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Introduction: Currently, deep-learning-based prediction of Significant Wave

Height (SWH) is mostly performed for a single location in the ocean or simply

relies on a single factor (SF). Such approaches have the disadvantage of lacking

spatial correlations or dynamic complexity, leading to an inevitable growth of the

prediction error with time.

Methods: Here, attempting a solution, we develop a Multi-Factor (MF) data-

driven 2D SWH prediction model for the Bohai, Yellow, and East China Seas

(BYECS). Our model is developed based on a multi-channel PredRNN algorithm

that is an improved deep-learning calculation of the ConvLSTM.

Results: In our model, the MF of historical SWH, 10 m surface winds, ocean

surface currents, bathymetries, and open boundaries are used to predict 2D SWH

in the next 1-72h. Our modeled SWHs show the correlation coefficients as 0.98,

0.90, and 0.87 for the next 6h, 24h, and 72h, respectively.

Discussion: According to the ablation experiments, winds are the dominant

factor in the MF model and the memory-decoupling module is the key

improvement of the PredRNN compared to the ConvLSTM. Furthermore,

when the historical SWH is excluded from the input, the correlation

coefficients remain around 0.95 in the 1-72h prediction due to the elimination

of the error accumulation. It was worse than the MF-PredRNN with the historical

SWH before 10h but better than it after 10h. Overall, for the prediction of SWH in

the BYECS, our MF-PredRNN-based 2D SWH prediction model significantly

improves the accuracy and extends the effective prediction time length.

KEYWORDS

multi factors-PredRNN, significant wave height, spatiotemporal forecast, long time
prediction, memory decouple
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1 Introduction

Ocean waves (hereinafter referred to as waves) are the most

common phenomenon in the ocean. Waves of extreme heights have

been regarded as marine disasters that threaten maritime operations

and navigation (Mahjoobi and Mosabbeb, 2009), and thus wave

forecasting has been an essential and indispensable routine in

maritime institutions worldwide (Gao et al., 2021).

As a most important parameter, the Significant Wave Height

(SWH) is used to characterize the statistical distribution of the wave

heights. Traditionally, based on the wave action balance equation, a

numerical model is able to calculate the SWH, e.g., by the recently

developed 3rd generation numerical wave models including SWAN

(Booij et al., 1999; Liang et al., 2019) and WaveWatch III (Tolman,

2009). These models run discrete calculations rather than

differential equations, at great expense in terms of consumption

of computational resources, and often introduce inevitable

systematic errors (Dong et al., 2022). Furthermore, the

inadequacy of numerical models to integrate data from new

observing systems and the drawbacks of inappropriate application

of large amounts of observing data are gradually becoming apparent

(Gao et al., 2022). In comparison, the recent development of big

data and artificial intelligence technologies provides a new data-

driven approach to the prediction of ocean waves. In particular,

deep learning has been noticed for its potential in wave prediction

(e.g., Portillo Juan and Negro Valdecantos, 2022). However, most

deep-learning approaches have been designed for a single location

without considering the spatial correlation with the surrounding

areas (e.g., Gao et al., 2021; Jörges et al., 2021; Ning et al., 2021; Tang

et al., 2021; Minuzzi and Farina, 2022; Song et al., 2023). This

inevitably reduces the accuracy in the prediction of the SWH at the

target location, because wave height is a 2D field and spatially

cross-correlated.

Alternatively, the convolutional long short-term memory

(ConvLSTM) (Shi et al., 2015) is a spatiotemporal predictive

learning algorithm that has been widely applied in 2D temporal

SWH prediction (e.g., Zhou et al., 2021; Han et al., 2022; Song et al.,

2022; Wang et al., 2022a). Zhou et al. (2021) apply ConvLSTM to

single-factor (historical SWH) driven SWH prediction in the China

Sea, but the prediction period is limited to 24h due to the lack of

dynamic factors. In addition, an increasing number of studies have

used 10 m surface winds as the primary dynamic factor in the

spatiotemporal SWH prediction due to the close correlation

between SWH and winds (e.g., Bethel et al., 2021; Laface and

Arena, 2021; Wei and Chang, 2021). Kim et al. (2022) and Han

et al. (2022) improve the prediction accuracy in the calculation of

SWH at a leading time of 1-48h by incorporating both historical

winds and SWH as input to the ConvLSTM algorithm. This study,

however, does not update future winds, leading to rapid

development in the prediction errors over time. Bai et al. (2022)

obtain a 72h SWH prediction model for the South China Sea based

on the CNN algorithm, by introducing the future winds into the

SWH prediction model. In their model, the SWH prediction applies
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a direct multi-step ahead forecasting strategy (Bahrpeyma, 2021)

that prevents the model from making time-continuous predictions.

Considering the spatial and temporal correlation of waves, Ouyang

et al. (2023) use a double-stage ConvLSTM network to incorporate

future winds but neglect historical winds in the Atlantic Ocean

and promote wave prediction in the following three days. In

comparison, Song et al. (2022) used a recursive-based multi-step

ahead forecasting strategy to apply historical and future 10 m

surface wind data from numerical models to the SWH prediction

process based on the ConvLSTM algorithm in the South China Sea.

However, it only considers the effect of wind on SWH but ignores

other dynamical factors.

Although the ConvLSTM algorithm is the most widely used

artificial intelligence algorithm in spatiotemporal SWH prediction,

it still suffers from the drawbacks caused by its layer-independent

memory mechanism (Wang et al., 2017). To solve this problem,

Wang et al. (2017) propose a new spatiotemporal prediction

algorithm, so called Predictive Recurrent Neural Network V1

(PredRNN-V1), which enhances the ConvLSTM with a brand-

new spatiotemporal LSTM (ST-LSTM) unit that simultaneously

stores spatial and temporal representations. In addition, a newer

version named as PredRNN-V2 spatiotemporal prediction

algorithm is then developed to more effectively learn the long-

term and short-term dynamics of frames in spatiotemporal

observation by adding a new convolutional recurrent unit with a

pair of decoupled memory cells and reverse scheduled sampling

(Wang et al., 2022c). Furthermore, the transformer recently made a

significant breakthrough in artificial intelligence algorithms. For

instance, the attention mechanism has also been applied to

spatiotemporal prediction algorithms (e.g., Lin et al., 2020; Gao

et al., 2022). Specifically, in the prediction of SWH, the influence

scope of dynamic factors, such as winds and currents, is

limited by its own movement speed, and the architectures of

convolutional and recurrent neural networks can effectively

transfer spatiotemporal features. Therefore, in this study, the

PredRNN-V2 algorithm is used to predict the spatiotemporal

SWH (Wang et al., 2022c).

In addition to the choice of a deep learning algorithm, multi-

factor (MF) based calculation is also important to improve the

accuracy of SWH prediction (Minuzzi and Farina, 2022). Most 2D

wave predictions based on deep learning algorithms have used only

a single factor such as historical SWH while ignoring the influence

of other dynamic factors such as 10 m surface winds or ocean

surface currents (e.g., Zhou et al., 2021; Wang et al., 2022b). In

comparison, Bai et al. (2022) and Song et al. (2022) have improved

the SWH prediction by adding the correlation of winds and waves,

based on the aforementioned works. Furthermore, Villas Bôas et al.

(2019) have shown that ocean waves are strongly coupled to the

ocean surface currents and the overlying atmosphere. Karmpadakis

et al. (2020) summarize the statistical distribution of wave heights in

coastal seas and showed a close correlation between SWH and

bathymetries. Therefore, the MF of bathymetries and tides are

important for the calculation of the shelf sea area, e.g., the BYECS
frontiersin.org
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in this work, should be considered as the input of a spatiotemporal

SWH predictive learning model.

The main contributions of this work are as follows:

(I) We develop a Multi-Factor PredRNN (MF-PredRNN)

model for 1-72h prediction of the SWH in the BYECS, using MF

of 10 m surface winds, ocean surface currents, bathymetries,

historical SWH, and open boundaries (Table 1).

(II) We perform ablation experiments on MF and the improved

algorithm components of the PredRNN to reveal their roles.

(III) The input sequence length as an important parameter and

the performance of the MF-PredRNN model under the high wave

condition is also investigated.
2 Materials and methods

2.1 Study area and data

In this paper, the study area is 24°N~41°N and 118°E~132°E in

the BYECS. The SWH is considered as the input sequence, the open

boundary, and the target of the prediction. Important for the

exchange of momentum and energy between the atmosphere and

ocean (He et al., 2018), 10 m surface winds and ocean surface

currents are added to the SWH prediction as upper boundaries. The

SWH, 10 m surface winds and ocean surface current datasets are

selected from a 1 Jan 2011 to 31 Dec 2019. The SWH and 10 m

surface winds data are generated from a subset of ECMWF’s ERA5

reanalysis archive (www.ecmwf.int/en/forecasts/datasets/

reanalysis-datasets/era5, Hersbach et al., 2020). The ocean surface

currents are generated from numerical model ROMS (Yu et al.,

2017 and Yu et al., 2020). The 1-min resolution bathymetry (Choi

et al., 2002) that shows a strong statistical correlation with the SWH

(Karmpadakis et al., 2020) is added to the SWH prediction. All the

datasets are uniformly interpolated to 0.5°×0.5° spatial resolution,

1-hour temporal resolution using cubic spline interpolation. The

processed datasets contain 87,648 hours temporally, 35 × 29 data

matrix spatially, and consist of four different types of data. The

processed dataset is divided into a training set (2011-2017),

validation set (2018), and test set (2019), respectively. A mask

matrix of the same size as the data matrix is set to distinguish land

and sea, with land points set to 0 and sea points set to 1. The result is

dot-multiplied by the mask matrix to eliminate the influence of

land, and the points at the open and sea-land boundaries are
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removed in the loss function. Only the data within the open and

sea-land boundaries are trained and tested.
2.2 MF-PredRNN algorithm

In this study, the PredRNN algorithm (c.f. Wang et al., 2022c) is

applied to predict the spatiotemporal SWH, which mainly proposes

these three improvements over the ConvLSTM algorithm:

1) Spatio-Temporal Memory Flow (STMF): The ST-LSTM

recurrent unit and the double flow memory transition mechanism

solve the problem of spatial feature loss from the top layer to the

bottom layer of ConvLSTM. The ST-LSTM replaces the previous

ConvLSTM as the basic recurrent unit of the stack structure, and

the original memory cell C and the new memory cell M are used

together for information transmission between the recurrent units.

The following are the memory state transfer formulas in the

recurrent unit ST-LSTM, where  gt ,  it and  ft used to calculate

horizontal propagation memory cell C represent the input

modulation gate, input gate, and forget gate respectively,  g 0t ,  i0t
and  f 0t used to calculate the memory cell M which flows in the

zigzag direction,  ot represents the output gate, t represents the time,

l represents the layer of the stack structure, Xt represents the input

data at time t.

gt = tanh (Wxg* Xt + Whg� Hl
t−1)

it = s(Wxi* Xt + Whi   �  H l
t−1)

f t = s(Wxf * Xt + Whf� Hl
t−1)

Cl
t = f t ⊙Cl

t−1 + it ⊙ gt

g0t = tanh(W0
xg*Xt + Wmg�Ml−1

t Þ

i0t = s(W0
xi*Xt + Wmi�Ml−1

t Þ

f 0t = s(W0
xf *Xt + Wmf�Ml−1

t Þ

Ml
t = f 0t ⊙Ml−1

t + i0t ⊙ g0t

ot = s(Wxo* Xt + Who� Hl
t−1 + Wco* C

l
t + Wmo� Ml

t)
TABLE 1 The introduction of the data source.

Name Period Spatial Resolution Temporal Resolution

SWH 2011-2019 0.5°× 0.5° 1 hour

10 m U-V component of wind 2011-2019 0.25°× 0.25° 1 hour

U-V component of ocean surface current 2011-2019 0.056°× 0.056° 1 hour

bathymetry — 0.017°× 0.017° —
— means from one moment to another.
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Hl
t = ot ⊙ tanh (W1�1* ½Cl

t,M
l
t�) (1)

2) Memory Decoupling (MD): The PredRNN algorithm adds

the decoupling module for memory cells C andM to decouple long-

term and short-term dynamics in transmission. The memory cell C,

which focuses on long-term motion, is used to transmit the

information from the previous moment, and the memory cell M,

which focuses on short-term motion updated across all the layers

and time steps, M is used to transmit the spatiotemporal

information from the previous layer and time step. The MD

module separates the character of C and M to improve the

information transmission. The equations are as follows,

ΔCl
t = Wdecouple � (it⊙gt)

ΔMl
t = Wdecouple � (i

0
t⊙g

0
t)

Ldecouple =o
t
o
l
o
c

ΔCl
t ,ΔM

l
tc

�
�

�
�

jjΔCl
t jjc:jjΔMl

t jjc
(2)

where Wdecouple represents the convolution shared by all

recurrent units, Ldecouple is the memory decoupling regularization. l,

t and  c represent the layers, time steps, and channels, 〈DCl
t ,  DMl

t 〉
represents the dot product of DCl

t and DMl
t , ‖DCl

t ‖ represents the

L2 norm of DCl
t .

3) Reverse Scheduled Sampling (RSS): To force the model to

learn long-term dynamics from historical data, the PredRNN

algorithm uses RSS as a new learning strategy that randomly

hides true data as training proceeds.
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Compared with ConvLSTM, the STMF module and MD

module effectively use the long- and short-term dynamics and

spatial correlation to improve prediction accuracy, and the RSS

module promotes prediction accuracy by learning the long-term

characteristics of historical data. Furthermore, the multiple

channels of the PredRNN algorithm are used to combine multiple

factors and historical SWH data to improve the long-term

prediction accuracy of SWH.
2.3 Framework of the SWH
prediction model

The framework of the data-driven SWH prediction model based

on MF-PredRNN is shown in Figure 1. The input includes W, X,

and SWH open boundary data, and its output is represented by Y ,

which is the predicted SWH data, whereW represents SWH data; X

represents multi factors (MF) including the U and V components of

10 m surface winds, the U and V components of ocean surface

currents, and bathymetries. In the prediction process, the MF-

PredRNN model is modified to a one-step prediction based on the

recursive strategy. Taking the SWH prediction at time t + 1 as an

example: firstly, the historical SWH (W1, · · ·,Wt) from time 1 to

time t and the MF from time 2 to time t + 1 (X2, · · ·,Xt+1) are

combined as the input to predict the SWH Yt+1; secondly, the SWH

at the open boundaries is imposed to correct the SWH Yt+1 at open

boundaries; finally, Yt+1 and Xt+2 are added to the input data

sequence to predict the SWH Yt+2. This process cycles and
FIGURE 1

Framework of the MF-PredRNN-based SWH prediction model. The red lines show the imposed SWH at the open boundaries.
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iteratively predicts the SWH for 1-72h. In this study, we choose 12h

as the input sequence length.
2.4 Evaluation indicators

Mean Absolute Error (MAE), Root Mean Squared Error

(RMSE), and Mean Absolute Percentage Error (MAPE) are

chosen to evaluate the error between predicted values and

reanalysis data. MAE and MAPE measure the actual situation and

the proportion of error, while RMSE reflects the dispersion between

the predicted and reanalysis data. The Correlation Coefficient (CC)

is used to measure the linear correlation between predicted values

and reanalysis data.
3 Result

3.1 Results of prediction

As shown in Figure 2, The MAE of the MF-PredRNN predicted

SWH relative to the ERA-5 reanalysis in the first 12 hours is within

a small value (~0.2m) in most regions of the BYECS but increases

with time. After 12 hours, the MAE accumulates and is mainly

distributed in the Bohai Sea and the eastern Korean Peninsula with

the MAE of ~0.4m. The MAE gradually stabilizes after 24 h and
Frontiers in Marine Science 05
there is no significant difference between the 24h and 72h.

According to our knowledge, the accumulation of MAE in the

Bohai Sea and the eastern Korean Peninsula is likely caused by the

complexity of the land-sea environment, and the sea area being

surrounded by land. Although the dataset is separated by a land-sea

mask, this also leads to eigenvalues in the offshore region.

In addition, scatter plots and the other evaluation indicators such

as RMSE, MAPE, and CC are used to evaluate the accuracy of the MF-

PredRNN-based SWH prediction at different times (Figure 3). For the

MF-PredRNN-based SWH prediction model, the CC decreases from

0.99 at 1h to 0.95 at 12h, 0.90 at 24h, and 0.87 at 72h, respectively, and

the RMSE increases from 0.04m at 1h to 0.26m at 12h, 0.36m at 24h

and 0.39m at 72h, respectively. The MAE at 24h is close to that at 72h,

but the scatter plot of the 72h forecast is more dispersed compared to

24h, indicating that the error inevitably accumulates gradually. This is

superior to the previous work. Due to the incomplete dynamic factors

and the drawbacks of the ConvLSTM algorithm, the predictive time

length of the ConvLSTM-based historical SWH-driven SWH

prediction model is limited as the CC decreased from 0.99 at 1h to

0.83 at the 24h while the RMSE increased sharply from 0.20m at 1h to

0.60m at 24h (Zhou et al., 2021). With the introduction of winds, the

ConvLSTM-based winds and historical SWH-driven SWH prediction

model performs better. The RMSE increased from 0.09m at 1h to

0.49m at 24h (Song et al., 2022). By using a double-stage ConvLSTM

network to incorporate future winds, the CC decreased from 0.95 on

day 1 to 0.82 on day 3 (Ouyang et al., 2023). To our knowledge, the
FIGURE 2

The MAE (A–F) between the MF-PredRNN predicted SWH and the ERA-5 reanalysis SWH for the 1-, 3-, 6-, 12-, 24- and 72-h respectively in the
BYECS in 2019. Images for 24-72 h are omitted due to high similarity.
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MAE, RMSE, MAPE, and CC of 1h, 6h, 12h, 24h, and 72h prediction

show that the MF-PredRNN extends the effective prediction time

length of SWH to 72h, and the accuracy of MF-PredRNN performs

better than the existing spatiotemporal predictive learning ConvLSTM

based 2D SWH prediction models (e.g., Zhou et al., 2021; Song et al.,

2022; Ouyang et al., 2023), which take SWH or winds as model input.
3.2 Comparison of the multivariate inputs
and algorithms

To further explain the roles of MF and the PredRNN algorithm,

a group of control experiments based on MF-PredRNN, MF-

ConvLSTM, SF-PredRNN, and SF-ConvLSTM are conducted for

1-72h SWH prediction. SF refers to a single factor such as historical

SWH, while MF refers to multi factors such as historical SWH, 10 m

surface winds, surface currents, and bathymetries. MF-PredRNN,

MF-ConvLSTM, SF-PredRNN, and SF-ConvLSTM have the same

input sequence length. The difference between them is the factors

labeled SF and MF and the algorithm labeled ConvLSTM and

PredRNN. The experiments demonstrate the important role of both

MF and PredRNN algorithm, as well as the error suppression of MF

for long-term SWH prediction.

As shown in Figure 4, the MAE, RMSE, MAPE, and CC of

PredRNN gradually stabilize after 24 hours. The spatially hourly

averaged CC of the MF-PredRNN increased by 0.35, 0.62, and 0.44
Frontiers in Marine Science 06
compared with the MF-ConvLSTM, SF-PredRNN, and SF-

ConvLSTM, and the spatially hourly averaged MAE decreased by

0.24m, 0.54m, and 1.45m.

It is shown that both the PredRNN algorithm and MF can

significantly improve the accuracy of SWH prediction. Moreover,

the accuracy of PredRNN on the SWH prediction is generally better

than the ConvLSTM, as the MF-PredRNN is superior to the MF-

ConvLSTM in all indicators. Using the MF-PredRNN, the MAE,

RMSE and MAPE reduced by 0.24m, 0.32m, and 35.12%

respectively. At the same time, the CC increases by 0.35

compared to the MF-ConvLSTM in the 1-72h SWH prediction.

Similarly, the SF-PredRNN is superior to the SF-ConvLSTM in

MAE, RMSE, and MAPE indicators except for CC. The MF

effectively prevents the rapid increase of the error in the long-

term SWH prediction, much better compared to the single-factor

calculation. There is no insignificant change between the MF and

single-factor driven SWH during the first 12 hours of prediction,

even for the ConvLSTM algorithm. The model driven by MF tends

to be stable gradually after 18h, however, the error of the single

factor driven SWH model increased rapidly. This leads to a gap in

long-term SWH prediction. Compared to the SF-PredRNN, the

mean MAE decreased by 0.54m, RMSE decreased by 0.89m, MAPE

decreased by 70.39%, and CC increased by 0.62 in the 1-72h MF-

PredRNN SWH prediction. Similarly, MF-ConvLSTM is superior

to SF-ConvLSTM in all indicators. Above all, the MF-PredRNN

algorithm provides the most accurate 1-72h SWH prediction.
A B

D E

C

FIGURE 3

Two-dimensional scatter density plots (A–E) of the MF-PredRNN predicted SWH versus the ERA5 reanalysis data for the 1-, 6-, 12-, 24-, and 72-h
respectively. The dashed line indicates that the predicted value is equal to the true value. The MAE, MAPE, RMSE, and CC are also calculated.
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4 Discussion

4.1 Input ablation experiments
The ablation experiments for MF are carried out to measure the

role of each factor (Table 2). The factors include 10 m surface winds,

ocean surface currents, bathymetries, historical SWH, and SWH as

open boundaries. Our ablation experiments show that winds, as a

dominant factor (Gao et al., 2021; Kim et al., 2022), can decrease the

spatially hourly averaged MAE and RMSE by 0.13m and 0.28m,

while the rest factors such as ocean surface currents, bathymetries

and SWH as open boundaries only decrease the spatially hourly

averaged MAE and RMSE by commonly around 0.02m and 0.04m

(Table 2). In addition, the spatially averaged MAE of all

experiments increases along with time (Figure 5). In the case of

SWH prediction at 72h, relative to the MF-PredRNN control

experiment, the spatially averaged MAE in the experiments of R-

Wind, R-Current, R-Bathymetry, and R-Boundary increased by

0.22m, 0.05m, 0.04m, and 0.04m, respectively. In particular, the
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removal of winds induces about 5 times larger spatially averaged

MAE growing with time than the other factors.

The input ablation experiments show that MF has a greater

impact on long-term prediction relative to short-term prediction.

During the first 24 hours, the MAE of the MF-PredRNN

experiment does not show much difference from other

experiments with winds (<0.02m). But after 24 hours, the MAE

of the MF-PredRNN with all factors control experiment is kept

around 0.27m. That is slightly better than the MAE (0.32m) of

experiments with winds and much better than the MAE of the R-

Wind experiment (~0.50m).

The R-SWH experiment indicates that the historical SWHdata has

a positive impact on the accuracy of short-term prediction (Figures 5B,

C). Due to the removal of the historical SWH, the error accumulation

with time in the SWH prediction is eliminated (Figures 5A–C). The

MAE value is stable at 0.15 (m) in both short- and long-term

predictions. The RMSE, MAPE, and CC for the R-Historical SWH

experiment are stabilized at 0.23m, 15.13%, and 0.95, respectively

(Figure 5D). This is worse than the prediction with historical SWH

in the first 10h, but better than it after 10h (Figures 3A–C, 5B–D). This
TABLE 2 The ablation experiments of MF-PredRNN-based SWH prediction model on multi factors.

Experiment ID Removed Factors MAE (m) RMSE (m)

MF-PredRNN Nothing 0.24 0.34

R-Wind Wind 0.37 0.62

R-Current Current 0.26 0.38

R-Bathymetry Bathymetry 0.26 0.39

R-Boundary SWH as open boundaries 0.26 0.38

R-SWH Historical SWH 0.15 0.23
The spatially hourly averaged MAE (m) and RMSE (m) for 1-72h SWH prediction are used to evaluate. R-Historical SWH represents the prediction experiment without considering historical
SWH as a training input.
The bold values represent the more important experimental data.
A B

DC

FIGURE 4

Comparison of spatially averaged MAE (A), RMSE (B), MAPE (C), and CC (D) among MF-PredRNN, SF-PredRNN, MF-ConvLSTM and SF-ConvLSTM
over 1-72h hourly SWH prediction.
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illustrates the importance of historical SWH for short-term SWH

prediction andMF for long-term SWHprediction. It is suggested that if

the SWH in the next 1-10 hours is predicted by the MF-PredRNN

model, while the SWH after 10 hours is predicted by the R-SWH

model, the prediction error can be effectively suppressed.
4.2 Algorithm ablation experiments

In addition to the input ablation experiments, the algorithm

ablation experiments are performed to evaluate the role of the

improved components of the PredRNN including the memory

decoupling (MD), reverse scheduled sampling (RSS), and

spatiotemporal memory flow (STMF) compared to the
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ConvLSTM algorithm (Table 3). The roles of the MD and RSS

are estimated by comparing the R-MD and R-RSS experiments with

the MF-PredRNN control experiment. Since the STMF is encoded

as a basic module in the MD module and cannot be removed

separately, the role of STMF is verified by comparing the R-MD-

RSS and MF-ConvLSTM experiments.

The ablation experiments demonstrate the MD module is the key

improved algorithmic component of PredRNN compared to

ConvLSTM. Compared to the MF-PredRNN control experiment, the

spatially hourly averaged MAE and RMSE of the 1-72h SWH

prediction in the R-MD experiment dramatically increased by 0.19m

and 0.29m respectively. In the R-RSS experiment, the MAE and RMSE

increased slightly by 0.05m and 0.08m respectively due to the removal

of the RSS module. Comparing the R-MD-RSS and MF-ConvLSTM
A B

DC

FIGURE 5

Comparison among ablation experiments of MF-PredRNN based SWH prediction model on multi factors. Figures (A-C) show the spatially averaged
MAE (m) of 1-6h, 1-24h and 1-72h predicted SWH; Figure (D) shows the two-dimensional scatter density plots for the SWH prediction without the
historical SWH; The legend shows the Experiment ID in Table 2. The grey solid line indicates the spatially averaged MAE for the R-SWH experiment.
TABLE 3 Ablation experiments on algorithm components of PredRNN. Table legend: The spatially hourly averaged MAE (m) and RMSE (m) for 1-72h
SWH prediction are used to evaluate.

Experiment ID Removed Components MAE (m) RMSE (m)

MF-PredRNN Nothing 0.24 0.34

R-MD Memory Decoupling (MD) 0.43 0.63

R-RSS Reverse Scheduled Sampling (RSS) 0.29 0.42

R-MD-RSS MD and RSS 0.40 0.56

MF-ConvLSTM Spatio-Temporal Memory Flow (STMF), MD and RSS 0.46 0.66
The bold values represent the more important experimental data.
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experiments, the MAE and RMSE only increased by 0.06m and 0.10m

respectively, showing the less important role of STMF. All of the three

improved components of PredRNN have a positive impact on the

accuracy of SWH prediction. Among them, the MAE and RMSE

decreased by the MDmodule reached 0.19m and 0.29m, about 4-times

larger than the MAE and RMSE decreased by the other two

improvements including either STMF or RSS. It can be concluded

that the MD module is the key component among the three improved

components of the PredRNN compared to the ConvLSTM.
4.3 The sequence length of the input

Furthermore, the input sequence length of historical SWH is

investigated as a sensitive parameter (Figure 6). The results show

that the accuracy of the short-term prediction increases with increasing

sequence length while the accuracy of the long-term prediction

decreases and vice versa. When the input sequence length is 1h, i.e.,

only the spatial correlation information of SWH is retained while the

temporal information is removed, the MAE of the 72 h prediction

shows the smallest value (0.25m), meanwhile, the 1 h SWH prediction

has the largest one (0.03m) compared to other input sequence length.

This indicates that the spatial correlation information of SWH has a

greater positive influence on the long-term prediction of SWH rather

than on the short-term prediction. As the length of the input SWH

sequence increased, the MAE of the short-term prediction gradually

decreases but the long-term prediction gradually increases. When the

input sequence length increases to 24h, the MAE of the 1-h prediction

is the lowest (0.02m) and the 72-h prediction is the highest (0.45m)

which indicates that the temporal information has a greater positive

effect on the short-term prediction of SWH. Since the input sequence

length is positively correlated with the accuracy of short-term

prediction but negatively correlated with the accuracy of long-term

prediction, we chose 12h as the input sequence length in this study to

balance the accuracy of the short-term and long-term prediction.
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4.4 Spatio-temporal SWH forecast for
high wave

Under the high wave conditions of SWH >= 6 m, the MF-

PredRNN can provide effective 6h spatiotemporal SWH prediction

(Figures 7, 8). Under high wave conditions, the MAE became

dramatically larger than the MAE under normal wave conditions

(Figures 2, 7). The MAE in the first 6h is relatively smaller and well-

distributed without significant error accumulation and is generally

not higher than 1.20m (Figures 7A, B). In comparison, the MAE in

the first 6h is less than 0.15m under normal wave conditions

(Figure 2C). After 12 hours, the error accumulated rapidly and

was mainly distributed in the Yellow Sea (Figure 7C). The MAE

stabilized gradually after 24 hours. And there is no significant

difference between the prediction of 24h and 72h (Figures 7D, E).

In addition, the MAE of the 1h and 6h predictions are 0.10m and

0.73m, the RMSE are 0.14m and 0.89m, the MAPE is 1.50% and

10.24%, and the CC are 0.99 and 0.78 respectively (Figure 8).

Without the historical SWH data as input, the MAE, RMSE,

MAPE, and CC indicators are 0.70m, 0.86m, 9.98%, and 0.69,

respectively, which are close to the prediction of 6h (Figures 8B, C).

A group of control experiments based on MF-PredRNN, MF-

ConvLSTM, SF-PredRNN, and SF-ConvLSTM are also conducted for

a 1-12h SWH prediction to compare their accuracy under high wave

conditions (Figure 9). The MF-PredRNN performs best in the 1-12h

SWH prediction. The spatially hourly averaged CC of the MF-

PredRNN increased by 0.21, 0.31, and 0.31 compared with the MF-

ConvLSTM, SF-PredRNN, and SF-ConvLSTM respectively. The

spatially hourly average MAE decreased by 1.62m, 0.34m, and 0.79m

respectively. Here, the pairwise comparison shows that both the MF

and the PredRNN algorithm also significantly improve the accuracy of

SWH prediction under high wave conditions.

5 Summary
In this study, an intelligent SWH prediction model based on the

spatio-temporal predictive learning algorithm PredRNN and the MF
A B C

FIGURE 6

Time growth of MAE (h1, h3, h6, h12, h18, h24) for 1-3h (A), 1-24h (B), and 1-72h (C) SWH prediction with the input sequence length of historical
SWH as 1, 3, 6, 12, 18 and 24 hours respectively.
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including historical SWH, 10 m surface winds, ocean surface currents,

bathymetries, and open boundaries is applied in the BYECS. The MF-

PredRNN-based 2D SWH prediction model significantly improves the

accuracy and extends the effective prediction time length, which can be

used as a potential alternative to the numerical wave model. The

correlation coefficients can reach 0.98, 0.90, and 0.87 for 6h, 24h, and

72h SWH prediction respectively. Under the high wave condition
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(SWH >= 6m), the MF-PredRNN-based SWH prediction model also

provides effective 6h wave prediction.

The SWH prediction model based on MF-PredRNN performs

much better than the SF-PredRNN, MF-ConvLSTM, and SF-

ConvLSTM. Both the MF and PredRNN algorithms significantly

improve the accuracy of the long-term SWH prediction. The ablation

experiments have shown that winds are the most important factor
A B C

FIGURE 8

Two-dimensional scatter density plots (A, B) of the MF-PredRNN predicted SWH versus the ERA5 reanalysis data for the 1- and 6-h respectively
under high wave scenarios (SWH>=6m); Figure (C) show the SWH prediction without the historical SWH. The dashed line indicates that the predicted
value is equal to the true value. The MAE, MAPE, RMSE and CC were also calculated.
FIGURE 7

The MAE (A–E) between the MF-PredRNN predicted SWH and the ERA-5 reanalysis SWH for the 1-, 3-, 6-, 12-, 24- and 72-h respectively under
high wave scenarios (SWH>=6m) in the BYECS in 2019. Images for 24-72 h are omitted due to high similarity. Figure (F) represents the MAE of
prediction without the initial SWH data.
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among the MF. In addition, the removal of the historical SWH data

from MF eliminates the accumulation of errors in the prediction

process. The memory decoupling module is the key improved

algorithmic component of PredRNN compared to ConvLSTM. As

an important parameter, the input sequence length is chosen to be

12h to balance the short- and long-term prediction. As a future

perspective to further improve the accuracy of wave prediction, the

complexity of introducing other physical factors and mechanisms

should be considered in the SWH spatiotemporal prediction.
Data availability statement

The original contributions presented in the study are included

in the article. Further inquiries can be directed to the

corresponding authors.
Author contributions

HC: Methodology, Formal analysis, Investigation, Writing –

original draft; GL: Conceptualization, Supervision, Methodology,

Investigation, Writing – review and editing, Resources, Funding

acquisition; JH: Data Processing, Data Analysis, Resources; XG:

Supervision, Data Analysis, Investigation, Writing – review and

editing, Funding acquisition; YW: Data Analysis, Visualization,

Validation, Funding acquisition; ZZ and DX: Data Management,

Data Processing, Validation. All authors contributed to the article

and approved the submitted version.
Frontiers in Marine Science 11
Funding

This study was funded by the Ministry of Science and Technology

of the People’s Republic of China (No. 2019YFE0125000), Key R&D

Program of Shandong Province, China (No. 2022CXGC020106), Pilot

Project for Integrated Innovation of Science, Education, and Industry

of Qilu University of Technology (Shandong Academy of Sciences)

(No. 2022JBZ01-01), National Key R&D Program of China (No.

2020YFB0204804), State Key Laboratory of Biogeology and

Environmental Geology, China University of Geosciences (No.

GKZ22Y656) and Jinan Science and Technology Bureau

(No. 202228034).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Bahrpeyma, F. (2021).Multistep ahead time series prediction. (Doctoral dissertation)
(Dublin, Ireland: Dublin City University).
Bai, G., Wang, Z., Zhu, X., and Feng, Y. (2022). Development of a 2-d deep learning
regional wave field forecast model based on convolutional neural network and the
A B

DC

FIGURE 9

Comparison of spatially averaged MAE (A), RMSE (B), MAPE (C), and CC (D) among MF-PredRNN, SF-PredRNN, MF-ConvLSTM, and SF-ConvLSTM
over 12h SWH hourly prediction under high wave scenarios (SWH>=6m).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1197145
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cao et al. 10.3389/fmars.2023.1197145
application in south China Sea. Appl. Ocean. Res. 18, 103012. doi: 10.1016/
j.apor.2021.103012

Bethel, B. J., Dong, C., Zhou, S., and Cao, Y. (2021). Bidirectional modeling of surface
winds and significant wave heights in the Caribbean. Sea. J. Mar. Sci. Eng. 9, 547.
doi: 10.3390/jmse9050547

Booij, N., Ris, R. C., and Holthuijsen, L. H. (1999). A third-generation wave model
for coastal regions: 1. model description and validation. J. Geophys. Res. Oceans. 104,
7649–7666. doi: 10.1029/98JC02622

Choi, B. H., Kim, K. O., and Eum, H. M. (2002). Digital bathymetric and topographic
data for neighboring seas of Korea. J. Korean. Soc Coast. Ocean. Eng. 14, 41–50.
Available at: https://koreascience.kr/article/JAKO200211920991563.pdf.

Dong, C., Xu, G., Han, G., Bethel, B. J., Xie, W., and Zhou, S. (2022). Recent
developments in artificial intelligence in oceanography. Ocean Land Atmos. Res. 2022,
1–26. doi: 10.34133/2022/9870950

Gao, S., Huang, J., Li, Y., Liu, G., Bi, F., and Bai, Z. (2021). A forecasting model for
wave heights based on a long short-term memory neural network. Acta Oceanol. Sin.
40, 62–69. doi: 10.1007/s13131-020-1680-3

Gao, Z., Shi, X., Wang, H., Zhu, Y., Wang, Y. B., Li, M., et al. (2022). Earthformer:
exploring space-time transformers for earth system forecasting. Adv. Neural Inf.
Process. Syst. 35, 25390–25403. doi: 10.48550/arXiv.2207.05833

Han, L., Ji, Q., Jia, X., Liu, Y., Han, G., and Lin, X. (2022). Significant wave height
prediction in the south China Sea based on the ConvLSTM algorithm. J. Mar. Sci. Eng.
10, 1683. doi: 10.3390/jmse10111683

He, H., Song, J., Bai, Y., Xu, Y., Wang, J., and Bi, F. (2018). Climate and extrema of
ocean waves in the East China Sea. Sci. China. Earth. Sci. 61, 980–994. doi: 10.1007/
s11430-017-9156-7

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,
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