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Subtidal seagrass detector:
development of a deep
learning seagrass detection
and classification model for
seagrass presence and density
in diverse habitats from
underwater photoquadrats

Lucas A. Langlois*, Catherine J. Collier and Len J. McKenzie

Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University,
Cairns, QLD, Australia
This paper presents the development and evaluation of a Subtidal Seagrass

Detector (the Detector). Deep learning models were used to detect most forms

of seagrass occurring in a diversity of habitats across the northeast Australian

seascape from underwater images and classify them based on how much the

cover of seagrass was present. Images were collected by scientists and trained

contributors undertaking routine monitoring using drop-cameras mounted over

a 50 x 50 cm quadrat. The Detector is composed of three separate models able

to perform the specific tasks of: detecting the presence of seagrass (Model #1);

classify the seagrass present into three broad cover classes (low, medium, high)

(Model #2); and classify the substrate or image complexity (simple of complex)

(Model #3). We were able to successfully train the three models to achieve high

level accuracies with 97%, 80.7% and 97.9%, respectively. With the ability to

further refine and train these models with newly acquired images from different

locations and from different sources (e.g. Automated Underwater Vehicles), we

are confident that our ability to detect seagrass will improve over time. With this

Detector we will be able rapidly assess a large number of images collected by a

diversity of contributors, and the data will provide invaluable insights about the

extent and condition of subtidal seagrass, particularly in data-poor areas.
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1 Introduction

Seagrasses are one of the most valuable marine ecosystems on

the planet, with their meadows estimated to occupy 16 - 27 million

ha globally across a variety of benthic habitats within the nearshore

marine photic zone (Mckenzie et al., 2020). Seagrass meadows are

an integral component of the northeast Australian seascape that

includes: the Great Barrier Reef, Torres Strait, and the Great Sandy

Marine Park. Seagrass ecosystems in these marine domains are

ecologically, socially and culturally connected and contain values of

national and international significance (Johnson et al., 2018).

The Great Barrier Reef (the Reef) is the most extensive reef

system in the world, in which seagrass is estimated to cover

approximately 35,679 km2 (Mckenzie et al., 2022b). Over 90% of

the Reef’s seagrass meadows occur in subtidal waters, with the

deepest record to 76 m (Carter et al., 2021c), although most field

surveys are in depths shallower than 15 m (Mckenzie et al., 2022b).

There are 15 seagrass species reported within the Reef, occurring in

estuaries, coastal, reef and deep water habitats and forming

meadows comprised of different mixes of species (Carter et al.,

2021a). Seagrass ecosystems of the Reef support a range of goods

and benefits to species of conservation interest and society. The

seagrass habitats of Torres Strait to the north are also of national

significance due to their large extent, diversity and the vital role they

play to ecology and the cultural economy of the region (Carter et al.,

2021b). Similarly, the seagrasses within the Great Sandy Marine

Park to the south support internationally important wetlands,

highly valued fisheries and the extensive subtidal meadows in

Hervey Bay are critical for marine turtles and the second largest

dugong population in eastern Australia (Preen et al., 1995;

Mckenzie et al., 2000). Catchment and coastal development,

climate change and extreme weather events threaten seagrass

ecosystem resilience and drive periodic decline. Maintaining up-

to-date information on the distribution and condition of seagrass

meadows is needed to protect and restore seagrass ecosystems.

A wide range of methods have been applied to assess and

monitor changes in subtidal seagrass, including free-diving, SCUBA

diving, towed camera, towed sled, grabs or drop–camera (Mckenzie

et al., 2022b). Most of these techniques rely on trained scientists to

visually confirm, quantify and identify the presence of seagrass in

situ. This labour-intensive work, combined with the tremendously

large area of the Reef, makes assessing the state (extent and

condition) of subtidal seagrass prohibitively time consuming

and expensive.

In recent years, the use of digital cameras and autonomous

underwater vehicles (AUVs) has led to an exponential increase in

availability of underwater imagery. When this imagery is geotagged

or geolocated, it provides an invaluable resource for spatial

assessments, and when collected by a range of providers and the

wider community who are accessing the Reef for a range of other

activities (tourism, Reef management), is highly cost effective. For

example, the Queensland Parks and Wildlife Service uses drop-

cameras to collect photoquadrats of the benthos within seagrass

habitats for processing by and inclusion in the Inshore Seagrass

component of the GBR Marine Monitoring Program (MMP). Recent

projects such as The Great Reef Census (greatreefcensus.org) aim at
Frontiers in Marine Science 02
tapping into the power of citizen science to collect images and

provide new sources of information about the Reef. A similar

approach could be applied to seagrass. This digital data can be

analysed automatically if the workflows are in place to deal with

structured big data streams.

Deep learning technology provides potentially unprecedented

opportunities to increase efficiency for the analysis of underwater

images. Deep learning models or Deep Neural Networks (DNNs)

are being used for counting fish (Sheaves et al., 2020), identifying

species of plankton (Schröder et al., 2020) and estimating

macroalgae (Balado et al., 2021) or coral cover (Beijbom et al.,

2015). Few studies explored their application for seagrass coverage

estimation (Reus et al., 2018) as well as detection and classification

(Moniruzzaman et al., 2019; Raine et al., 2020; Noman et al., 2021).

While these showed interesting technical methods, they were not

necessarily developed specifically for operational applications. An

operational model that can detect seagrass within the Reef will

improve our capability to rapidly assess and easily provide data

critical for large scale assessments. In particular, there is a need for a

model that can detect seagrass presence even with diverse physical

appearances among the 15 species in the Reef, and in a range of

habitat types with variable benthic substrates. As seagrass can also

be very sparse in the Reef, with an historic baseline of 22.6 ± 1.2%

cover (Mckenzie et al., 2015) and subtidal percent covers frequently

less than 10%, a detector is needed to cope with such circumstances.

In this paper we detail the development of a Subtidal Seagrass

Detector (the Detector) using a DNN to analyse underwater images to

detect and classify seagrasses. This enables rapid processing of many

images. It will form an integral step in workflow from image capture to

provision of rapidly and easily accessed information. Up-to-date

information on the extent and condition of seagrass is required for

marine spatial planning and for the implementation of other

management responses to protect Reef and seagrass ecosystems.
2 Material and methods

2.1 Detector model datasets

Our subtidal image dataset was composed of 7440 photoquadrats

collected by drop-camera and SCUBA divers as part as the MMP

(Mckenzie et al., 2022a), the Seagrass-Watch Global Seagrass

Observing Network (Seagrass-Watch, 2022) and the Torres Strait

Ranger Subtidal Monitoring Program (Carter et al., 2021b). Images

were captured between 2014 and 2021 from 28 sites across 18 unique

locations within the coastal and reef subtidal habitats from Torres

Strait to Hervey Bay (Figure 1; Supplementary Table S1). Images were

annotated by assessing: (1) the percent cover of seagrass (Mckenzie

et al., 2003), (2) the seagrass morphology of the dominant species

based on largest percent cover (straplike, oval–shaped or fernlike), (3)

percent cover of algae, (4) substrate complexity (simple or complex),

and (5) quality of the photo (0=photo unusable, 1=photo clear with

more than 90% of quadrat in the frame, 2=photo with bad visibility

with more than 90% of quadrat in the frame, 3= photo clear with

quadrat partially not visible, 4= photo oblique with quadrat not

totally on the bottom). Only photos with a rating of 1 (5782 in total)
frontiersin.org
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were retained to ensure optimal performance. All images were

cropped to the outer boundary of the quadrat and standardised to

a 1024 × 1024 pixel size.

2.1.1 Seagrass presence detector (Model #1)
We defined seagrass presence as an area of the seafloor, also

known as benthos, spatially dominated by seagrass, which we

classed as ≥3% cover (sensu Mount et al., 2007). Images with

seagrass cover less than 3% were excluded, resulting in the

removal of an additional 819 images from the analysis. This

maximised the power of detection to levels where seagrass was

clearly visible. There were 1727 images with seagrass absent and

3236 with seagrass present. To ensure a balance dataset of the two

classes, 1727 images were chosen at random out of the 3236 while
Frontiers in Marine Science 03
ensuring the inclusion of all images from the minor seagrass

morphology classes oval-shaped (522) and fernlike (165). The

remaining images with seagrass present (1509) were retained for

further testing.

2.1.2 Seagrass cover category
classifier (Model #2)

Cover categories were first established based on four cover

quantiles, which were equivalent to seagrass percent cover

categories of; ≥3 <9%, ≥9 <15%, ≥15 <30% and ≥30%. However,

the resulting model did not adequately distinguish between the two

middle categories (less than 60% accuracy). Therefore, those two

classes were merged resulting in three main classes used in Model

#2: (1) low seagrass cover (≥3 <10%), (2) medium seagrass cover
FIGURE 1

Map showing the location and number of images used for the Subtidal Seagrass Detector in the Torres Strait, the Great Barrier Reef World Heritage
Area and Great Sandy Marine Park.
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(≥10 <30%), and (3) high seagrass cover (≥30%) (Figure 2). The

classes were somewhat unbalanced with 1082, 1509 and 644 images

respectively. However, more images in the medium class were

beneficial as it helped improve accuracy for that class which is the

most commonly occurring at MMP sites (long term mean of 14%

seagrass cover for coastal and reef subtidal sites where seagrass is

present). When we ran the same model on a down-sampled version

of the dataset (644 images for each class) the overall accuracy was

lower (-3.3%): accuracy for the low and high cover class increased

(+12.5% and +7.9% respectively), while the accuracy for the

medium class significantly decreased (-26.3%).

2.1.3 Substrate complexity classifier (Model #3)
The substrate complexity classifier was applied to all images

without any seagrass present. Those images were labelled either as

‘simple substrate’ or as ‘complex substrate’. The ‘simple’ category

was assigned to clear images with mostly sandy bottoms while the

‘complex’ category was assigned to images that met at least one of

the following conditions:
Fron
• had consolidated substrates, such as rock, live coral or coral

rubble

• had a visually significant amount of macroalgae

• labelling was difficult (e.g. poor visibility, small seagrass

species, poor image contrast).
Out of the 1727 images without seagrass, 1129 had simple

substrate and 598 had complex substrate. Similar to Model #1, a

random 531 simple substrate images were excluded and retained for

further testing to unsure a balance dataset during training. This

classifier can provide a potential reason for the absence of seagrass

as well as highlighting potential shortfall in the seagrass detection

from Model #1. In complex substrate habitats, seagrass could be

present, however, percent cover is most likely to be low (<10%) and
tiers in Marine Science 04
particularly difficult to detect by the model. Images predicted into

this category can be later manually inspected to confirm the absence

of seagrass.

All three final datasets were split 60-20-20 into a training,

validation and test set.
2.2 Deep neural network modelling

2.2.1 Image classification workflow
Our overall aim for this study was to develop a Detector that

would be able to achieve three separate classification tasks: (1)

detect the presence/absence of seagrass, (2) estimate the seagrass

cover (low, medium or high), and (3) identify the level of

complexity of the substrate (simple or complex). Separate deep

learning models were developed to execute each of these tasks

independently which maximised model accuracy and reduced

category imbalance (Figure 3). All model training and testing was

conducted in Python using Keras (Chollet, 2015) on a local machine

(Intel Core i9-10900KF CPU 3.70GHz, 3696 Mhz, 10 Cores, 20

Logical Processors, 64GB 3200 MHz, GPU NVIDIA GeForce

RTX 3090).

2.2.2 Model architecture
The classification models were composed of a binary

classification model for Model #1 and Model #3 and multiclass

classification for Model #2. The classification employed deep

learning also known as DNNs. Training a neural network can be

a protracted process and requires a large number of images to

achieve satisfactory results. Transfer learning has been developed

where an already successfully trained network such as VGG16 can

be used as a feature extractor and coupled with a new classifier

trained for the new specific task (Tammina, 2019). Our initial

network was composed of a VGG16 model pre-trained on the
FIGURE 2

Distribution of seagrass percent cover in the image dataset used for Model #2.
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ImageNet classification tasks (Zhang et al., 2015). Instead of the

final dense layer from the original VGG16 model, we created our

own custom classier composed of a sequence of two fully connected

layers with 512 nodes and ReLU activation (Agarap, 2018), two

consecutive dropout (Srivastava et al., 2014) with probability of 0.05

and 0.5 to prevent overfitting and a final dense layer with one node

for each of predicted class activated by either the Sigmoid or

Softmax function (Figure 4).

Contrary to other studies (Raine et al., 2020) we chose not to

split our original images as it would have meant having to create

new labels for thousands of sub-images. Instead, the input image

size was increased. After multiple trials we found that optimal

results were achieved for the input size of 1024x1024 pixels. We also

tried more complex networks for feature extraction such as

Resnet50 and EfficientNet but they did not perform as well

overall (-1.7 and -5.2% in overall accuracy respectively).

2.2.3 Model training
The DNNs were all trained independently on batches of eight

random images per training iteration. When the DNN has gone

through as many iterations as needed to process the full training

image set, this constituted an epoch. Throughout the whole training

process, the progress of the learning is monitored by evaluating the

model performance on the validation image set.

We started with an initial training phase where only the final

classification layers (custom classifier part) were trainable and the

rest of the VGG16 layers were frozen. During this phase the Adam

optimizer (Kingma and Ba, 2014) was used with an initial learning

rate of 0.001. If the loss on the validation image set did not improve

after 10 epochs the learning rate was reduced by half up to four
Frontiers in Marine Science 05
times after which the training was stopped. That process lasted 60 to

68 epochs. A fine-tuning training phase followed, where the VGG16

layers were unfrozen and set as trainable. This was done over 100

epochs and with the RMSprop optimizer (Tieleman and Hinton,

2014) and a much slower learning rate of 0.00001. The fine-tuning

is meant to ensure the feature extraction is optimised for our input

size as well as increasing performance of the models.

To further prevent overfitting and best capture, the potential

illumination and turbidity variations of underwater images, colour-

based data augmentation was applied where brightness (-70 to 70),

contrast (0.1 to 0.3), blur (sigma 0 to 0.5) and the red channel (-50

to 50) were randomly altered at each training iteration.

2.2.4 Model evaluation (testing)
The training process stopped once all the DNNs have reached a

plateau where further training did not further improve performances

on the validation set.

We then conducted final evaluation of the model performances

on the test image set (20% of the total) where accuracy was assessed

in detail. ForModel #1 andModel #3, further testing was conducted

by running the model on the remaining images not included in the

training, validation and test sets.
3 Results

3.1 Model #1

Model #1 achieved 97.0% accuracy (Supplementary Table S2) on

the test image set (691). We had 3 false positive and 18 false negative
FIGURE 3

Diagram detailing the image classification workflow process of the Detector with the three deep learning models involved.
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classifications (Figure 5; Supplementary Table S3A). The false positives

were all images from Low Isles and taken on SCUBA. We suspect that

the presence of turf algae and the low image quality could be the source

of the misclassification. The small number of false positives suggests the

model was not overestimating seagrass presence.

Of the false negative images, 16 had a percent cover lower than 10%

and in nine of these percent cover was lower than 5% (Figure 6). In

addition, 14 of the false negative images had a complex substrate with

seven having more than 15% algae cover. This was further confirmed by

running the model on the remaining seagrass photos not included in the

training, validation and test sets. Themodel failed to detect seagrass in 38

out of 1509 images, achieving 97.4% accuracy. A similar pattern was
Frontiers in Marine Science 06
observed where 31 of the misclassified images had less than 10% seagrass

cover and 33 had complex substrate (Figure 6).
3.2 Model #2

Model #2 had an overall accuracy of 80.7% (Supplementary Table

S2) on the test image set (647). The highest accuracy was achieved for the

medium cover class (84.3%), followed by the low cover class (78.5%) and

the high cover class (75.9%). However, these differences in accuracies

weremarginal andmost likely a consequence of the unbalanced nature of

the cover classes image dataset (Figure 7; Supplementary Table S3C).
A

B

C

FIGURE 4

Convolution neural network architecture of: (A) Model #1, (B) Model #2 and (C) Model #3.
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All the misclassified images of the low cover classes (45) were

incorrectly predicted to be in the medium cover category.

Misclassification occurred for images with percent cover between 7

and 9% (31) (Figure 8A). Furthermore, 32 of which also had a complex

substrate, further highlighting the difficulty categorising images close to
Frontiers in Marine Science 07
the threshold of 10%, especially for complex substrates where algae for

example could be biasing the predictions.

There were 48 misclassified images of the medium cover classes,

of which 31 were predicted as low cover and 17 as high cover. The

false low cover images were mostly close to the 10% threshold with
FIGURE 6

Histogram of the distribution of the seagrass percent cover and substrate complexity present in the images misclassified (false negative) by Model #1
from the test set (18) and the remaining seagrass photo set (38).
FIGURE 5

Examples of images misclassified by Model #1 with false positives on top row and false negative on the bottom row.
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27 of these images being between 10 and 15% seagrass cover

(Figures 8B, C). Images dominated by smaller seagrass species

with rounded and fernlike morphology were also a source of

misclassification. The false high classifications were solely

dominated by straplike species and 10 images had a seagrass

cover between 20 and 30% (Figures 8D, E).

There were 32 misclassified images of the high cover class, which

were all predicted as a medium cover. Similar to the previous classes, a

vast majority of these were close to the adjacent cover category

threshold with 28 of these images having less than 38% seagrass

cover (Figures 8F, G). Straplike morphology dominated in 27 of the

misclassified images except for those with percent cover of more than

40% which were dominated by rounded and fernlike morphology.

The type of substrate was not a significant driver of prediction

errors for the medium and high cover class.
Frontiers in Marine Science 08
3.3 Model #3

Our subtidal substrate complexity classifier (Model #3) achieved

an accuracy of 97.9% (Supplementary Table S2) on the test image set

(240) and on the simple substrate only images remaining (531).

There were two images misclassified as complex and three images

were misclassified as simple instead of complex out of the test image

set (Figure 9; Supplementary Table S3D). These images were also

difficult to manually classify because they were mostly composed of a

simple sandy substrate with some additional features such as algae or

soft coral, or have poor visibility.

There were 11 images misclassified as complex instead of simple

out of the simple substrate images remaining. These had 7% algae

cover on average and 10 had more than 3%. This may be a

consequence of the arbitrary binary classification used during the
FIGURE 7

Examples of images misclassified by Model #2 from the low, medium and high cover categories.
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labelling process. It is very difficult to establish a clear difference

between a quadrat with a simple sandy substrate with some algae or

other features like coral and a complex substrate. These instances

are uncommon within the dataset, with 82 images labelled as simple

substrate and more than 3% algae cover and occurred mainly only

at the Dunk Island and Low Isles sites (36 and 30 images

respectively). This could be easily refined further by increasing

the image dataset and by setting clearer thresholds or rules to define

the substrate complexity classes.
Frontiers in Marine Science 09
4 Discussion

4.1 Method performance and limitation

The main goal of this research was to determine the potential

for deep learning models to detect the presence of seagrass within

underwater photos. Seagrass was identified in images containing a

mix of seagrass species, seagrass morphologies and from a range of

habitats/substrates with a very high level of accuracy (97%). This
A

B

D E

F G

C

FIGURE 8

Histogram of the distribution of the seagrass percent cover and substrate complexity present in the misclassified images by Model #2 of (A) the low
cover category (false medium), the medium cover category with (B, C) false low and (D, E) false high for straplike and rounded/fernlike species, and
the high cover category (false medium) for (F) straplike and (G) rounded/fernlike.
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was achieved using a simple neural network architecture. The

performance of Model #1 was higher than previously published

deep learning seagrass detection models (Raine et al., 2020).

However, a direct comparison between the accuracies is difficult

due to differences in image dataset size and classifiers for seagrass

morphology between studies.

We found that most of the misclassification occurred for images

with complex substrate especially those with high algae percent

cover. This is typical for deep learning classification models that are

still lacking the ability to apply extreme generalization the way

humans do (Chollet, 2017). Differentiating among well-defined

objects is usually straight forward with numerous documented

examples on image datasets such as ImageNet (Krizhevsky et al.,

2017). The model outcomes for complex substrate, could possibly

be improved by increasing the overall number of images, but also by

having a balanced number of images with the same level of algae

with and without seagrass. Indeed, deep learning models can

continue to “learn” with additional imagery, so as new images are

being collected, our models can be further trained which will lead to

improved performance over time.

We also demonstrated it was possible to categorise seagrass

cover into three broad classes with an accuracy of 80.7%. The choice

of category boundaries was crucial in the model performance. Most

of the classification errors happened around these boundaries and
Frontiers in Marine Science 10
resulted in an image being placed into the adjacent category, rather

than for example two categories away (i.e. a high being classed as

low or vice versa). This needs to be considered when applying the

model. For instance, the medium seagrass cover category was

defined as ≥10 <30% during the labelling process, however the

percent cover range of the images predicted in that class ranged

from 7 to 35%. Despite these misclassification potential errors,

using broad seagrass cover categories is sufficient in the context of

mapping. At the scale of the photoquadrat used in this study, it is

currently more accurate and easier to assess seagrass cover with a

classification model rather than a regression model via

segmentation of the image. Because of the very small morphology

of the seagrass species in the Reef and the high level of complexity in

the background (e.g. macroalgae, rubbles, turf algae), automated

segmentation or even manual annotation of seagrass leaves is

incredibly difficult in particular for strap-like species.

Seagrass percent cover estimates can be difficult to assign for

low densities. Except for a few structurally large species, individual

seagrass leaves are very small and therefore may not be easy to

identify. A study from Moniruzzaman et al. (2019) developed deep

learning models to detect single leaves of Halophila ovalis. This was

effective for oblique close-up images with a sand background, but is

likely to be less effective with nadir quadrat images as used in this

study. Photoquadrats are used so that cover can be easily quantified
FIGURE 9

Examples of images misclassified by Model #3 with false complex on top row and false simple on the bottom row.
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in a standardised manner. While it would require a significant effort

to label a photoquadrat dataset with individual bounding boxes, it

might be the best way to detect very low seagrass density (<3%) and

deserves further investigation.

An alternative method to estimate percent cover of benthic taxa

(e.g. coral, algae, seagrass) and substrate (e.g. sand, rock) is using a

point annotation system. This method has been successfully used

for coral reefs and invertebrate communities (González-Rivero

et al., 2016) and is publicly available through platforms such as

CoralNet or ReefCloud. In seagrass habitats, the point annotation

method is only able to detect seagrass when cover is above 25%

(Kovacs et al., 2022). This is because the method relies on classifying

an area (224x224 pixels) around the annotated point. The

dimension of the annotation area is not visible through the

labelling interface and the person conducting the labelling is

expected to label only what is directly under the point. This

approach is appropriate for well–defined and larger objects like

coral, however, it is not well adapted to scattered, low and sparse

seagrass cover where there could be seagrass within the classifying

area but not directly under the point, resulting in a high level of

misclassification. By classifying the patches directly, others studies

have shown very high overall accuracy for multi-species seagrass

detection (Raine et al., 2020) and even the addition of semi-

supervised learning to reduce labelling effort (Noman et al.,

2021). However, this was achieved on a dataset composed of

images from Moreton Bay (Queensland, Australia), which does

not encompass all species present within our study area and does

not include complex substrate background.

While we acknowledge the limitations of our models, especially

Model #2, we believe to have developed the most operationally

relevant subtidal seagrass detection deep learning model for the

Reef to date with a lot of potential for future improvements.
4.2 Operationalisation and mainstreaming

This study was undertaken to demonstrate the feasibility of a

subtidal seagrass detection model as a step towards operationalisation

and mainstreaming of big data acquisition and analysis (Dalby

et al., 2021).

Traditional direct field observations provide instantaneous data,

but need to be performed or overseen by formally trained scientists,

and the data requires time consuming transcription into a database.

Images (e.g. photoquadrats), however, can be collected by a variety

of contributors such as environmental practitioners, Indigenous

ranger groups or members of the public without a formal scientific

background (i.e. citizen scientists), requiring less capacity and

resources. For example, rangers from the Queensland Park and

Wildlife Services (QPWS) conduct subtidal seagrass monitoring

using drop cameras that is currently integrated into the MMP

(Mckenzie et al., 2021). Citizen scientists, QPWS Rangers and

Indigenous rangers frequently access the Reef and seagrass

habitats of northern Australia. Simplifying the methods and

minimising the time required to capture data by using

photoquadrats can vastly increase the volume, velocity, variety

and geographic spread of image data collection. The models
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presented in this study facilitate the ability to mainstream data

capture and increase the rate of image processing, enabling

scientists to maximise big data analysis and reporting. With our

current computer, the models are able to process and produce

predictions for 1500 images in under two minutes. In our

experience it would take approximately 12 to 25 hours for a

trained person to manually label that number of images

depending on their complexity. Scaling up the process will

require some specific infrastructure to store data and powerful

cloud computing capacity (CPU and GPU) on platforms such as

AWS or Azure to handle on-demand inference of new data. In

addition of the deep learning models, we aim to grow our capacity

for image data handling. In parallel with the development of the

models presented here we have been working on streamlining a

higher efficiency image processing workflow. This includes

handling either time-lapse or video (e.g. GoPro) input sources

and a DDN model (YOLOv5) to generate deep learning ready

standardized quadrat images via detecting quadrat metal frame and

cropping the image.

The operational applications for the subtidal seagrass detector

are wide-ranging, including mapping and monitoring of the vast

and remote northern Australian and global seagrass habitats. Image

collection combined with a geotagging/geolocation, will enable the

production of spatially explicit maps of subtidal areas. Our models

are most adapted to this application as maps tend to only need

simple information like seagrass presence/absence. However, we

have also shown potential for monitoring with the ability to detect

broad seagrass cover categories which with further refinement could

enable temporal changes in seagrass abundance to be assessed.
4.3 Future directions

While the findings in this study are encouraging, we very

much intend to further refine and improve those models and the

associated data processing workflow over time. One of the main

advantages of using DNNs is their capacity to incrementally

improve when additional training data is provided. Therefore, as

more and more diverse images are supplied it will help us build

more robust models and give greater confidence in the

predictions. Our models are currently limited to be used on

subtidal nadir photoquadrats captured using a drop-camera.

However, with the increasing popularity of Autonomous

Underwater Vehicles (AUVs), our DNNs would need to be

trained to accept more versatile image inputs (e.g. oblique and

without guiding bounds).
5 Conclusion

In this study, we developed a Subtidal Seagrass Detector capable

of detecting the presence of seagrass as well as classifying seagrass

cover and substrate complexity in underwater photoquadrats by

using Deep Neural Networks. The three subsequent models

achieved high level accuracies with 97%, 80.7% and 97.9%,

respectively. This demonstrates great potential towards the
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operationalisation of the Detector for accurate automated seagrass

detection over a wide range of subtidal seagrass habitats.
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