange was performed. The dying M. japonicus

were isolated in time to avoid secondary infection.
2.3 Test of the inhibitory effects of different
doses of HPS and different disinfectants on
Vibrio and total bacteria

To study the effect of different doses of HPS on the inhibition of

Vibrio and total bacteria in the rearing water, a dose gradient of 0 g/

m3, 0.5 g/m3, 1.0 g/m3, 2.0 g/m3, and 5.0 g/m3 was set. Healthy

L.vannamei were randomly selected and put into clean

experimental bucket, with 50 prawns in each bucket (the actual

experimental water volume was 0.25 m3). The experimental water

was filtered seawater, and three replicates were set for each dose

group. After 24 h of rearing, HPS was added to the rearing water in

five dose gradients, and the rearing water was counted for Vibrio

and total bacteria every 24 h for up to 120 h, during which no water

exchange was performed.

Based on the dose experiment, three disinfectants, HPS, KMPS,

and Ca(ClO)2, were selected to compare their differences in bacterial

inhibition ability. Three disinfectants were used at a dose of 1 g/m3,
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with Ca(ClO)2 calculated as effective chlorine. Refer to the above HPS

dose experiment for the experimental operation process.

Bacterial counts of water samples referred to the standard

procedure (APHA, 2005), where water samples (10 mL) were

collected from each repeat of disinfection treatment every 24 h. It

was done in a special chamber. Serial dilutions were performed with

sterilized PBS buffer solution in 10-fold orders of magnitude. After

dilution to the appropriate order of magnitude, 0.1 mL of

subsamples were uniformly coated on the prepared sterile

thiosulfate citrate bile salt sucrose agar medium (TCBS) and

2216E agar medium (Qingdao Hope Bio-Technology Co. Ltd.,

China), respectively, for Vibrio count and total bacterial count.

The media were placed in a constant temperature incubator at 36 ±

1 °C and incubated for 24 h and 48 h, respectively. The colonies

were counted and expressed as colony-forming units (CFU/mL) per

mL of the water sample (John O. Rawlings et al., 1998).
2.4 Analysis of intestinal and water
microflora structure of L. vannamei treated
with different disinfectants

The experimental disinfectants were HPS, KMPS, and Ca(ClO)

2, all at 1 g/m
3, with Ca(ClO)2 calculated as effective chlorine. Three

disinfectant treatment groups and one control group were set up,

with three replicates in each group. L. vannamei with intact and

healthy appendages were placed in a pre-oxygenated 0.3 m3 bucket

(the actual volume of the experimental water was 0.25 m3) with

thirty shrimp in each replicate, and different disinfectants were

added to the rearing water respectively after 24 h of feeding, while

the control group was not added. In the microbiota results, the three

disinfectant treatment groups of HPS, KMPS, and Ca(ClO)2 were

denoted as group H, K, and Cl, respectively, while the control group

was denoted as group B.
2.4.1 Microbial community sample collection
Microbiological samples from the intestine of the shrimp and

microbiological samples from the rearing water were collected at the

12th and 24th h of the disinfection treatment test. Five L. vannamei

were randomly retrieved from each replicate, and after washing and

wiping the shrimp body surface with distilled water and alcohol

disinfection tablets, the intestine and its contents of shrimp were

extracted and placed in a 1.5 mL frozen storage tube, quickly placed

in liquid nitrogen, and then transferred to the -80 °C refrigerator for

storage until DNA extraction. 1 L of water was randomly taken

from each experimental bucket and filtered through a 0.45 mm
microporous filter membrane, with each filter membrane filtering

250-300 mL of experimental water, collected the membranes in a 50

mL sterile freezer-storage tube and stored quickly in a refrigerator at

-80 °C until DNA extraction (He et al., 2020).

2.4.2 Total DNA extraction, amplification, and
high-throughput sequencing

Soil DNA Kit (OMEGA, US) was applied to extract total

DNA from shrimp intestines and rearing water samples. The

concentration and purity of total DNA were determined, and
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The primer pairs 341F (5’-CCTAYGGGRBGCASCAG-3’) and

806R (5’-GGACTACNNGGGTATCTAAT-3’) were used to

amplify the V3-V4 high variant region of the 16S rRNA gene.

After the PCR products were qualified with 2% agar gel, the small

fragment libraries were constructed according to the characteristics

of the amplified 16S region, and the libraries were sequenced by the

Illumina NovaSeq sequencing platform (Beijing Novozymes

Technology Co., Ltd., China). The obtained sequences are

available in the NCBI Sequence Read Archive (SRA) database

(accession number: PRJNA945210).

2.4.3 Bioinformatic analysis
The original data of intestinal and water samples of L. vannamei

were obtained by sequencing. Quantitative Insights Into Microbial

Ecology (QIIME, http://qiime.org/index.html) was carried out on

the original data splicing and filter to obtain high-quality tags

data obtained (Clean Tags). Use Usparse (Version 7.0.1001,

http://drive5.com/uparse/), and based on 97% similarity, OTUs

(operational taxonomic units) clustering was performed. Based on

the OTUs clustering results, on the one hand, species annotation

was done for each OTU representative sequence to obtain the

corresponding species information and species-based abundance

distribution. Meanwhile, the abundance and Alpha diversity were

calculated for OTUs to obtain the sample’s species richness and

evenness information. On the other hand, multiple sequence

comparisons were performed on OTUs, and phylogenetic trees

were constructed to explore the differences in community structure

among different samples or groups by Beta diversity analysis. The

Tax4Fun software was selected to perform functional prediction

analysis of microbial communities in the samples.
2.5 Statistical analysis

Data were organized and statistically analyzed using Excel 2019

software and SPSS 26.0 software (SPSS Inc., Chicago, IL, USA), and

experimental data were expressed as mean ± standard deviation

(SD). All results were analyzed using one-way analysis of variance

(ANOVA) with a significance level of p < 0.05, and Duncan’s

method was used for multiple comparisons when significant

differences existed.
3 Results

3.1 Effects of different doses of HPS on the
cumulative survival rate of M. japonicus
infected with DIV1

Overall comparison of survival curves showed that no shrimp

died in the negative control group injected only with PBS during the

experiment, while all three groups died successively. There was no

significant difference in the survival rate of M. japonicus infected

with DIV1 at different doses of hydrogen peroxide nano-silver ion

composite disinfectant (Logrank=0.085, p > 0.05) (Figure 1).
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3.2 Vibrio and total bacteria counts in the
rearing water of L.vannamei after
treatment with different doses of HPS and
different disinfectants

After treatment with five different doses of HPS, the number of

Vibrio in each group showed that the number of Vibrio in the group

without disinfectant addition was always the largest during the

experimental period ((26.00 ± 3.61) ×10² CFU/mL ~ (27.67 ± 2.08)

×10² CFU/mL) and did not show any inhibitory effect on Vibrio. In

the four disinfectant addition groups, the number ofVibrio decreased

with increasing disinfectant dose, and the number of Vibrio in the

experimental group with 5.0 g/m3 addition was always the lowest

(lowest (5.33 ± 0.58) ×10² CFU/mL) and always significantly lower (p

< 0.05) than in the non-addition and low concentration addition

groups (0.5 g/m3) (Figure 2A). The trend in the number of total

bacteria was similar to that of Vibrio, with the inhibitory effect on

bacteria increasing with the amount of disinfectant additive

(Figure 2B), where the number of total bacteria was significantly

higher (p < 0.05) in the unspiked and 0.5 g/m3-spiked groups than in

the 5.0 g/m3-spiked group. From the 0th h to the 24th h, the number of

Vibrio in the disinfectant-added group decreased sharply, and the

higher the dose, the faster the bacterial abundance decreased,

followed by a plateau and rebound period.

Comparison of the bacterial inhibition ability of different

disinfectants showed that all three disinfectants showed

significant inhibition of Vibrio and total bacteria, and the

numbers of both Vibrio and total bacteria were significantly lower

than the control group (p < 0.05), specifically the best bacterial

inhibition ability of HPS, followed by KMPS (Figures 2C, D).

Similarly, the number of bacteria decreased fastest within 24 h

after the addition of disinfectants and then decreased slowly

(Vibrio) or remained stable (total bacteria).
3.3 Overview of Illumina sequencing and
OUT analysis

Sequencing was performed based on the Illumina Nova platform,

and the reads were spliced. An average of 88,225 tags were measured

per sample, the effective tags were obtained 80,351 effective sequences
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after quality control, the effective data volume reached 55,295, and the

effective rate of quality control reached 62.70%. Sequences were

clustered into OTUs using 97% identity as the criterion, and a total

of 5,104 OTUs were obtained. Species annotation of OTUs sequences

showed that the percentage of annotation to the phylum level was

59.01%; the percentage of annotation to the genus level was 28.90%.

Compared with 12 h, after 24 h treatment, except for the Cl

group, the number of OTUs in intestinal microflora samples of the

other three groups increased, and the B group (Control group) had

the largest increase in OTUs (Table 1). Compared with the water

samples treated with disinfectant for 12 h, the number of OTUs

increased after treatment for 24 h, and the increasing amount of Cl

group was the smallest, and the increasing amount of H group was

the largest. In intestinal microflora samples, the number of

annotations in K, H, and B groups at different levels (phylum,

class, order, family, and genus) increased from 12 h to 24 h after

treatment, but the number of annotations in the Cl group showed a

downward trend. In the water microflora samples, the number of

annotations at different levels (phylum, class, order, family and

genus) in the disinfectant addition groups and the control group

showed an increasing trend after 24 h of treatment compared with

12 h of treatment.
3.4 Microbial community composition of L.
vannamei intestine and rearing water

The microflora structure was similar between the intestinal tract

of L. vannamei and the water samples, and the composition ratio

was somewhat different. According to the results of species

annotation, the top 10 microbial colonies with maximum

abundance at phylum and genus levels were selected for analysis.

At the phylum level, it is found that Proteobacteria, Firmicutes,

Actinobacteria, Bacteroidetes, and Cyanobacteria occupy the

dominant position (Figure 3A). In the intestinal microflora

samples, after 12 h treatment, the relative abundance of

Proteobacteria in the H group was the highest (80.48%), followed

by Cl group (76.88%) and K group (60.24%), while the relative

abundance of the control group (B group, 58.48%) was the lowest.

Nevertheless, there was no significant difference between groups (p

> 0.05) (Figure 3B). There was no significant difference in the
FIGURE 1

Effect of different doses of HPS on the cumulative survival of M. japonicus after infection with DIV1.
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relative abundance of Proteobacteria among all groups after 24 h

treatment compared with 12 h treatment (p > 0.05). In addition,

there were no significant differences in the relative abundance of

Firmicutes, Actinobacteria, and Bacteroidetes among the four

groups and between the two time periods (p > 0.05) (Figures 3C–E).

Among the water samples, the species composition of the Cl

group was relatively simple, and the relative abundance of
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Proteobacteria in the Cl group was the highest (88.11%) after

12 h treatment. The relative abundance of Proteobacteria in the

K, H, and B groups was 32.26%, 38.73%, and 35.62%, significantly

lower than those in the Cl group (p < 0.05). After comparison for

12 h, the relative abundance of Proteobacteria in the other three

groups, except the Cl group, was significantly up-regulated at 24 h

(p < 0.05). After 12 h of treatment, there were no significant
A B

DC

FIGURE 2

Quantity changes of Vibrio and total bacteria after treatment with different doses of HPS (A, B) and different disinfectants (C, D). Data are expressed
as mean ± SD.
TABLE 1 Annotation overview of the number of OTUs and levels (phylum, class, order, family, and genus).

Sample OTUs Phylum Class Order Family Genus

Cl.12h. I 1581 40 82 179 256 339

K.12h. I 1217 36 74 166 228 311

H.12h. I 1079 21 64 163 225 316

B.12h. I 1200 21 80 176 244 333

Cl.24h. I 1116 35 73 174 239 329

K.24h. I 1304 37 85 195 272 403

H.24h. I 1368 35 80 198 273 397

B.24h. I 1577 35 77 194 275 383

Cl.12h. W 809 37 61 136 167 214

K.12h. W 1160 43 78 171 212 249

H.12h. W 1042 39 67 158 208 242

B.12h. W 1091 39 72 161 204 249

Cl.24h. W 966 36 64 150 206 280

K.24h. W 1360 42 77 182 247 316

H.24h. W 1439 48 100 169 274 353
front
Cl.12h. I: intestinal samples of L. vannamei at 12 h of Ca(ClO)2; the same for K.12h. I~ B.24h. I; Cl.12h. W: cultured water samples at 12 h of Ca(ClO)2; the same for K.12h. W~ B.24h. W.
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differences in the relative abundance of Actinobacteria and

Bacteroidetes in the K, H, and B groups (p > 0.05). After 24 h

treatment, the relative abundance of 2 dominant bacteria in the K

and B groups was significantly lower than in groups treated for 12 h

(p < 0.05).

At the genus level, the dominant bacterial genera in the intestinal

microbial community of L. vannamei were Photobacterium, Vibrio,

and Ruegeria (Figure 4A). The relative abundance of Photobacterium in

the B group was lower than that in the disinfectant groups, and the

relative abundance of Vibrio was the highest (Figures 4B, C). The most

dominant bacteria genera in the water samples were Vibrio, Ruegeria,

Pseudoalteromonas, and Nutella. The relative abundance of Vibrio in

the Cl group was significantly higher than in the other three groups at

12 h and decreased significantly after 24 h (p < 0.05). Compared with

12 h, the relative abundance of Ruegeria in water samples of

disinfectant groups and control group was significantly increased at

24 h (p < 0.05). The relative abundance of Pseudoalteromonas in each

group increased after 24 h treatment compared with 12 h treatment

(Figures 4D, E). According to the phylogenetic tree of species at the

genus level, the main dominant bacteria genera (Photobacterium,

Vibrio, Ruegeria, Pseudoalteromonas, and Nautella) belong to

Proteobacteria (Figure 5).
3.5 Alpha and beta diversity analysis

The Alpha analysis index (Shannon, Simpson, Chao, and ACE)

of different samples under the consistency threshold of 97% is

statistically analyzed. The results show that the diversity Shannon

index and Simpson index of intestinal samples of prawn after 12 h

and 24 h treatment with the three disinfectants ranged from 3.47 to

5.32 and 0.65 to 0.90, respectively. There was no significant
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difference among all groups (p > 0.05) (Figures 6A, B). The

diversity index of the Cl and K groups decreased after 24 h

treatment compared with 12 h treatment with disinfectant. The

Chao index and ACE index of intestinal samples ranged from

779.83 to 1041.51 and 823.32 to 1097.35, respectively, with no

significant difference among all groups (p > 0.05) (Figures 6C, D).

Except for the Cl group, the richness index (Chao and ACE) of the

other three groups at 24 h was higher than that at 12 h.

In the water samples, the Shannon index of diversity ranged

from 3.958 to 6.294, and the Cl group was significantly lower than

the other three groups after 12 h and 24 h treatment with

disinfectant (p < 0.05). Compared with 12 h treatment with

disinfectant, the Shannon index of water samples in the Cl and H

groups after 24 h treatment was significantly increased (p < 0.05).

The Simpson diversity index was between 0.816 and 0.968, with no

significant difference among all groups (p > 0.05). The richness

index (Chao and ACE) of water samples ranged from 618.726 to

1185.808 and 630.975 to 1198.368, respectively. The richness index

of the three disinfectant addition groups and control group at 24 h

was significantly higher than that at 12 h (p < 0.05). The Cl group

was significantly lower than that in K, H, and B groups (p < 0.05).

The non-metric multidimensional calibration method (NMDS)

can reflect samples’ inter-group and intra-group differences. In this

experiment, Stress=0.107 (< 0.2) indicates that NMDS can

accurately reflect the degree of difference between samples. There

was no significant difference in the distance between the three

disinfectant addition groups and the control group in intestinal

samples. In the water samples, the points represented by the 12 h

and 24 h samples treated with disinfectants clustered together,

respectively, while the Cl group samples had a certain distance from

the central aggregation point. Intestinal and water samples were

distributed on two sides, far apart (Figure 7).
A B

D EC

FIGURE 3

Structure and composition of intestinal dominant microflora and water dominant microflora of shrimp after different disinfectants at the phylum
level. (A) shows the relative abundance of the top 10 dominant phyla, and (B–E) indicate the abundance changes of Proteobacteria, Firmicutes,
Actinobacteria, and Bacteroidetes, respectively. Data are expressed as mean ± SD, with different letters indicating a significant difference (p < 0.05).
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3.6 Function prediction

According to the annotation information of microbial

community functions in intestinal samples and water samples of

shrimp, the functions with the highest abundance were selected for

cluster analysis. The results showed that, at the KEGG Level 1, the

functional characteristics of intestinal and cultured water samples

were similar after being treated with three disinfectants. The top
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six predictive functions of relative abundance were “Metabolism”

(relative abundance from 44.55% to 49.30%), “Genetic Information

Processing” (from 17.86% to 22.22%), “Environment Information

Processing” (from 12.27% to 17.23%), “Cellular Processes” (from

6.71% to 8.33%), “Human Diseases” (from 2.62% to 3.33%), and

“Organismal Systems” (from 1.56% to 1.89%) (Figures 8A, B).

Among the functions classified at KEGG Level 2, the abundance

of metabolism-related pathways occupies the majority, including
FIGURE 5

Species phylogeny at the genus level. The phylogenetic tree is constructed from the representative sequences of species at the genus level. The
colors of the branches and sectors indicate their corresponding phyla, and the stacked column chart outside the sector circle indicates the
abundance distribution information of the genus in different samples.
A B

D EC

FIGURE 4

The structure and composition of intestinal dominant microflora and water dominant microflora of L. vannamei treated with different disinfectants at the
genus level. (A) shows the relative abundance of the top 10 dominant genera, and (B–E) indicate the abundance changes of the Photobacterium, Vibrio,
Ruegeria, and Pseudoalteromonas, respectively. Data were expressed as mean ± SD, with different letters indicating significant differences (p < 0.05).
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“Amino acid metabolism”, “Energy metabolism”, “Carbohydrate

metabolism”, “Metabolism of cofactors and vitamins”, “Nucleotide

metabolism” and “Lipid metabolism” (Figure 8C, D).
4 Discussion

Disinfectants can purify water quality, kill or control the viruses,

harmful bacteria, and harmful algae in aquaculture water, stabilize

the water microenvironment, and provide good growth conditions

for cultured animals (Wang, 2015). As a new compound
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disinfectant with great potential, HPS has become the focus of the

disinfection community due to its efficient sterilization and safe and

toxic toxicity (Mahnel and Schmidt, 1986; Khazaei et al., 2008; De

Giglio et al., 2014), and this study first introduced HPS to the

aquaculture field to explore its sterilization effect in shrimp culture.

The research shows that the silver peroxide compound

disinfectant has an effective inactivation effect on the influenza

virus, parainfluenza virus, and Newcastle disease virus (Duan et al.,

2020), and the inactivation effect of the disinfectant on the virus has

a better persistence (Mahnel and Schmidt, 1986). However, the

results of this experiment showed that the survival rate of M.
FIGURE 7

NMDS analysis based on OTU level.
B

C D

A

FIGURE 6

At the OTU level, the changes in bacterial species diversity index and richness index in different groups. Diversity is represented by (A) the Shannon
index and (B) the Simpson index, and richness is represented by (C) the Chao index and (D) the Ace index. Data were expressed as mean ± SD, and
different letters indicate a significant difference (p <0.05).
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japonicus infected with DIV1 was not significantly affected by

different doses of HPS (p > 0.05). It is reported that DIV1 is

highly pathogenic and can replicate and transcribe the virus by

affecting the metabolism of shrimp blood cells (He et al., 2021).

Once infected, it will cause extremely serious death (Qiu et al., 2017;

Qiu et al., 2018; Liao et al., 2022). It is undoubtedly a great challenge

to inject HPS into shrimp infected with DIV1, try to kill the virus in

vivo, and improve the survival rate. The disinfection route of HPS in

shrimp and the killing degree of the virus are not yet clear. In this

respect, the experiment has some limitations, which need to be

solved in future research.

This study used the 16S rDNA high-throughput sequencing

method to analyze the effects of three disinfectants, including HPS,

KMPS, and Ca(ClO)2, on intestinal microflora and water microflora

of L. vannamei. Based on 16S rDNA high-throughput sequencing,

5,104 OTUs were obtained, of which 3,012 (59.01%) OTUs were

annotated to the phylum level and 1,475 (28.90%) OTUs were

annotated to the genus level. In the water samples, the number of

OTUs in each group and the number of annotations in different

levels (phylum, class, order, family, and genus) showed an

increasing trend. The results showed that with the extension of

disinfectant treatment time, the bactericidal effect weakened, and

the number of bacteria rebounded. In the water microbial
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community, the diversity and richness of bacteria in the Ca(ClO)2
disinfectant group were lower than those in HPS and KMPS

disinfectant groups at two treatment periods, and the Shannon

index, Chao index, and Ace index were significantly different (P <

0.05). These results indicated that Ca(ClO)2 was superior to the

other two disinfectants in controlling the diversity and richness of

the microbial community in water.

After 12h treatment, the intestinal microbial community diversity

of the HPS disinfectant group was lower than that of the Ca(ClO)2
disinfectant group and KMPS disinfectant group, which differed from

the rule of the water microbial community. The studies showed that

hydrogen peroxide and silver had synergistic antibacterial effects and

strong bacteria-killing activity (Pedahzur et al., 1995; Pedahzur et al.,

1997). Catalase (CAT) plays a vital role in enhancing the efficacy of

this compound disinfectant, and the disinfection effect increases with

the increase of catalase content (Martin et al., 2015). Catalase (CAT)

is an important oxidoreductase in a multi-enzyme system, which

exists widely in prokaryotes and eukaryotes (Kashiwagi et al., 1997;

Klotz et al., 1997). In the study of Yang et al. (Yang et al., 2015), CAT

was widely distributed in the heart, hepatopancreas, gills, stomach,

intestine, and blood cells of shrimp, and it also played an important

role in maintaining the homeostasis of intestinal microflora.

Therefore, it is believed that the effect of HPS disinfectant on
A B

DC

FIGURE 8

Microbial function prediction based on the Tax4Fun calculation method. (A, C) is the heatmap of the functional abundance of KEGG Level 1 and
Level 2, respectively, (B) the histogram of the first 6 functional relative abundance of KEGG Level 1, and (D) the histogram of the top 10 functions of
KEGG Level 2.
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inhibiting the diversity of intestinal microflora of shrimp is better

than that of rearing water because the rich CAT in the shrimp’s

intestine promotes the killing ability of the disinfectant.

The comparative analysis of Beta diversity showed no

significant difference between the intestinal microflora of L.

vannamei treated with the three disinfectants, and the same was

true between the water microbial community. The distance between

the microbiota in the water and the intestine is far. Combined with

the analysis of Alpha diversity and Beta diversity, it was concluded

that the three disinfectants significantly affected the diversity and

richness of the water microbial community when treated for 12 h

and 24 h. However, due to the short-acting time of disinfectants,

more time is needed to cause significant effects on the intestinal

microbial community of shrimp.

The analysis of species’ relative abundance in the disinfectant

groups and the control group showed that, at the phylum level, the

dominant microflora were Proteobacteria, Firmicutes, Actinobacteria,

Bacteroidetes, and Cyanobacteria, among which Proteobacteria had

the largest relative abundance, which was similar to the results of

previous studies (Fan et al., 2019; Cheng et al., 2021). At the genus

level, the dominant bacterial genera in the intestinal bacterial

community of L. vannamei were Photobacterium, Vibrio, and

Ruegeria. In the water samples, the largest dominant bacteria genera

are Vibrio, Ruegeria, Pseudoalteromonas, and Nautella, which is

similar to the research results of (Zhang et al., 2021), which found

that Flavobacterium, Vibrio, and Pseudoalteromonas in the water of

control group and chlorine dioxide group are the main dominant

bacteria genera, and their relative abundance is higher than that of

other experimental groups. The phylogenetic tree of species at the

genus level showed that the dominant bacteria genera annotated in

Proteobacteria in this study were Photobacterium, Vibrio, Ruegeria,

Pseudoalteromonas, and Nautella.

The three disinfectants affected the relative abundance of

intestinal microflora and the dominant microflora of the aquatic

microflora of L. vannamei, but their effects were different. Vibrio is

the dominant bacteria in the intestinal tract of prawns and marine

water. Vibrio is mostly a pathogenic bacteria, and the overflow of

pathogenic Vibrio will cause the outbreak of shrimp diseases (Xiong

et al., 2017), resulting in serious economic losses. It is reported that

pathogenic Vibrio is an important pathogen causing diseases such

as luminescent vibriosis (Lavilla-Pitogo et al., 1990), acute

hepatopancreatic necrosis disease (AHPND) (Soto-Rodriguez

et al., 2015), bright-red syndrome (Soto Rodriguez et al., 2010),

and is one of the greatest threats to the shrimp farming industry. In

this experiment, the killing effect of Ca(ClO)2 on Proteobacteria

(especially Vibrio and Ruegeria) was weak at 12 h and 24 h. After

treatment with HPS and KMPS, Vibrio abundance was significantly

lower than that of the Ca(ClO)2 group. This result was verified in

the experiment comparing the number of Vibrio and total bacteria

with three different disinfectants, indicating that HPS had a strong

killing effect on total bacteria and Vibrio. In addition, the quantity

of Vibrio and total bacteria in rearing water negatively correlated

with the dose of HPS. That is, within a certain dose range, the higher
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the dose of HPS, the more obvious the inhibition effect on Vibrio

and total bacteria.

Actinomyces are important in protecting the environment and

material circulation and are often used in synthesizing antibiotics

and antimicrobials (Zothanpuia et al., 2018; Han, 2021). In

addition, Actinomyces are critical in maintaining intestinal

homeostasis in animals (Binda et al., 2018; Fan et al., 2019).

Bacteroides have a certain effect on the utilization of dissolved

organic matter (Cottrell and Kirchman, 2000) and play a role in the

degradation of cellulose, pectin, and chitin (Williams et al., 2013),

and the abundance of Bacteroides in water increases with the

accumulation of residual baited feces (Rossello-Mora et al., 1999).

The results showed that Ca(ClO)2 disinfectant had a significant

killing effect on Actinobacteria and Bacteroidetes (p < 0.05), and the

relative abundance of both bacteria phyla was higher than that of Ca

(ClO)2 group after HPS and KMPS disinfectants treatment.

Therefore, it is believed that using HPS and KMPS disinfectants

is more effective in controlling the number of Vibrio and inhibiting

the outbreak of vibriosis in the process of culture, and can protect

the abundance of beneficial bacteria while sterilization and

maintain the balance of microenvironment to a certain extent.
5 Conclusion

In summary, this study described the effects of different doses of

HPS on inhibiting DIV1, Vibrio, and total bacteria, compared the

killing effects of HPS, KMPS, and Ca (ClO)2 disinfectants on Vibrio

and total bacteria, and compared the characteristics of intestinal

microflora and water microflora after treatment of aquaculture

water with three disinfectants. The results showed that HPS did

not play a positive role in improving the survival rate of shrimp

infected with DIV1, and further research was needed to prove it. Ca

(ClO)2 has more advantages than HPS in controlling the diversity

and abundance of microbial communities. However, HPS plays a

significant role in inhibiting Vibrio, and its inhibition of beneficial

bacteria is weak, which helps maintain the microenvironment

balance during sterilization. In aquaculture water, there is a

negative correlation between the number of total bacteria and

Vibrio and the dose of HPS in a certain range.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/supplementary material.
Ethics statement

Ethical review and approval was not required for the animal study

because The experimental animal involved in this experiment is shrimp.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1189013
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hou et al. 10.3389/fmars.2023.1189013
Author contributions

DH and CS contributed to the conception and design of this

study. DH, ZL, JZ, and YX participated in the experimental operation

and sample collection. DH wrote the first draft of the manuscript. ZL

helps with data statistical analysis and chart drawing. CS conducted

written review and editing, and made contributions to project

management and fund acquisition. All authors contributed to the

article and approved the submitted version.
Funding

This work was supported by the key research and development

projects in Guangdong Province (Grant No.2020B0202010009),

the project of the innovation team for the innovation and

utilization of Economic Animal Germplasm in the South China

Sea (Grant No.2021KCXTD026).
Frontiers in Marine Science 12
Acknowledgments

We thank all funders for this work.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Abed, A. R., Khudhair, A. M., and Hussein, I. M. (2019). In vitro study of topical
antiseptics used to treat mycological gill rot disease in Cyprinus carpio. J. Pure Appl.
Microbiol. 13 (1), 537–544. doi: 10.22207/JPAM.13.1.60

Acosta, F., Montero, D., Izquierdo, M., and Galindo-Villegas, J. (2021). High-level
biocidal products effectively eradicate pathogenic gamma-proteobacteria biofilms from
aquaculture facilities. Aquaculture 532. doi: 10.1016/j.aquaculture.2020.736004

Adams, M. B., Crosbie, P. B. B., and Nowak, B. F. (2012). Preliminary success using
fihydrogen peroxide to treat Atlantic salmon, Salmo salar l., affected with
experimentally induced amoebic gill disease (AGD). J. Fish Dis. 35 (11), 839–848.
doi: 10.1111/j.1365-2761.2012.01422.x

American Public Health Association (APHA). (2005). Standard methods for the
examination of water and wastewater. 21st edition (Washington, DC, USA: American
Public Health Association).
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