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Improved multivariable
algorithms for estimating
oceanic particulate organic
carbon concentration from
optical backscattering and
chlorophyll-a measurements

Daniel Koestner1*, Dariusz Stramski2 and Rick A. Reynolds2

1Department of Physics and Technology, University of Bergen, Bergen, Norway, 2Marine Physical
Laboratory, Scripps Institution of Oceanography, University of California San Diego, La Jolla,
CA, United States
The capability to estimate the oceanic particulate organic carbon concentration

(POC) from optical measurements is crucial for assessing the dynamics of this

carbon reservoir and the capacity of the biological pump to sequester

atmospheric carbon dioxide in the deep ocean. Optical approaches are

routinely used to estimate oceanic POC from the spectral particulate

backscattering coefficient bbp, either directly (e.g., with backscattering sensors

on underwater platforms like BGC-Argo floats) or indirectly (e.g., with satellite

remote sensing). However, the reliability of algorithms which relate POC to bbp is

typically limited due to the complexity of interactions between light and natural

assemblages of marine particles, which depend on variations in particle

concentration, composition, and size distribution. This study expands on our

previous work by analysis of an extended field dataset created with judicious data

inclusion criteria with the aim to provide POC algorithms for multiple light

wavelengths of measured bbp, which can be useful for applications with in situ

optical sensors as well as above-water active or passive measurement systems.

We describe an improved empirical multivariable approach to estimate POC

from simultaneous measurements of bbp and chlorophyll-a concentration (Chla)

to better account for the effects of variable particle composition on the

relationship between POC and bbp. The multivariable regression models are

formulated using a relatively large dataset of coincident measurements of POC,

bbp, and Chla, including surface and subsurface data from the Atlantic, Pacific,

Arctic, and Southern Oceans. We show that the multivariable algorithm provides

reduced uncertainty of estimated POC across diverse marine environments

when compared with a traditional univariate algorithm based on only bbp. We

also propose an improved formulation of univariate algorithm based on bbp
alone. Finally, we examine performance of several algorithms to estimate POC

using our dataset as well as a dataset consisting of optical measurements from

BGC-Argo floats and traditional POC measurements collected during a

coincident research cruise in the Atlantic Ocean.

KEYWORDS

marine optics, bio-optical algorithms, particulate organic carbon, inherent optical
properties, backscattering coefficient, chlorophyll-a fluorescence, Biogeochemical-
Argo observations, satellite ocean color observations
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1 Introduction

The ocean plays a vital role in the global carbon cycle, regulating

our climate and sustaining life on Earth through exchanges and

transformations of atmospheric CO2. The fate of carbon in the

ocean is driven by several interconnected processes including the

biological carbon pump that refers to the biogeochemical processes

which transfer dissolved and particulate organic carbon from the

surface ocean to the deep ocean. Atmospheric CO2 levels would be

~50% higher than they are today without the biological carbon

pump (Paraekh et al., 2006). However, the magnitude of the global

ocean biological carbon pump is poorly constrained because ocean

biogeochemical models struggle to accurately simulate distributions

of concentration of particulate organic carbon (POC), some of

which can serve as long-term storage for atmospheric CO2 through

sinking to the deep ocean (Boyd and Trull, 2007; Brewin et al.,

2021). Due to uncertainties in biogeochemical models, the range in

the estimated quantity of organic carbon that is exported annually

by the biological carbon pump is large, ranging from about 5 to 12

Pg C yr-1 (Boyd and Trull, 2007; Middelburg, 2019; Nowicki et al.,

2022). To put this range in perspective, it is equivalent to between

50% and over 100% of global anthropogenic emissions of CO2 in

2022 (Friedlingstein et al., 2022).

Particulate organic carbon in the ocean forms the base of

marine food webs and is associated with phytoplankton,

heterotrophic organisms, and non-living organic detrital material.

Although POC constitutes one of the smallest carbon stocks in the

global ocean, it is highly dynamic, experiencing turnover on short

timescales with respect to primary production and remineralization

(Brewin et al., 2021). A major limiting factor on the development of

a better quantitative understanding of the biological carbon pump is

the limited number of observations of the spatial and temporal

distribution of POC (Siegel et al., 2016; Brewin et al., 2021).

Traditional POC measurements rely on discrete water

sampling, which has significant limitations in terms of temporal

and spatial scales of observational coverage. The estimation of POC

from optical measurements, conducted either remotely from above

the ocean or in situ, has the potential to fill this gap in

understanding of the global distribution of POC (e.g., Gardner

et al., 1993; Bishop, 1999; Claustre et al., 1999; Stramski et al., 1999;

Loisel et al., 2002; Stramska and Stramski, 2005; Gardner et al.,

2006; Stramski et al., 2008; Balch et al., 2010; Cetinić et al., 2012;

Stramski et al., 2022). Optical estimates of POC, however, can be

subject to large uncertainties because the interactions between light

and marine particles can be influenced by many factors, including

the effects of light and nutrient availability on phytoplankton (e.g.,

Ackleson et al., 1990; Stramski and Morel, 1990; Reynolds et al.,

1997; Stramski et al., 2002), particle size distribution (e.g., Morel

and Bricaud, 1981; Stramski and Kiefer, 1991; Uitz et al., 2010;

Stemmann and Boss, 2012), and particle composition such as the

ratio of phytoplankton vs. non-phytoplankton or organic vs.

mineral material (e.g., Stramski et al., 2001; Twardowski et al.,

2001; Stramski et al., 2007; Neukermans et al., 2012; Woźniak et al.,

2022). Knowledge of particle composition can improve estimates of
Frontiers in Marine Science 02
POC from optical measurements (e.g., Woźniak et al., 2010;

Reynolds et al., 2016; Koestner et al., 2021).

Recently, Koestner et al. (2022) proposed an advancement in

the estimation of POC across diverse environments from a

multivariable empirical algorithm that utilizes concurrent

measurements of the particulate backscattering coefficient (bbp)

and concentration of chlorophyll-a (Chla) as predictor variables.

In this multi-component algorithm, the bbp component is

considered a measure of particle concentration while the

additional components involving both bbp and Chla serve as a

proxy for particulate composition to improve estimations of POC.

This formulation was proven to be more effective than a univariate

bbp-based algorithm by providing reduced uncertainty when

examining an independent dataset of contrasting surface and

subsurface samples from several major oceanic basins. The use of

the multivariable algorithm was demonstrated with data from BGC-

Argo floats in the Labrador Sea. Another recent study in the Arctic

seas also demonstrated improved estimation of POC using adaptive

optical algorithms that account for variability in the particulate

composition parameterized in terms of a proxy that represents the

contribution of organic vs. mineral particles to the total suspended

particulate matter (Stramski et al., 2023).

In the current study we seek to improve the algorithms

presented in Koestner et al. (2022) resulting from several

important enhancements brought about by the use of an

extended field dataset for algorithm development, more

considerate inclusion and exclusion criteria applied in the process

of compilation of development dataset, and adjustments in the

approach to correct for algorithm bias at low POC values. We

evaluate performance of newly developed algorithms compared

with several other algorithms from the literature. We provide

algorithms for several light wavelengths used commonly in

observations of optical backscattering (i.e., 470, 532, 550, 660, and

700 nm), and specifically formulated algorithms for application

with water column observations using vertically profiling platforms

such as BGC-Argo floats or autonomous gliders and also for

potential applications of satellite ocean color observations used to

derive bbp and Chla (e.g., Loisel and Stramski, 2000; Lee et al., 2002;

Loisel et al., 2018; O’Reilly and Werdell, 2019). We also recognize

potential for the use of one of the proposed POC algorithms in

conjunction with retrievals of near-surface oceanic bbp with air- or

shipborne ocean lidar systems (Churnside et al., 1998; Jamet et al.,

2019), including ATLAS lidar on ICESat-2 satellite (Lu et al., 2019),

and CALIOP lidar on CALIPSO satellite (Getzewich et al., 2018).

These lidar systems show promise for providing observations

complementary to passive ocean color remote sensing including

night sampling, observations through thin clouds, and vertical

profiling to estimate bbp and POC (e.g., Behrenfeld et al., 2013;

Bisson et al., 2021; Lu et al., 2021; Zhang et al., 2023). Finally, within

the context of application of newly proposed algorithms with the

global array of BGC-Argo floats, we present a validation exercise

with optical data from BGC-Argo floats acquired in the vicinity of

traditional POC measurements down to 500 m during the AMT-24

research cruise in the Atlantic Ocean.
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2 Methods

A field dataset of concurrent particle and optical measurements

was assembled for the formulation and analysis of optical algorithms in

this study. Of most relevance to the current study, the post-cruise

analyses of discrete water samples provided mass concentration of

particulate organic carbon (POC) and total chlorophyll-a (Chla) while

the spectral backscattering coefficient bbp was measured in situ shortly

before or after water sample collection. Note that bbp is dependent on

light wavelength l, however it is often not shown in symbolic

representation for brevity. Various methodological details relating to

field measurements, data processing, and algorithm development can

be found in Koestner et al. (2022). Some details are summarized below

for clarity or to describe differences specific to the current study.
2.1 Sampling locations

The final dataset used in the current study was composed from

analyses of the total of 407 surface and subsurface water samples

from the Arctic, Atlantic, Pacific, and Southern Oceans obtained

during 13 research cruises. Sample locations are shown in Figure 1A

and Table 1 summarizes information on sampling region, dates,

and number of samples. Additional information on these cruises,

including citations to relevant literature, can be found in Stramski

et al. (2022). The requirement for concurrent measurements of

POC, Chla, and spectral bbp utilizing consistent methodology is a

major determinant of the size of the dataset. This dataset

encompasses many contrasting oceanic particle assemblages in

terms of particle and optical properties (Figure 1B; see also

Koestner et al., 2022). Following reanalysis of data from the South

Pacific BIOSOPE cruise, the current study includes 18 subsurface

samples from this cruise which were not included in Koestner et al.

(2022). These subsurface samples (11 of which contain POC < 30

mg m-3) importantly expand coverage of very low POC values often

found in ultraoligotrophic waters.

In this study, we differentiate sample location using oceanic

biomes to indicate that data were collected across diverse water

types and also to examine performance within different oceanic

biomes (Figure 1). The biomes were defined using the mean biomes

described in Fay and McKinley (2014). These biomes represent

distinct biogeochemical regions defined by sea surface temperature,

spring/summer Chla, ice fraction, and maximum mixed layer depth

determined with observational and climatology data from 1998 to

2010. These broadscale biomes are relevant for open ocean regions

and address first-order differences in biogeochemistry. The biomes

relevant to our study are marginal sea ice (ICE), subpolar seasonally

stratified (SPSS), subtropical seasonally stratified (STSS), equatorial

(EQU), and subtropical permanently stratified (STPS). Important

distinctions are that ICE biomes have at least 50% ice coverage

during some of the year, SPSS biomes have strong seasonal

upwelling driving higher summer Chla, STSS biomes are areas of

downwelling but intermediate Chla and deep winter mixed layer,

and STPS biomes are also downwelling areas but with year-round

stratification, shallow mixed layer, and low Chla. For the purposes
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of the current study, we differentiate only the North Pacific (NP)

and Southern Ocean (SO) marginal sea ice biomes, while all other

biomes are not differentiated by larger oceanic basin. A breakdown

of the number of samples from each biome and variability in

particle composition characteristics (described below in Section

2.2) is shown in Figure 1B.

The temporal coverage of sampling at given locations is dictated

by the cruises comprising our assembled dataset, a common

occurrence with compiled field-based datasets. Regarding seasonal

coverage of samples, all ICE data originated from sampling during

summer months, Atlantic Ocean meridional cruises were during

spring and autumn months, and data from Pacific Ocean were

collected in spring months (Table 1).
A

B

������

FIGURE 1

Summary of samples utilized in algorithm development. (A) Location
of stations where samples were collected differentiated by oceanic
biome and shaded by depth z of any additional subsurface sampling.
The biomes are North Pacific and Southern Ocean marginal sea ice
(ICE), subpolar seasonally stratified (SPSS), subtropical seasonally
stratified (STSS), equatorial (EQU), and subtropical permanently
stratified (STPS). (B) Non-parametric box plots of three particle
composition metrics for samples in each biome. The whiskers
represent the entire data range while box represents (from bottom
to top), 25th, 50th, and 75th percentile of available data. The first two
box plots within each biome refer to proxies of particulate
composition representing organic vs. inorganic (i.e., POC/SPM) and
phytoplankton vs. non-phytoplankton (i.e., aph/ap) content of
particles. The third boxplot (light green) refers to the particulate
composition proxy ς = Chla/bbp(700) in units [mg m-2]. Number of
samples (N) in the dataset are displayed above each biome, noting
that not all samples had available POC/SPM and aph/ap data.
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2.2 Characterization of
particulate assemblages

POC and Chla were determined for each water sample through

analysis of particulate matter retained on 25 mm diameter

Whatman glass fiber filters (GF/F). Sample volumes were filtered

at low vacuum (<120 mm Hg) using pre-combusted filters for the

determination of POC following standard methodology (Parsons

et al., 1984; Intergovernmental Oceanographic Commission, 1994).

The determination of POC did not include correction for

adsorption of dissolved organic carbon, but rather filtration of

appropriately large volumes of seawater for the purposes of

relating POC to optical measurements influenced by all

suspended material (Stramski et al . , 2022), while the

measurement of Chla was made using high-performance liquid

chromatography (HPLC) analysis. However, 11 samples from

coastal Alaska utilized subtraction of a “wet” blank to derive POC

with correction for DOC-adsorption (IOCCG Protocol Series, 2021;

Koestner et al., 2021) and in situ fluorometric measurements of

Chla (with appropriate corrections; Roesler et al., 2017). We note

that the inclusion of these 11 samples did not meaningfully impact

algorithm development. We also note that 45 samples from one

Atlantic cruise (ANTXXVI/4) that were used in Koestner et al.

(2022) had refinements to Chla as a result of reprocessing of HPLC

data. This reprocessing mostly resulted in some reduction of Chla.

For the purpose of POC algorithm formulation, the

compositional aspect of particulate matter was quantified with ς =

Chla/bbp, the inverse of the chlorophyll-a specific particulate

backscattering coefficient and defined for a specific light

wavelength. This optical proxy is advantageous as it is retrievable

from in situ measurements with chlorophyll-a fluorescence and

backscattering sensors and serves as a reasonable compositional

indicator of the contributions of phytoplankton vs. non-

phytoplankton particles (Koestner et al., 2022).

For further characterization of variability in particulate

composition in our dataset, Figure 1B also provides information
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on two additional proxies of particulate composition representing

organic vs. inorganic and phytoplankton vs. non-phytoplankton

content of particles. Specifically, we present the ratio of POC to the

mass concentration of all suspended particulate matter SPM (i.e.,

POC/SPM) and the ratio of the absorption coefficient of

phytoplankton aph to the absorption coefficient of all particles ap
at light wavelength of 410 nm. These data were obtained from

measurements which were made on the samples considered in this

study (Koestner et al., 2022).
2.3 Measurements of the spectral
backscattering coefficient

More detailed information regarding the acquisition and

processing applied to light scattering data can be found in

Stramski et al. (2008) and Reynolds et al. (2016). All spectral

backscattering measurements were measured in situ with

HydroScat-6 and a-beta sensors (HOBI Labs, Inc.) at depths

where water samples were collected. These instruments resolve

scattering at an angle approximately 140° from the direction of

incident light and, depending on the instrument configuration

available for each research cruise, typically utilized 6 to 11

wavelengths from about 400 to 850 nm. To derive bbp from these

measurements, the contribution of theoretical pure seawater

backscattering was removed, a factor of 1.13 was applied to relate

backscattering at a single angle to bbp, and adjustments were made

for scattering and absorption losses to and from the sample volume.

The spectral bbp data were fit using an ordinary least squares linear

regression of log10(bbp) vs. log10(l) to obtain bbp at l = 470, 532,

550, 660, and 700 nm. We focus on these wavelengths as they are

commonly utilized with in situ backscattering sensors (e.g., WET

Labs Environmental Characterization Optics ECO sensors). There

is additional special interest in 532 and 550 nm which

approximately correspond to available wavelengths on active and

passive satellite observation systems.
TABLE 1 Summary of cruises.

Ocean Sub-Location Cruise(s) Sampling Dates N

Arctic

Chukchi/Beaufort Seas
HLY1001
HLY1101
MR17-05C

18 Jun. – 16 Jul., 2010
28 Jun. – 24 Jul., 2011
23 Aug. – 2 Oct., 2017

30
94
42

SE Beaufort Sea MALINA 31 Jul. – 24 Aug., 2009 75

S Beaufort Sea
PB18
PB19

8 Sep. – 12 Sep., 2018
11 Aug. – 15 Aug., 2019

5
6

Atlantic Meridional Transect
ANTXXIII/1
ANTXXVI/4

13 Oct. – 17 Nov., 2005
7 Apr. – 17 May, 2010

25
65

Pacific
Tropical and Subtropical SE Pacific Ocean

Tropical N Pacific Ocean
BIOSOPE
KM12-10

17 Oct. – 15 Dec., 2004
28 May – 10 Jun., 2012

48
7

Southern Southern Ocean
NBP97-8

RR-KIWI 8,9
5 Nov. – 13 Dec., 1997
8 Jan. – 19 Mar., 1998

3
7
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2.4 Criteria applied to compilation of
final dataset

Although the initial assembly of data from 13 cruises resulted in

475 samples, approximately 15% of samples were excluded from the

final algorithm development dataset based on several inclusion and

exclusion criteria to better serve the intended purpose of this study.

First, to avoid uncertainties related to spectral interpolation of bbp,

data were excluded if the spectral slope of the power function of bbp
vs. l was positive (unlikely for natural samples) or if the power

function fit of bbp had greater than 30% mean absolute percent

difference from the measured bbp for available measurement

wavelengths. Samples with particularly high bbp were removed

using bbp(700) > 0.04 m-1 as an exclusion criterion, noting that

values higher than about 0.03 m-1 are highly unlikely in the global

ocean (e.g., Organelli et al., 2017). The accepted POC data were

limited to a range of 10–1000 mg m-3, Chla was limited to a range of

0.01–30 mg m-3 and ς determined using bbp(700) was limited to not

exceed 2000 mg m-2, and we acknowledge that these ranges are

reasonable for the surface ocean (e.g., Organelli et al., 2017;

Barbieux et al., 2018; Joshi et al., 2023). Finally, the maximum

depth of samples was limited to 150 m, which generally

encompasses the deepest euphotic zone depths in most oceanic

environments depending on criteria used in defining the euphotic

zone depth (e.g., Organelli et al., 2017; Wu et al., 2021; Koestner

et al., 2022). Overall, the final dataset includes 407 samples from 243

discrete locations, and it was found that the exclusion of the 68

samples from the initial dataset improved algorithm reliability in

terms of consistency and statistical significance of algorithm

coefficients. We also note that 70% of the excluded samples were

from the NP ICE biome which is already sufficiently represented in

the dataset (Figure 1).

Figure 2 describes the distribution of sample depths utilized in

the current study and we note that all samples were collected within

the epipelagic zone with a maximum depth of 150 m. We refer to

surface samples as those which were collected within the upper 20

m of the water column corresponding to an approximate limit for

above-water remote-sensing observation systems. The number of

surface samples in our dataset is 257, and the majority of them were

collected from depths shallower than 5 m (Figure 2). Of the 407

samples which were included in data analysis, 150 were collected at

subsurface depths (i.e., deeper than 20 m), with only 16 samples

from depths between 100 and 150 m (Figure 2).
2.5 Algorithm development

In Koestner et al. (2022), we examined several algorithm

formulations and here we focus on only the best performing

versions. One of the POC algorithms that we investigate is

referred to as Model A which is a univariate model with bbp
acting as a sole estimator of POC. The general form of Model A

is derived from a robust ordinary least squares regression applied to

POC vs. bbp data using a power function with log10-transformed bbp
and POC.
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Another investigated POC algorithm is referred to as Model B

which is a multivariable model. The form of Model B is an additive

multiple linear regression equation with log10-transformed data and

an interaction term: log10POC ¼  k1 + k2log10bbp + k3log10ς + k4
log10ς � log10bbp, where ς = Chla/bbp is a composition proxy and

k’s are model coefficients. In this model, the second term (i.e., k2bbp)

can be assumed to serve primarily as a measure of total particle

concentration. The third and fourth terms relate to additional

adjustments concerning bulk particulate composition based on

the measurement of ς. In Koestner et al. (2022) this version of

Model B was found to perform best when tested with an

independent dataset. Note that all algorithm coefficients and

independent variables are wavelength-dependent. Best-fit

coefficients for Models A and B were computed using MATLAB’s

“regress” function with a robust fitting bisquare weighting function

(tuning constant = 4.685).

A bias correction function was included to improve both Model

A and Model B estimations for low POC as both models tended to

systematically overestimate POC at low values. Two formulations of

the bias correction function were determined only for cases in

which estimated POC was less than 45 mg m-3. These

determinations were made using a Model-II linear regression of

observed (measured) vs. algorithm-derived (estimated) POC with

and without log10-transformation for power and linear versions.

The bias correction function is POC = f(POC*), where superscript *
indicates initial algorithm estimation. This correction was only

applied if POC* was less than a certain threshold (emin) to avoid

overestimation for POC greater than about 35 mg m-3.

Prediction bounds for new algorithm estimations were

computed using the coefficient covariance matrix (S) and mean-

square error (MSE) determined from the regression analysis. The
FIGURE 2

Histogram of sample depths z used in algorithm development
dataset. Light grey denotes surface samples (z ≤ 20 m) while dark
grey denotes subsurface (z > 20 m).
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prediction bounds were of the form y ± e, where y is the best-fit

model estimate of POC and e is the prediction uncertainty for a

specific new estimation determined as e = t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE + xSxT

p
. In this

equation, t depends on confidence level and can be calculated based

on Student’s t cumulative distribution function, x is a row vector of

the algorithm inputs including a value of 1 in the first element (e.g.,

x = [1 bbp] for Model A), and superscript T denotes

transpose operation.

The entire dataset was used for deriving model coefficients,

rather than randomly splitting the dataset into development and

validation datasets as was done in Koestner et al. (2022). This choice

was based on the primary goal of optimizing the estimates of model

coefficients through the inclusion of all available data. Algorithms

were developed and evaluated using either surface samples (z ≤ 20

m) or the full dataset consisting of samples collected from all depths

down to 150 m. Evaluation of algorithms used various statistical

metrics to quantify and visualize uncertainty. Assessment metrics

included root-mean-square deviation (RMSD), median absolute

percent difference (MdAPD), median symmetric accuracy

(MdSA), mean bias (MnB), and median ratio (MdR) as defined in

Table 2. Coefficients of the Model-II linear regression of algorithm-

derived (estimated) vs. observed (measured) POC are considered as

an additional measure of algorithm performance and residual plots

are also presented for additional examination of performance. A

bootstrap resampling approach was also implemented in validation

analysis to examine algorithm performance on 1,000 random

subsets of the dataset. We utilized a subset size of 135 which was

approximately one third of the full dataset and half of the surface

dataset. This bootstrap procedure allows for replacement of each

sample when randomly drawing a new sample to approximate 1,000

new sample populations or subsets. For each subset, statistical

metrics were computed for evaluation of the variability as a

function of the number of data subsets. We note that percentiles

of most statistical metrics converged between 100 and 1,000 subsets.
2.6 BGC-Argo float data

BGC-Argo floats were deployed during the AMT-24 research

cruise which surveyed an Atlantic Meridional Transect in the

period September 24 – November 1, 2014. This cruise also

involved a dedicated effort to evaluate uncertainties in POC

throughout the water column down to 500 m (Sandoval et al.,

2022). Data from six floats are available with vertical profiles of

bbp(700) and Chla (derived from fluorescence measurements) and

five of the six floats were programmed to cycle rapidly

(approximately daily) after deployment. In total, 53 profiles are

available with coincident bbp(700) and Chla that passed quality

control efforts and were within the time-window of cruise

operations. This results in a total of 19446 individual depth-

resolved measurements available for analysis.

Float data were downloaded on September 2, 2023 from the

British Oceanographic Data Centre, with the exception of one float

(WMO ID 6901437) which was downloaded from the Coriolis data

centre. Only adjusted Chla data which had quality control flags of 1,

2, 5, or 8 were used. The so-called “raw” bbp(700) measurements
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were used, also with the same quality control flags. All data were

processed to remove large particle spikes for each profile according

to the methodological approach outlined in Briggs et al. (2020). As

such, the resulting bbp(700) and Chla refer to the signal from only

“small” particles. A background level of bbp(700) and Chla was

determined as the 5th percentile of values at 850–900 m from each

float. This background is considered mainly as contributions from a

pool of scattering or fluorescent material which appear nearly

constant in the deep ocean in combination with uncertainties in

manufacturer dark-counts (Poteau et al., 2017; Briggs et al., 2020).

This background was removed from Chla (0.006 ± 0.003 mg m-3)

under the assumption that it is primarily driven by uncertainties in

manufacturer dark-counts and any subsequent Chla values that

were smaller than this background were set to 0 mg m-3. The

background was not removed from bbp(700) under the assumption

that it is driven primarily by particulate scattering which should be

included in POC. The background for bbp(700) is referred to as bbp
D

and was 2.0 ± 0.4 × 10-4 m-1.

POCwas estimated usingModel B described in the current study

utilizing all surface and subsurface data and referred to as Ko23. An

adjustment factor of 0.9 was used to account for differences between

HydroScat sensors used in algorithm development and ECO sensors
TABLE 2 Model-assessment variables.

N or K Number of samples or model coefficients

Oi or Ei Observed or algorithm-derived value for sample i of N

�O or �E Mean value; �O =
1
No

N
i=1Oi , and likewise for �E

r
Pearson correlation coefficient; oN

i=1(Oi − �O)(Ei − �E)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(Oi − �O)2
q

 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(Ei −
�E)2

q

Md Median operator

R2
adj

Adjusted coefficient of determination; 1 – 
N – 1
N – K

� �
oiðOi – EiÞ2

oiðOi  – �OÞ2

RMSD Root mean square deviation;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(Ei − Oi)

2

r

MdAPD Median absolute percent difference; Md
Ei − Oi

Oi

����
����� 100%

MdSA Median symmetric accuracy; 10
Md log10

Ei
Oi

��� ���
− 1

 !
� 100%

MnB Mean bias;
1
No

N
i=1(Ei − Oi)

MdR Median ratio; Md(
Ei
Oi

)
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on floats (discussed further in section 4.3). For individual

measurements when the composition term of Model B (ς = Chla/

bbp) was 0 mg m-2 because Chla was assumed negligible or

undetectable, the ς was fixed to the minimum value from the

vertical profile. Minimum values of ς were 22 ± 7 mg m-2. An

additional approach commonly used with BGC-Argo float data was

also implemented as an alternate estimate of POC and is referred to

as Ce12 (Cetinić et al., 2012). This approach uses fixed scaling factors

to convert bbp(700) to POC within the surface mixed layer (37537

mg C m-2) and below the surface mixed layer (31519 mg C m-2). The

Ce12 scaling factors were determined using ECO sensors and over

300 samples collected during the 2008 North Atlantic Bloom

Experiment in spring near 61° N, 26° W. One other approach was

also used which accounts for vertical variability in the conversion of

bbp(700) to POC and is referred to as Ga22 (Galı ́ et al., 2022). In
brief, this approach assumes an exponential decrease of scaling

factor from below the surface mixed layer based on a reanalysis of

Cetinić et al. (2012) data by Bol et al. (2018). The surface value of the

scaling factor was set to 58968 mg C m-2 based on Stramski et al.

(2008) and an asymptote at depth was fixed to 12000 mg C m-2.

These values were assumed to be appropriate for the subtropical

permanently stratified biomes (Galı ́ et al., 2022). Surface mixed layer

depths (MLDs) were determined as the depth corresponding to

potential density differing by more than 0.03 kg/m-3 of value at 10

dbar. Note that Ga22 estimates in the epipelagic zone are sensitive to

MLD methodology and a detailed analysis of such sensitivity is

provided in Galı ́ et al. (2022).
All float data were acquired within the subtropical permanently

stratified biome (STPS), however additional classification is

performed here in accordance with partitioning of data in

Sandoval et al. (2022). Floats were spatially differentiated by

ecological provinces within the Atlantic Ocean (Longhurst, 2007).

The relevant provinces are North Atlantic Subtropical Gyre

(NAST), North Atlantic Tropical Gyre (NATL), South Atlantic

Gyre (SATL), and South Subtroptical Convergence (SSTC). Further,

the water column was partitioned into epipelagic (z ≤ 200 m) and

mesopelagic (200 < z < 500 m) zones, again to correspond with

depths evaluated in Sandoval et al. (2022).
3 Results

3.1 POC algorithms

Best fit model coefficients for univariate Model A and

multivariable Model B are shown in Table 3 for bbp at five

wavelengths (i.e., 470, 532, 550, 660, and 700 nm) using only

surface samples and separately for the full dataset consisting of

samples collected from all depths down to 150 m. Figure 3 presents

scatter plots describing Model A and Model B using three example

wavelengths: 470, 550, and 700 nm. In Figures 3A, B, E, F, data for

bbp(470) and bbp(700) are shown for the full dataset of surface and

subsurface samples as these wavelengths are typically used with

sensors on BGC-Argo floats and other autonomous platforms

providing vertically-resolved water column observations. In

Figures 3C, D, data for bbp(550) are shown for only surface
Frontiers in Marine Science 07
samples as 550 nm corresponds to an approximate wavelength

commonly used with satellite measurement systems providing

ocean color surface observations. Model A reasonably

approximates the general trend of increasing POC with increasing

bbp, however there is a large scatter around the regression line

(Figure 3). This scatter can generally be separated by particulate

composition parameter, e.g., most datapoints with the darkest blue

colors representing relatively low ς are typically below the

regression line while lighter colors are often above the regression

line. This can also be seen for the two highlighted cases in each

panel referring to samples with similar POC around 100 mg m-3,

however one referring to a sample with low ς and another with high

ς. There also appear no clear trends regarding region of sampling

except generally larger deviations for samples from the NP ICE

biome, which also tend to contain the largest contrast in terms of

particle composition parameters (Figure 1B). It is worth noting that

for the same dataset there is a wider range of bbp for 700 nm

compared with 470 nm (Figures 3E vs. 3A) which may provide

advantages in terms of algorithm reliability in optically-clear waters.

For example, when bbp(470) = 0.0008 m-1 there are samples with

POC ranging from 10 to 70 mg m-3 whereas bbp(700) = 0.0008 m-1

corresponds to a smaller range of POC of about 30–70 mg m-3.

Model A coefficients decrease with increasing wavelength, with

coefficients derived at 700 nm being about 10% lower than

coefficients derived with 470 or 532 nm because of increasing

backscattering with decreasing wavelength (Table 3). We also can

see from Table 3 and Figure 3C that Model A determined with only

surface data has notably larger coefficients indicating that for all

wavelengths there is on average more POC per unit bbp in samples

from the surface compared with samples from all surface and

subsurface depths.

Figure 3 also depicts 3-dimensional scatter plots with mesh-

grids representing Model B results. The inclusion of an additional

independent variable related to particle composition (i.e., ς) results

in better representation of the POC data (e.g., R2adj = 0.79–0.87 for

Model B and R2adj = 0.65–0.74 for Model A; Table 3). The mesh-

grids detail steeper slopes of POC vs. bbp for high ς compared with

low ς (Figures 3B, D, E). In other words, for samples likely to have

relatively high proportions of phytoplankton (high ς), larger values

of POC are found for the same amount of particulate backscattering

as compared with samples with a lower abundance of

phytoplankton. This matches our expectation; non-phytoplankton

particles can efficiently backscatter light, especially inorganic

material that does not contribute to POC, and, conversely,

phytoplankton particles generally contribute significantly to POC

while having lower relative contribution to light backscattering. The

ability of Model B to account for the variability in particle

composition when estimating POC based on particulate

backscattering and chlorophyll-a measurements can provide

strong advantages for samples which vary in terms of particle

composition, as is often the case in natural waters. Similarly, as

seen with Model A, the Model B coefficients generally decrease with

increasing wavelength and are notably larger when determined with

surface samples compared to all samples (Table 3). Interestingly, k3
for Model B, which refers to the exponent of the composition

parameter, varies very little (less than 2%) for Model B determined
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using all data and light wavelengths of 532, 550, 660, and 700 nm

(Table 3). This suggests that the weighting of this composition term

in Model B can be quite consistent regardless of wavelength while

all other coefficients account for variability associated

with wavelength.

A positive bias for Model A and Model B can be observed in

Figure 3, particularly when POC is lower than about 40 mg m-3.

Koestner et al. (2022) proposed a low-POC bias correction for

Model B based on a linear function and we extend this approach to

Model A along with two different formulations of the bias

correction function. Figure 4 depicts scatter plots of uncorrected

algorithm estimates of POC vs. measured POC with two functional

fits of the data for bias correction (i.e., linear and power models). In

Figure 4, we present results based on the algorithms determined

with bbp(550) and the full dataset to demonstrate trends in bias and

we extrapolate bias correction functions to measured POC = 3 mg

m-3 which can be considered a lower limit of detection for
Frontiers in Marine Science 08
conventional POC methodology (Sandoval et al., 2022). Prior to

bias-correction, Model B outperforms Model A in terms of accuracy

(i.e., RMSD and MdSA) and bias (i.e., MnB and MdR) for POC < 60

mg m-3 (Figure 4). However, both models exhibit a positive bias in

the range of POC < 60 mg m-3 (e.g., in this range MdR is 1.22 and

1.12 for Model A and Model B, respectively). After applying a bias

correction, RMSD is quite consistent for both Model A and Model

B, however Model A does have reduced MdSA (29% before and

around 25% after correction in the range of POC < 60 mg m-3). Of

most importance, the positive aggregate bias in terms of MdR for

POC < 60 mg m-3 is reduced to the ideal value of around 1 after bias

correction (Figure 4). Although the differences between the

application of linear or power functions for bias correction are

minimal, we believe that the power function will be more reliable

given that the linear bias correction can result in negative POC after

correction if estimated POC is less than the y-intercept and the

power function is generally more conservative for POC less than
TABLE 3 Algorithms for estimating POC.

Model A: POC∗ ½mg m−3�  =  k1b
     k2
bp

Bias correction: POC =
f (POC∗), POC∗ < emin

POC∗, POC∗ ≥ emin

8<
:

l zmax k1 k2 k3 k4 R2
adj e1 e2 emin

470 20 7148.85 0.7351 – – 0.67 2.616 −2.565 38.6

470 150 2980.20 0.6160 - - 0.62 3.040 −3.243 38.9

532 20 7967.85 0.7316 – – 0.71 2.406 −2.220 38

532 150 3037.17 0.6022 - - 0.65 2.763 −2.787 38.1

550 20 8202.78 0.7305 – – 0.72 2.279 −2.018 37.8

550 150 3029.84 0.5975 - - 0.65 2.691 −2.667 37.8

660 20 7318.58 0.6860 – – 0.73 1.909 −1.429 37.3

660 150 2820.75 0.5636 - - 0.67 2.044 −1.656 38.7

700 20 7004.89 0.6713 – – 0.74 1.772 −1.217 37.7

700 150 2729.94 0.5518 - - 0.67 1.918 −1.454 38.4

Model B: POC∗ ½mg m−3�  = k1 b
   k2
bp   ςk3   ςk4  log  bbp

470 20 516.93 0.5978 0.5687 0.0713 0.86 1.613 −0.953 35.8

470 150 98.05 0.2652 0.8448 0.2167 0.79 2.174 −1.843 37.1

532 20 331.11 0.5032 0.6617 0.1117 0.87 1.634 −0.983 35.5

532 150 65.78 0.1798 0.9147 0.2457 0.81 2.078 −1.676 35.8

550 20 295.24 0.4798 0.6855 0.1214 0.87 1.649 −1.003 35

550 150 60.46 0.1622 0.9247 0.2496 0.81 2.044 −1.618 35.4

660 20 191.79 0.3924 0.7402 0.1433 0.87 1.570 −0.878 34.8

660 150 50.59 0.1263 0.9104 0.2393 0.82 1.616 −0.956 35.5

700 20 181.77 0.3815 0.7357 0.1409 0.87 1.513 −0.793 35.2

700 150 52.82 0.1353 0.8849 0.2268 0.82 1.469 −0.734 36.8
Descriptions of Model A and Model B including formula and coefficients (k1, k2, k3, and k4) determined from regression analysis utilizing bbp data at various light wavelengths l [nm] and for two
maximum depths zmax [m] restricting data. Here, surface algorithms correspond to zmax = 20 m while algorithms developed with the full dataset of surface and subsurface samples correspond to
zmax = 150 m. Particulate composition term ς [mg m-2] is calculated as Chla/bbp, where bbp is in units of m-1 and Chla is in units of mg m-3. Coefficients for bias corrections are shown on the right
for the power formulation described by f (POC∗) = 10e

 
2 � POC∗e1   . Note that Model B is shown here following re-arrangement to remove most logarithms in support of applications.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1197953
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Koestner et al. 10.3389/fmars.2023.1197953
about 15 mg m-3 (Figure 4). Thus, we recommend the power

function form for bias correction and accordingly provide model

coefficients for this case in Table 3. We note that there are similar

trends in terms of bias for other wavelengths except that there are

generally smaller bias corrections for longer wavelengths (e.g.,

Table 3 and Figure 3).
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3.2 Validation

In the following figures, we present results from validation

exercises based on comparison of measured POC with bias-

corrected estimates from Model A and Model B. In Figures 5–7,

we describe statistical assessment of the six examples shown in
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FIGURE 3

Univariate (A, C, E) and multivariable (B, D, F) algorithms to estimate POC utilizing light wavelength of 470, 550, and 700 nm. Algorithms in (C, D)
utilize only surface samples for formulation (N = 257) while other algorithms utilize the entire dataset (N = 407). Data are color coded by the value of
particle composition parameter ς = Chla/bbp. Two data points which contrast in terms of ς but contain similar levels of POC are marked with a
square for discussion purposes.
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Figure 3 through comparison of estimated and measured POC.

Next, we present a summary of the bootstrapping validation

analysis for all model formulations (Figure 8). Finally, we take

advantage of our relatively large dataset to assess other optical

approaches for estimating POC found in the literature (Figure 9).

In Figures 5–7, multivariable Model B outperforms univariate

Model A in terms of all statistical metrics evaluated over the entire

dynamic range of the investigated dataset. This is the case for

algorithms developed with the full dataset as well as only surface

data (e.g., Figure 6). Although Model A performs reasonably well

for POC less than about 100 mg m-3, there is a clear compositional

dependence on performance where more algal-dominated (i.e., high

ς value) samples tend to be underestimated and nonalgal dominated

(i.e., low ς value) samples are overestimated (e.g., Figure 5C). This

issue is not as apparent for Model B where there are no clear trends
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of over- and underestimation in terms of particle composition (e.g.,

Figure 5D). The major improvements in Model B can also be

observed when examining the cluster of samples with low or high ς

values from the Arctic which have Model A estimated POC of

around 200–300 mg m-3 (e.g., Figure 5A). Whereas Model A greatly

overestimates the datapoints with low composition values and

underestimates the datapoints with high composition values,

Model B is able to correctly adjust its estimates of POC much

closer along the 1:1 line due to the inclusion of composition-specific

independent variable ς (e.g., Figure 5B). Furthermore, the two

contrasting samples from completely different oceanic biomes

(i.e., Atlantic Ocean STSS and Arctic Ocean NP ICE near Alaska)

shown in Figures 5–7 are correctly estimated by Model B (less than

about 3% differences from measured POC) while they are

incorrectly estimated by Model A (about 30% to over 100%

differences from measured POC).

In the current study, our primary emphasis is on optimizing the

determination of algorithm coefficients by using a relatively large

dataset containing available measurements from diverse oceanic

conditions. Thus, we did not split the available dataset into

independent subsets of data for algorithm development and

validation purposes, as was done in Koestner et al. (2022). In this

study, we employed a bootstrap resampling approach to investigate

algorithm performance on random subsets of the entire algorithm

development dataset. Figure 8 presents a summary of this analysis

focusing on the variability in four statistical metrics derived from

the 1,000 subsets and using all algorithm formulations in Table 3.

Here, we focus on RMSD and MdSA for quantifying magnitude of

the random component of uncertainty while MnB and MdR are

used to describe bias. Again, Model B has lower uncertainty and less

bias for all formulations when compared with Model A for the

overwhelming majority of random subsets (Figure 8). In terms of

uncertainty magnitude, Model B typically has MdSA of 20–35% and

RMSD of about 70–110 mg m-3 depending on wavelength and

dataset utilized. For example, there are somewhat larger MdSA

values (rarely below 25%) for Model B developed and tested with

the full dataset while median values of MdSA are around 22% when

considering only surface data. Differences associated with

wavelength utilized are minor, however when considering Model

B formulated with the full dataset, there may be some small

advantages in terms of MdR when utilizing l = 660 or 700 nm

(Figure 8). Spectral differences are even smaller when considering

surface-only algorithms.

Figure 9 depicts comparisons of measured POC with algorithm-

derived (estimated) POC using four other algorithms found in the

literature. Two algorithms presented here (i.e., Stramski et al., 1999

and Stramski et al., 2008) were developed using a small portion of

the data included in the present study, however, they are tested on

the entire dataset of surface samples consolidated for the current

study. The Loisel et al. (2002) algorithm combines two approaches:

one to estimate the scattering coefficient based on the backscattering

coefficient and Chla (Twardowski et al., 2001) and another to relate

the scattering coefficient to POC (Claustre et al., 1999). These three

algorithms are evaluated for only surface data as they have been

proposed as potential candidate algorithms for estimating POC

based on remote-sensing reflectance observations (Loisel et al.,
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FIGURE 4

Example of algorithm-derived (estimated) vs. observed (measured)
POC before any bias-correction for (A) Model A and (B) Model B
developed using bbp(550) and the full dataset (N = 407). Statistical
metrics are displayed and computed for measured POC< 60 mg m-3

(N = 189). Metrics displayed in top left refer to estimated POC
before any bias-correction while numbers in bottom right denote
metrics derived after applying the linear (light grey) and power (dark
grey) functions for bias-correction. Note that bias correction
functions are extrapolated to measured POC = 3 mg m-3, a
reasonable lower limit of detection for conventional POC
methodology (Sandoval et al., 2022).
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2002; Stramski et al., 2008; Evers-King et al., 2017). The fourth

algorithm is from Cetinić et al. (2012) and has been commonly used

to estimate POC with in situ measurements from platforms such as

BGC-Argo; thus, we present evaluation based on the full dataset

with sample depths down to 150 m. Although all algorithm

estimates have some regions of reasonable agreement with POC

measured using standard methodology (typically around 100 mg

m-3), there are large deviations resulting in relatively high values of

some aggregate statistical metrics (Figure 9). These relatively simple

approaches may produce reasonably good estimations for water

types similar to those used in the algorithm development, however

large uncertainties are observed when considering the wide range of

contrasting optical and particle properties in our dataset. The

advantage of Model B to adapt to a variety of environments can

offer useful advantages when examining POC estimates from

optical measurements collected across diverse water bodies

including large ocean scales.

Finally, we consider comparisons of the 700 nm version of

Model B from our previous study (Ko22; Koestner et al., 2022) with
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the current formulation determined with the larger dataset of

surface and subsurface samples. Coefficients from the current

study are somewhat different (e.g., k1 and k2 are smaller while k3
and k4 are larger compared to Ko22). In terms of aggregate statistics

based on analysis with the full dataset, there are no appreciable

differences between the formulation from Ko22 and the current

version (e.g., RMSD = 68 mg m-3, MdAPD = 25%, MdSA = 29%,

MnB = −6 mg m-3, and MdR = 1.01 for Ko22; compare with current

values in Figure 6B). Generally, the largest differences between the

two models relate to about a 10% underestimation of POC for

highest composition values and about a 10% overestimation for

lowest composition values in the Ko22 model compared with

current Model B estimations. There are some additional

differences when considering POC < 35 mg m-3 which relate

more directly to the use of bias correction recalling that Ko22

utilized a linear bias correction function. We expect some of the

above-mentioned differences to relate to refinements in Chla data

from ANTXXVI/4 cruise as well as the addition of some “new” data

and application of several inclusion/exclusion criteria in the
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Validation of (A, C) Model A and (B, D) Model B through comparison of algorithm-derived (estimated) and observed (measured) POC for bias-
corrected estimates from algorithms utilizing bbp(470) and the full dataset shown in Figures 3A, B. Data are color coded by the particle composition
parameter ς described by color bar in (D). Two data points are marked with a square to illustrate effectiveness of Model B with contrasting particle
composition. (A, B) Algorithm-derived (estimated) vs. observed (measured) POC. Statistical metrics described in Table 2 and derived from this
comparison are shown. Model-II linear regressions of log10-transformed data are displayed with a dashed line and equation is shown, where X and Y
refer to measured and estimated POC, respectively. A 1:1 dotted line is plotted for reference. Hits describe the percentage of datapoints whose
prediction error bars (two-tailed, a = 0.125) contain the measured value. (C, D) Residual plots from data in panel above. Percent residuals are defined
as 100% × (Estimated POC – Measured POC)/Measured POC. Black dashed line represents mean residual value while grey dashed lines represent
approximate 95% confidence limits of residuals (i.e., mean ± 1.96 standard deviations).
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compilation of the dataset for the current study. Additionally,

current Model B coefficients all have smaller uncertainty (in

terms of 95% confidence intervals) and are more statistically

significant (in terms of p-value) compared with coefficients in

Ko22. For example, current coefficients have confidence intervals

which are between 30% and 180% of their best-fit coefficient value

and p-values less than 10–16, apart from k2 with a p-value of 0.03.

For Ko22 coefficients, confidence intervals were nearly twice as

large (60–280% of their best-fit coefficient value) and p-values were

less than 10–5 with the exception of k2 with a p-value of 0.06. As a

result, we recommend use of the current formulation of Model B.
4 Discussion

4.1 Depth dependencies

As seen in Table 3, there are noticeable differences in algorithm

coefficients derived using only surface data compared with the full

dataset. We also found that algorithms developed and tested with

only surface data generally had improvements in the model

performance (Figure 8). It is desirable to apply a single approach

when making assessments of the vertical structure of POC with in

situ measurements; therefore, we examine how well Model A and
Frontiers in Marine Science 12
Model B perform with surface data when developed with the full

dataset in Figure 10. Overall, these algorithms perform well when

examining only surface data. For example, Model B estimations

typically differ by less than about 25% frommeasured POC in terms

of MdAPD and MdSA (Figures 10B, D). Surprisingly, when

evaluating the surface data, RMSD is lower for the algorithms

developed with the full dataset compared with versions developed

with only surface data (e.g., Figures 10A, B vs. 6A, B). We believe

this counterintuitive reduction in RMSD illustrates that RMSD is

not always a reliable measure of performance as it is not a

proportional or symmetric metric because larger magnitude

errors are more heavily weighted. Unlike the algorithm versions

developed with only surface data, the Model B algorithms presented

in Figure 10 display systematic underestimation as seen with MnB

of about –20 mg m-3 and MdR around 0.82–0.86. Moreover, this

underestimation is quite small for lower POC but worsening with

increasing POC as illustrated with the linear regression line of

estimated vs. measured POC (Figures 10B, D). Importantly, we

recall that the majority of the surface samples are from depths less

than 5 m (Figure 2), and these biases are likely minor when

considering large portions of the water column including the

epipelagic layer or deeper. Nonetheless, we generally recommend

using the model coefficients derived with only surface samples when

the investigation is focused on surface waters, for example with
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FIGURE 6

Similar to Figure 5 but utilizing algorithms for bbp(550) developed with only surface data shown in Figures 3C, D.
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satellite or other above-water observation systems. When the

investigation is focused on vertically-resolved measurements

within the water column (for example with BGC-Argo floats or

gliders), we recommend using model coefficients derived with the

full dataset of surface and subsurface samples.
4.2 Biomes

Our algorithm development dataset is composed of samples

collected in 6 oceanic biomes, however samples are not evenly

distributed among these biomes and across all seasons (Figure 1B

and Table 1). For example, only 4 samples are in the subpolar

seasonally stratified biome (3 of which are from the Southern

Ocean), and only 6 samples are in the Southern Ocean marginal

sea ice biome. A large portion of the data is from the North Pacific

marginal sea ice biome which importantly incorporates samples

which are not organic-dominated and not algal-dominated into the

dataset (Figure 1B). This contributed to a compositionally diverse

dataset for algorithm development, however, it may produce some

bias when examining other samples in other biomes. Here, we

examine the uncertainties in POC estimations within each biome

separately using Model A and Model B from the current study, as
Frontiers in Marine Science 13
well as four algorithms from the literature which have already been

shown in Figure 9.

Figure 11 depicts the statistical variability in percent difference of

algorithm estimates frommeasured POC. Model B outperforms nearly

all algorithms for the four main biomes sampled, with the exception of

the subtropical seasonally and permanently stratified biomes (STSS and

STPS) where Stramski et al. (2008) and Stramski et al. (1999)

algorithms respectively display minor improvements (Figure 11). Of

note, Model B performs well in the NP ICE, EQU, and STPS biomes,

where median percent differences are less than 5%. Based on this

dataset, it appears that Model A and Model B have the largest biases in

the STSS and SO ICE biomes in that over 75% of the samples have

POC underestimations by more than about 10%. This difference is

largest in SO ICE with a median underestimation of 35% for Model B

(noting that only 6 samples are available for this analysis). In STSS,

median underestimation for Model B is only 14%. The Ce12 algorithm

consistently produces large underestimations (>25% for majority of

samples and >50% for most biomes). We suspect this result may be

associated with differences in POC methodology (IOCCG Protocol

Series, 2021; Sandoval et al., 2022) and backscattering instrumentation

(e.g., Erickson et al., 2022), and the fact that the Ce12 dataset was

collected in the North Atlantic subpolar seasonally stratified (SPSS)

biome during spring. Although Model B performs well in the SPSS
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FIGURE 7

Similar to Figure 5 but utilizing algorithms for bbp(700) developed with the full dataset shown in Figures 3E, F.
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biome (Figure 11), we acknowledge that only 4 samples are available

for the current study. Further investigation and inclusion of more data,

especially from the SPSS and SO ICE biomes and all biomes during

winter months, is highly desirable to support potential refinements of

algorithms and more comprehensive validation.
4.3 Uncertainties and implications
to applications

The algorithm development dataset mainly utilized Chla

derived from HPLC analysis and spectral bbp derived at 6 to 11

wavelengths with HydroScat-6 instruments (HS-6). This was to

avoid additional uncertainties and establish reliable algorithms

describing the relationships between spectral bbp, particle

composition approximated with ς = Chla/bbp, and POC. In most

applications, however, Chla will be retrieved from either in situ

fluorometric measurements or ocean color remote sensing

observations and bbp will be retrieved from in situ scattering

measurements (most likely with different instruments) or satellite

observations including lidar or passive ocean color remote sensing.

Here, we discuss some of the potential uncertainties associated with
Frontiers in Marine Science 14
different sources of algorithm inputs and how they may impact

applications of Model B to estimate POC.

In situ fluorometric estimates of Chla have been shown to contain

systematic biases when compared with HPLC-derived Chla and

significant efforts have been made to reduce these uncertainties

(e.g., Xing et al., 2012; Roesler et al., 2017; Xing et al., 2017). With

regards to processing of in situ fluorometric data from ECO-series

fluorometers on BGC-Argo floats, a community-established bias

factor of 2 is often applied, however it has been shown to be as

high as 4–6 in various oceanographic regions (Roesler et al., 2017).

Routinely implemented algorithms which estimate Chla from current

satellite ocean color observations achieve median absolute errors of

up to 60–70% based on analysis of over 2000 satellite and in situ

matchups spanning the global oceans (O’Reilly and Werdell, 2019).

For the purposes of illustrating propagation of uncertainty in Chla to

Model B estimations of POC, we assume a 65% error for Chla. For

this case, the resulting uncertainty in POC estimated fromModel B is

typically much less than 65%. For example using realistic values for

productive ocean surface water of bbp(700) = 0.001m-1 and Chla = 0.5

mg m-3, the Model B estimate of POC is about 74 mg m-3 with a

prediction interval of 46–118 mg m-3 (approximately 75%

confidence). Assuming that Chla is 65% larger, POC estimation
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FIGURE 8

Nonparametric box plots summarizing performance of all algorithms using a bootstrap sampling approach for validation statistics. In each box plot,
whiskers represent the entire range while the box contains the semi-interquartile range and circles denote median. Box plots are derived based on
1,000 repetitions of random sampling of 135 datapoints with replacement allowed. (A, C, E, G) Statistics for the algorithms developed with only
surface data. (B, D, F, H) Statistics for the algorithms developed with full dataset.
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only increases by about 11% to 82 mg m-3 which is well within the

prediction interval. This suggests relatively weak sensitivity of

algorithm estimates of POC to uncertainty in Chla.

Regarding bbp uncertainty, a community standard similar to

HPLC for Chla does not yet exist. Estimating bbp with single-angle

backscattering measurements is expected to result in errors typically

less than 10% (Boss and Pegau, 2001; Sullivan et al., 2013). Analysis

of over 16,000 BGC-Argo float profiles found approximately 30–

50% differences when comparing median values of bbp(700)

between 900–950 m from 200 floats which were equipped with

one of three sensor types (Poteau et al., 2017). For satellite-based

retrievals of bbp from lidar or passive ocean color observations, 20–

50% uncertainty is reasonable based on limited comparisons of

satellite bbp retrievals and in situ measurements (Loisel et al., 2018;

Bisson et al., 2021; McKinna et al., 2021). Here we also acknowledge

that uncertainties in bbp retrievals from lidar or passive ocean color

observations are dependent on wavelength as well as statistical

approaches utilized in defining uncertainty and accepted “true” in

situ bbp values. Nevertheless, if we assume that bbp(700) is 30%
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higher, POC estimated from Model B using the above example is

about 85 mg m-3, an increase of about 15%. Again, this exemplifies

the robustness of Model B estimations. Finally, combining 30% and

65% overestimations for bbp and Chla, respectively, we find that

Model B estimated POC is about 95 mg m-3, an overestimation of

27% but still within the prediction interval defined above.

We also acknowledge that differences have been observed

between HS-6 and other backscattering sensors likely owing to

differences in instrument calibration procedures, data processing,

and instrument geometries. For example, Erickson et al. (2022)

observed lower values by about 30% on average for bbp(700) from

HS-6 when compared with ECO sensors (two or three channel

sensors formerly produced by WET Labs, currently Sea-Bird

Scientific) which are typically deployed on BGC-Argo floats and

gliders. This comparison involved intercomparison of several

backscattering sensors deployed during the EXPORTS field

campaign in the North Pacific Ocean. In contrast, Twardowski

et al. (2007) observed good agreement in very clear South Pacific

Ocean waters during the BIOSOPE cruise with HS-6 bbp(470) about
A B

DC

FIGURE 9

Validation results similar to Figures 5A, B comparing algorithm-derived (estimated) and observed (measured) POC using four previously published
approaches relating bbp to POC: (A) Stramski et al. (1999) using data from Antarctic Polar Front Zone, (B) Stramski et al. (2008) using data from the
Pacific and Atlantic Oceans and subtraction of backscattering by pure water according to Buiteveld et al. (1994) with additional correction for salinity
of pure seawater, (C) Loisel et al. (2002), and (D) Cetinić et al. (2012) using only the slope of POC vs. bbp(700) for downcast data within the oceanic
mixed layer. Equations are shown above each panel and (D) includes the full dataset from the present study while the other relationships in (A–C)
are examined only with surface data from the present study.
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Validation results similar to Figures 5A, B comparing algorithm-derived (estimated) and observed (measured) POC for only surface data using
algorithms developed with the full dataset. Descriptions regarding algorithm used (i.e., model and wavelength of bbp) are above each panel. (A)
Model A, l = 550 nm. (B) Model B, l = 550 nm. (C) Model A, l = 700 nm. (D) Model B, l = 700 nm.
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Nonparametric box plots summarizing performance of various POC algorithms for available data within each oceanic biome as indicated. In each
box plot, whiskers represent the entire range while the box contains the semi-interquartile range and circles denote median. All surface and
subsurface data are used to derive percent residuals, defined as 100% x (Estimated POC – Measured POC)/Measured POC. Ko23 A and Ko23 B refer
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4% lower on average than bbp(462) from an ECO-BB3. Similarly,

others found that bbp(530) from an HS-6 was also about 3% lower

than the ECO-VSF bbp(532) in very clear waters of Crater Lake

Oregon (Boss et al., 2007) and less than 2% lower for coastal shelf

waters in the Mid-Atlantic Bight (Boss et al., 2004). Note that the

ECO-VSF instrument is somewhat different than other ECO sensors

as it measures scattering at three angles from the incident light

direction at approximately 104°, 124°, and 151° whereas other ECO

sensors typically measure scattering of light at one scattering angle

(usually approximately 124° or 142° from incident direction). In our

own, but limited, studies we have observed differences for bbp(700)

from HS-6 (close to 12% lower on average) compared to an ECO-

Triplet deployed on the same optical package for 12 stations in coastal

Alaska. We also observed a 1–26% (median of 10%) lower bbp(532)

from HS-6 compared with the LISST-VSF (Sequoia Scientific) based

on a 40-minute time series of simultaneous measurements off the

Scripps Institution of Oceanography Pier in La Jolla, California where

LISST-VSF-derived bbp(532) was about 0.0085 m-1. Unlike other

scattering instruments, the LISST-VSF measures backscattered light

from 90–150° in 1° increments and therefore requires less

assumptions about the shape of the angular scattering function

than other single or multi-angle sensors (Koestner et al., 2018). We

expect the above-mentioned differences in bbp are mainly related to

data processing steps including assumptions about angular scattering

function, pure water and baseline subtraction, calibration scaling

factors, and corrections for losses along path to and from the sample

volume. Overall, however, the HS-6 instrument appears to yield

systematically lower values of bbp when compared with several

different instruments. Therefore, when applying algorithms

developed entirely with HS-6 data (such as Model A and Model B

from the current study) to bbp measurements from other

backscattering sensors, a normalizing factor for bbp can be

considered. For example, applying a multiplicative factor of 0.9 to

measurements with ECO-like instruments may provide a reasonable

average factor accounting for these differences. However, we

recommend caution if applying this factor as it will likely depend

on data processing, specifics of the sensor, and particulate and optical

properties of seawater. Importantly, this will not result in the

reduction of POC by the same factor; rather it is often a smaller

change in POC dependent on Chla and bbp. For example, using the

case described in the previous paragraphs, multiplication of bbp by 0.9

results in POC of about 70 mg m-3, or a reduction of

approximately 5%.

There are some additional considerations when applying Model

B tomeasurements in optically clear waters such as deep waters in the

mesopelagic zone below 200 m or ultraoligotrophic surface waters

often surveyed with BGC-Argo floats. Our algorithm development

dataset did not include any samples deeper than 150m (Figure 2) and

mesopelagic POC values are generally expected to be near the lower

limit of 10 mg m-3 utilized in our algorithm development (e.g.,

Sandoval et al., 2022). For this reason, we expect the choice of bias

correction function will strongly influence algorithm estimations of

mesopelagic POC less than about 20 mgm-3 (see Figure 4), as will the

treatment of data in terms of background subtraction, spike removal,

vertical averaging, and inclusion of POC estimates outside of the

algorithm development range. Additionally, instrument sensitivity
Frontiers in Marine Science 17
and calibration will also play a more significant role when

backscattering signals become very low in the mesopelagic or very

clear surface waters. Finally, reliance of the particulate composition

term on Chla inherently carries some challenges when considering

that mesopelagic waters usually have low ς values regardless of their

nature as the composition term is likely poor at distinguishing

between nonalgal type, whether it be inorganic and contributing

nothing to POC (e.g., calcium carbonate or silica) or organic with no

chlorophyll-a content but contributing to POC (e.g., detrital material

or heterotrophic bacteria). We recommend fixing ς to some

minimum value if Chla is effectively zero (i.e., below detection

limit), and when vertical profiles of measurements are available, it

is appropriate to use a minimum nonzero value of ς determined from

the profile. Furthermore, we also recommend fixing ς to a value of

2000 mg m-2 at a maximum because values higher than this are

unlikely to be observed in the ocean (e.g., Figure 1B; Barbieux et al.,

2018) and can be related to very low signal from both Chla and bbp.

Finally, it is of the utmost importance to recognize that POC is

an operationally-defined parameter, whereas bbp is defined more

precisely as the backscattering coefficient with contributions of pure

water and dissolved salts removed. Operationally, POC is the

“particulate” pool of organic carbon usually defined as the mass

concentration of organic carbon retained on GF/F filters with a

nominal 0.7 μm pore size. Typically, some amount of truly

“dissolved” carbon is also included in the POC due to adsorption

of dissolved organic carbon (DOC) to the GF/F filters (Moran et al.,

1999; Novak et al., 2018). This adsorption effect is typically

minimized by (1) filtering a sufficient volume of water so that the

“particulate” signal retained on the filter overwhelms the adsorbed

“dissolved” signal, and/or (2) subtracting a “wet” blank filter created

with GF/F filtrate (IOCCG Protocol Series, 2021). The POC used in

the current algorithm development dataset mostly did not include

any subtraction of a “wet” blank, but rather filtration of large

volumes of seawater which may still introduce some positive bias

of POC due to DOC adsorption, likely by at most 10 to 20%

(Stramski et al., 2022). Very importantly, however, the correction

for DOC adsorption was purposefully not made because the

measurement of POC on GF/F filters is missing some portion of

carbon from colloidal particles which contributes to total POC (e.g.,

small bacteria and phytoplankton cells, viruses, and other small-

sized detrital material). This missing portion of POC, in addition to

other sources of negative bias, leads to an underestimation of total

POC which is expected to largely balance the positive biasing effect

due to uncorrected adsorption of truly dissolved DOC. Thus, the

resultant estimate of measured POC without correction for DOC-

adsorption is expected to provide a closer agreement with total POC

(including all suspended particles) compared to POC measurement

corrected for DOC-adsorption alone (Stramski et al., 2022). This is

critical from the standpoint of relating measured POC to measured

optical properties. In particular, the measured bbp is, in principle,

influenced by all particles, including a portion of small colloidal

particles not included in POC collected on GF/F filters (Organelli et

al., 2018; Stramski et al., 2004; Stramski and Woźniak, 2005; Zhang

et al., 2020). It is therefore sensible to correlate the measured bbp
associated with all particles with the best possible estimate of total

POC. This distinction is important to consider when comparing
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results of Model A or Model B with other estimates of POC, either

from measurement results with GF/F filters from other studies or

from biogeochemical modeling results (e.g., Galı ́ et al., 2022; Wang

and Fennel, 2023), as we consider our algorithms to provide optimal

estimates of total POC with the currently available methodology of

POC determinations on GF/F filters.
4.4 Application to BGC-Argo floats

The AMT-24 research cruise provided a unique opportunity to

examine an independent dataset spanning several distinct ecological

provinces within the subtropical permanently stratified (STPS)

biome of the Atlantic Ocean in late 2014. Here, POC estimates

from optical measurements on BGC-Argo floats are compared with

POC derived from traditional discrete water sampling to depths of

500 m made during the cruise (Sandoval et al., 2022). Importantly,

we note that Sandoval et al. (2022) utilized a DOC-adsorption

correction for POC based on the double-filter method which

reduced POC by about 10–20% due to presumed adsorption

of DOC.

A summary of BGC-Argo floats and the AMT-24 cruise is

shown in Figure 12A and corresponding vertical profiles of POC

derived from our present Model B (hereafter referred to as Ko23)

are shown in Figure 12B. We note that only float profiles within the

time-window of cruise operations are examined here. Each

ecological province appears to have distinct vertical POC profiles

and individual float profiles are generally consistent within each

ecological province; however, some differences are observed. For

example, the depth associated with maximum POC for the two
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floats in North Atlantic Tropical Gyre (NATL) vary, while

differences are seen for individual profiles within the South

Subtropical Convergence (SSTC) province (Figure 12B). We

acknowledge that the float in SSTC was on the border of two

biomes (i.e., seasonally and permanently stratified subtropical),

which may explain some of the extra variability at this location.

Nonetheless, these differences are minor when considering the

spread of values within the entire epipelagic and mesopelagic zones.

In Figure 13, we present the statistical distributions of POC

estimations from float data within the epipelagic and mesopelagic

zones of each ecological province. Estimations of POC from BGC-

Argo floats using approaches described by Galı ́ et al. (2022),

referred to as Ga22, and Cetinić et al. (2012), referred to as Ce12,

are also shown. Overall, all three approaches (i.e., Ko23, Ga22, and

Ce12) reproduce the general trend of largest POC values in the

SSTC (Figure 13A). Most Ko23 estimates in the epipelagic zone are

within the values from Sandoval et al. (2022), except for the North

and South Atlantic Tropical Gyres (NATL and SATL) where Ko23

tends to provide larger estimates of POC (Figure 13A). Importantly,

the SATL province is large spanning approximately 5°–35° S in

latitude and POC measurements by Sandoval et al. (2022) are based

on only 2–4 discrete depths in the epipelagic zone. In the SATL

province, the median POC from Ko23 is 33 mg m-3 and we note

that similar values (22–28 mg m-3) were observed by Sandoval et al.

(2022) near the float locations. Similarly in the NATL province, the

highest values reported by Sandoval et al. (2022) were found near

the float locations (35–46 mg m-3), which are similar to the 50th to

75th percentile POC values from Ko23 of 37–46 mg m-3. When

considering Ga22 and Ce12 results, we find that both estimates are

generally in agreement with the data from Sandoval et al. (2022)
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FIGURE 12

(A) Map of BGC-Argo floats (circles) coincident with the AMT-24 cruise (dashed line) for 24 September – 1 November, 2014. World Meteorological
Organization IDs of floats are displayed, and ecological provinces are marked; North Atlantic Subtropical Gyre (NAST), North Atlantic Tropical Gyre
(NATL), South Atlantic Gyre (SATL), and South Subtropical Convergence (SSTC). (B) Vertical profiles of POC estimated from Model B of the current
study (Table 3; l = 700 nm, full dataset of surface and subsurface samples). Profiles are grouped by ecological province and number of profiles (Np)
is provided.
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(Figure 13A). In summary, all epipelagic estimates of POC from

Ko23, Ga22, and Ce12 are 35 ± 13 mg m-3, 22 ± 16 mgm-3, and 17 ±

9 mg m-3, respectively, while reported values from Sandoval et al.

(2022) are 18 ± 9 mg m-3. Note that Sandoval et al. (2022) report

median ± 1 robust standard deviation determined as half the

difference between the 84th and 16th percentiles, and we report

the same statistical measures.

In the mesopelagic zone, all approaches also reproduce the

general trend of largest POC values in SSTC and second largest

values in NATL (Figure 13B). Ko23 estimates are noticeably higher

than Sandoval et al. (2022) values by about a factor of two, while Ga22
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yields somewhat lower and Ce12 somewhat higher values than the

median values of each ecological province reported in Sandoval et al.

(2022) (Figure 13B). It is worth noting that the majority of Ga22

estimates are within the measured values from Sandoval et al. (2022).

When considering all mesopelagic estimates of POC, Ko23, Ga22,

and Ce12 are 19 ± 3.5 mgm-3, 6.7 ± 2.3 mgm-3, and 10 ± 2.9 mgm-3,

respectively, while reported values from Sandoval et al. (2022) are 7 ±

2 mg m-3. It is notable that POC values exceeding 10 mg m-3 and

extending even above 20 mg m-3 have been previously measured at

mesopelagic depths. For example, during the ANT-XXIII/1 cruise in

the Atlantic Ocean described in Stramski et al. (2008), POC

measurements for the depth range 200-500 m ranged from 11 to

41 mg m-3 with an average of about 18 mg m-3. These data were

obtained with the same POC method as our present algorithm

development dataset (i.e., no DOC-adsorption correction and

filtration of sufficiently large volumes). We also note that these

mesopelagic data are not reported in Stramski et al. (2008) but are

available through NASA’s SeaWiFS Bio-optical Archive and Storage

System (SeaBASS, https://seabass.gsfc.nasa.gov/).

Although there are some expected uncertainties from the above

analysis (e.g., discrete water measurements lack vertical coverage of

BGC-Argo floats and there are no precise match-ups with regards to

time of sampling), we found that Ko23 estimates are significantly

higher compared with estimates from Sandoval et al. (2022),

especially in the mesopelagic zone. Although our algorithm

development dataset did not include any mesopelagic samples, we

believe that this discrepancy is mostly explainable by a combination

of three factors: (1) the influence of DOC adsorption, (2) the

influence of backscattering by small colloidal particles, and (3)

general uncertainties when particulate signals are very low.

Sandoval et al. (2022) applied a DOC-adsorption correction by

use of two stacked GF/F filters, where the signal of any material

retained on the lower filter is subtracted from the upper filter to

estimate POC. We note here that it has been shown that Chla-

containing particles can be retained on GF/F filters during filtration

of GF/F filtrate, suggesting that some material which passes through

a GF/F should be added back to the first filter for a more accurate

representation of total particulate matter (e.g., Taguchi and Laws,

1988; Stramski, 1990). As discussed previously in section 4.3, we

intentionally did not include DOC-adsorption subtraction from

POC in our algorithm development dataset because bbp is indeed

influenced by small-sized colloidal particles which are mostly

missed by GF/F filters. For example, Zhang et al. (2020) found

that in the very clear North Pacific Ocean, approximately 15–50% of

bbp(517) can be attributed to colloids in GF/F filtrate and this

proportion of bbp from colloids was highest for subsurface samples

deeper than 100 m. Thus, in the mesopelagic zone, it is reasonable

to expect that small colloids are an important and, at times,

dominant contributor to bbp and this may, at least partly, explain

why Ko23 estimates of POC are consistently larger than Sandoval

et al. (2022) estimates in the mesopelagic zone (Figure 13B). We

reiterate here that we believe that Ko23 estimates are more

representative of total POC including some contributions from

small colloidal material due to the purposeful omission of an

attempt at DOC-adsorption correction, whereas Sandoval et al.
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Summary of POC values within the (A) epipelagic (z ≤ 200 m) and
(B) mesopelagic (200< z < 500 m) zones using nonparametric
boxplots derived from float data in Figure 12. Lower and upper
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Results are displayed for the Ko23 algorithm from the current study
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background signal (i.e., bbp

D) determined as the 5th percentile of bbp
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Sandoval et al. (2022).
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(2022) estimates are likely more representative of POC associated

with particles retained on GF/F filters.

As an attempt to examine what optically-based POC estimates

would be without influence of small-sized colloids, we reprocessed

the BGC-Argo data with the removal of a background signal of bbp.

This background (referred to as bbp
D) was determined as the 5th

percentile of bbp values at 850–900 m depth from each float and is

considered a combination of a quasi-constant backscattering

background and uncertainty in manufacturer dark-counts (Poteau

et al., 2017; Briggs et al., 2020). For the six floats included in our

analysis, bbp
D was 1.5–2.4 × 10-4 m-1. Importantly, we note that bbp

D

is reasonable in comparison to the so-called “background” bbp(517)

signal from particles smaller than 0.2 μm and 0.7 μm found by

Zhang et al. (2020); 2.3 × 10-4 (± 25%) m-1 and 3.5 × 10-4 (± 26%)

m-1, respectively, recalling that bbp
D in the current study is

determined with l = 700 nm and thus should be somewhat

lower. In Figure 13, we also report median values (diamond

markers) of Ko23 estimates of POC for each province determined

using bbp with the contribution from bbp
D removed and we believe

these adjusted estimates are more representative of POC without

the contribution of small colloids and, thus, more similar to POC

corrected for DOC-adsorption. With this adjustment, we find

overall better agreement of Ko23 estimates with Sandoval et al.

(2022) reported values, especially in the mesopelagic zone

(Figure 13B). The removal of bbp
D decreases POC in the

mesopelagic zone by about 3–15 mg m-3 for Ko23, 3–5 mg m-3

for Ga22, and 5–8 mg m-3 for Ce12. However, the estimates from

Ga22 and Ce12 with removal of bbp
D would become unrealistically

low in the mesopelagic zone. We recall that Ga22 relies on relatively

little observational data to generate the expected POC/bbp ratio in

the mesopelagic zone, relying on data from Cetinić et al. (2012)

which, importantly, did include a DOC-adsorption correction

resulting in some negative POC data below 200 m (Bol et al.,

2018). The POC/bbp ratios from Ga22 decrease with depth, but

typically were 20471 ± 3481 mg C m-2 for mesopelagic depths

considered (a factor of about 2 lower than the surface), although Bol

et al. (2018) showed that these ratios in the mesopelagic zone can be

less than 0 mg C m-2 to over 40000 mg C m-2. The decrease in POC/

bbp with depth could be explained by changes in particle

composition and size distribution, as well as the increased

influence of colloidal scattering to bbp with minimal increase to

POC retained on GF/F filters. In conclusion, we do not recommend

removing bbp
D from bbp in application studies aimed at examining

total POC estimates from optical measurements, rather we see the

influence of small-sized colloids to bbp as a reasonable factor

contributing to differences between Ko23 estimates of POC and

the DOC-corrected Sandoval et al. (2022) observations in the

mesopelagic zone, while we encourage careful consideration of

various influences to and definitions of “particulate” signals.

There is also a need for consistency in definition and

interpretation of POC estimates obtained from measurements

and/or modeling.

It must also be recognized that the mesopelagic zone is

characterized by generally low values of both POC and particulate

backscattering which approach the limits of methodological and

instrument sensitivity, and thus both measurements in this depth
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range are subject to a high risk of large relative uncertainties. For

POC values typically observed at mesopelagic depths,

measurements reported in different studies will be considerably

affected by the POCmeasurement protocol employed and subject to

high relative uncertainties in experimental determination (e.g.,

Moran et al., 1999; Gardner et al., 2003). In addition, there is a

need to develop improvements of POC measurement methodology

to provide better estimates of total POC associated with all

suspended particles, including small colloidal particles which can

have a strong contribution to ocean optical properties (Organelli et

al., 2018; Stramski and Woźniak, 2005; Zhang et al., 2020).

Determinations of the particulate backscattering coefficient in

many oceanic environments are also strongly influenced by

instrument sensitivity and relatively large contributions of pure

water and other background to the measured scattering signal. In

Figure 14, we present an analysis of the sources of “background”

signal to optical backscattering measured by the BGC-Argo float

sensors. In the epipelagic zone, bbp
D corresponds to roughly 35% ±

16% of bbp, while the backscattering coefficient of seawater bbw and

bbp
D together account for 61% ± 15% of the total backscattering

coefficient bb (Figure 14A). These proportions increase noticeably in

the mesopelagic zone where such “background” signals are often

over 70% and sometimes over 90% of the backscattering coefficient

(Figure 14B). It is important to recognize that investigating

particulate backscattering in the mesopelagic zone is often at the

sensitivity limit of available instrumentation. Although the types of

sensors on BGC-Argo floats typically have resolution of

approximately 0.5–3 × 10-5 m-1 per detector count, dark counts

are typically around 30–50 and sufficient signal is required for

accuracy. In addition, there are various sources of instrument

uncertainty that are important to consider, e.g., factory dark-

counts, drift in scale factor, and so-called c-factor used to

estimate bbp from a single backscattering angle (which may vary

with large changes in the particle size distribution). We also recall

that Poteau et al. (2017) showed that bbp
D had significant differences

for different sensors (e.g., MCOMS vs. ECO-Triplet) and suggest

that significant deviation in bbp
D is expected from extraordinary

processes or malfunctioning sensor, which further emphasizes that

caution must be taken when investigating such low particulate

scattering signals. Further work is needed to examine performance

of optical backscattering algorithms to estimate POC in the

mesopelagic zone, and with varying sensors, especially those on

BGC-Argo floats and gliders.
5 Concluding remarks

In the current study, we revised univariate and multivariable

algorithms presented recently in Koestner et al. (2022) for improved

estimations of POC from optical backscattering and chlorophyll-a

measurements using a relatively large dataset covering various

contrasting water types, including surface and subsurface waters

from the Atlantic, Pacific, Arctic, and Southern Oceans. We provide

useful refinements to the algorithms including improved model

coefficients and prediction uncertainty using a larger and updated

dataset compared to that in Koestner et al. (2022). We also provide
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algorithms for several wavelengths used commonly in observations

to derive bbp, and specifically formulated algorithms for application

with near-surface observations. The multivariable algorithm

(Model B) can produce reliable estimates of POC across a range

of highly contrasting waters in terms of location of sampling and

particle and optical properties with noteworthy improvements

compared with a typical univariate bbp-based algorithm (Model

B). We determined that the multivariable algorithm has limited

sensitivity to uncertainties in both bbp and Chla. Finally, we also

examined performance of several algorithms to estimate POC using

our dataset as well as a dataset consisting of optical measurements

from BGC-Argo floats and traditional POCmeasurements collected

during a coincident research cruise in the Atlantic Ocean.

The formulation of algorithms based exclusively on near-

surface observations will be useful for satellite applications,

especially as capabilities to derive bbp and Chla from ocean color

reflectance measurements improve (e.g., Loisel et al., 2018; O’Reilly

and Werdell, 2019), as well as bbp more directly from lidar

observations (e.g., Lu et al., 2021; Behrenfeld et al., 2022). We

expect some challenges for estimating POC using Model B based on

the combination of satellite observations of bbp and Chla, e.g.,

reliability of bbp from lidar or ocean color inversions (Werdell

et al., 2018; Behrenfeld et al., 2022). In comparison, POC algorithms

which rely on estimation of POC in surface ocean waters directly

from satellite-derived ocean reflectance have been recently
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improved and validated for applications in open-ocean pelagic

environments that dominate the global ocean as well as other

environments including coastal waters that exhibit bio-optical

properties consistent with those found typically in the open ocean

(e.g., Stramski et al., 2022; Joshi et al., 2023). There is also potential

for further advancements in applications across diverse water

bodies including optically-complex waters through development

of adaptive POC algorithms which explicitly account for variations

in particulate composition in terms of varying proportions of

organic vs. mineral particles (Stramski et al., 2023). Nonetheless,

one potential advantage of the proposed multivariable approach

involving bbp as a predictive variable for POC regards the

decoupling of POC estimates from optically-derived Chla

estimates. Historically, such coupling has been associated with

satellite estimates of POC and Chla retrieved from similar

spectral bands of ocean reflectance (e.g., Gordon et al., 1983;

Stramski et al., 2008; Evers-King et al., 2017; O’Reilly and

Werdell, 2019; Stramski et al., 2022). Although Chla is included

as input into our multivariable bbp–based algorithms and there

should be some natural correlation between Chla and POC in many

oceanic environments, the multivariable Model B can reasonably

produce large variability in POC (factors of about 2–10) for the

same values of Chla depending on bbp and particle composition.

Thus, further exploring application of this multivariable algorithm

to remote sensing observations is worthwhile.

Notwithstanding satellite or other above-water remote sensing

observations, we consider a main use-case of multivariable model B

in conjunction with in situ measurements such as from BGC-Argo

floats or autonomous gliders which typically make measurements of

both bbp and chlorophyll-a fluorescence. We expect that the

algorithms can be particularly useful for assessments of temporal

and spatial (including vertical) distributions of POC in the ocean

(Johnson et al., 2009; Biogeochemical-Argo Planning Group, 2016;

Roemmich et al., 2019). We acknowledge, however, that further

validation of algorithm performance during various time frames,

seasons, and depths outside the algorithm development dataset is

desirable. Currently, estimates of POC with BGC-Argo floats rely

almost exclusively on univariate bbp algorithms (e.g., Dall’Olmo and

Mork, 2014; Johnson et al., 2017; Xing et al., 2020; Wang and

Fennel, 2023), or approaches which rely on adjustments to account

for vertical and regional variability in the relationship between bbp
and POC (Bol et al., 2018; Galı ́ et al., 2022). We also believe that

multivariable Model B can be particularly useful for assessments of

POC with optical measurements from autonomous gliders in

nearshore or coastal waters which are often not surveyed by

BGC-Argo floats and are optically-complex containing non-

negligible contributions of non-phytoplankton material.

We believe that it is possible to develop relatively robust optical

algorithms which can work across diverse environments by

incorporating mechanistic aspects of the interactions of light and

seawater constituents. The use of particle composition parameter in

our multivariable approach of Model B is meant to introduce a

mechanistic aspect to the bbp-based POC algorithm which can pave

the way for applications across diverse water bodies regardless of

regional or seasonal variations in environmental conditions.

Although the current multivariable algorithm is expected to
A

B

FIGURE 14

Histograms of various sources of background signal to optical
backscattering measured by the BGC-Argo floats shown in Figure 12
for the (A) epipelagic (z ≤ 200 m) and (B) mesopelagic (200< z <
500 m) zones. The backscattering coefficient of pure water and
dissolved salts bbw was determined as a function of salinity and
temperature based on Zhang and Hu (2009). The total
backscattering coefficient bb refers to the sum of bbp and bbw. bbp

D

was determined as the 5th percentile of bbp values at a depth of
850–900 m from each float.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1197953
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Koestner et al. 10.3389/fmars.2023.1197953
provide reasonable estimates of POC for a variety of water types

within the epipelagic zone and extending potentially also to deeper

mesopelagic depths (Figure 13), it is important to recognize a need

for new sensors and approaches. For example, while targeting POC

at deeper depths with no active phytoplankton growth, it will be

useful to account for particulate composition that does not just rely

on chlorophyll-a fluorescence. In addition, the effects of particle size

distribution on optical properties may also be important to

consider. The potential new sensors may take advantage of

specific polarization and angular scattering properties which are

indicative of particle size distribution as well as compositional

properties such as the ratio of particulate organic carbon to total

suspended particulate matter (Koestner et al., 2020; Koestner et al.,

2021). With advancements targeting the improved estimation of

POC throughout the ocean water column including the mesopelagic

and deeper depths, we expect to better understand the natural

ability of the biological carbon pump to sequester carbon in the

deep ocean (e.g., Brewin et al., 2021).
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