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The performance of model-
based indices given alternative
sampling strategies in a climate-
adaptive survey design

Meaghan D. Bryan* and James T. Thorson

Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric
Administration, Seattle, WA, United States
Species-distribution shifts are becoming commonplace due to climate-driven

change. Difficult decisions tomodify survey extent and frequency are oftenmade

due to this change and constraining survey budgets. This often leads to spatially

and temporally unbalanced survey coverage. Spatio-temporal models are

increasingly used to account for spatially unbalanced sampling data when

estimating abundance indices used for stock assessment, but their

performance in these contexts has received little research attention. We

therefore seek to answer two questions: (1) how well can a spatio-temporal

model estimate the proportion of abundance in a new “climate-adaptive” spatial

stratum? and (2) when sampling must be reduced, does annual sampling at

reduced density or biennial sampling result in better model-based abundance

indices? We develop a spatially varying coefficient model in the R package VAST

using the eastern Bering Sea (EBS) bottom trawl survey and its northern Bering

Sea (NBS) extension to address these questions. We first reduce the spatial extent

of survey data for 30 out of 38 years of a real survey in the EBS and fit a spatio-

temporal model to four commercially important species using these “data-

reduction” scenarios. This shows that a spatio-temporal model generally

produces similar trends and density estimates over time when large portions of

the sampling domain are not sampled. However, when the central distribution of

a population is not sampled the estimates are inaccurate and have higher

uncertainty. We also conducted a simulation experiment conditioned upon

estimates for walleye pollock (Gadus chalcogrammus) in the EBS and NBS.

Many species in this region are experiencing distributional shifts attributable to

climate change with species historically centered in the southeastern portion of

the survey being increasingly encountered in the NBS. The NBS was occasionally

surveyed in the past, but has been surveyed more regularly in recent years to

document distributional shifts. Expanding the survey to the NBS is costly and

given limited resources the utility of reducing survey frequency versus reducing

sampling density to increase survey spatial extent is under debate. To address this

question, we simulate survey data from alternative sampling designs that involve

(1) annual full sampling, (2) reduced sampling in the NBS every year, or (3) biennial

and full sampling in the NBS. Our results show that annual sampling, even with

reduced sampling density, provides less biased abundance information than
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1198260/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1198260/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1198260/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1198260/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1198260&domain=pdf&date_stamp=2023-07-05
mailto:meaghan.bryan@noaa.gov
https://doi.org/10.3389/fmars.2023.1198260
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1198260
https://www.frontiersin.org/journals/marine-science


Bryan and Thorson 10.3389/fmars.2023.1198260

Frontiers in Marine Science
biennial sampling. We therefore conclude that ideally fishery-independent

surveys should be conducted annually and spatio-temporal models can help

to provide reliable estimates.
KEYWORDS

spatio-temporal models, fishery-independent sampling, abundance indices, climate
change, Bering Sea
1 Introduction

Marine species worldwide are responding to climate-driven

shifts in ocean conditions by shifting their spatial distribution

(Pinsky et al., 2013; Poloczanska et al., 2013; Pecl et al., 2017).

For example, decreased springtime sea-ice production in the eastern

Bering Sea (EBS) is causing a decline in the spatial area of near-

freezing seafloor water temperatures during summer (termed “cold

pool extent”). These cold seafloor waters previously inhibited the

northward extent of summertime movement for commercially

important Pacific cod (Gadus macrocephelus) and walleye pollock

(Gadus chalcogrammus), and is hypothesized to have provided a

refuge from predation for snow (Chionoecetes opilio) and tanner

crabs (Chionoecetes bairdi). Interannual changes in cold-pool extent

have therefore been linked to changes in the spatial distribution,

diet, and productivity of these and other species (Thorson et al.,

2021). In particular, the decline in cold-pool extent has led walleye

pollock, Alaska plaice (Pleuronectes quadrituberculatus), and other

species to occupy new habitat in the northern Bering Sea, causing a

substantial fraction of the managed stock to move outside of the

area conventionally monitored for use in stock assessment and

fisheries management (O’Leary et al., 2020; O’Leary et al., 2022).

As stocks migrate beyond the boundaries of conventional

resource surveys, it complicates traditional approaches to stock

assessment. Assessment scientists can respond by:
A. Ignoring the portion of the stock beyond conventional

boundaries, in some cases, despite genetic or tagging

evidence that stocks are well-mixed and likely subject to

the same fishery;

B. Combining abundance estimates in an ad-hoc manner,

whereby years with more extensive surveys are likely to

capture a larger portion of stock abundance, and

potentially correcting for this effect via modifications to

the stock-assessment model;

C. Creating a spatially stratified assessment model and seek

to include survey data from different regions in only those

years where it is available, while also estimating annual

movement rates to provide a mechanistic model for

shifting availability in different areas.
There are substantial limitations with each of these potential

responses. For example, response A will not properly measure the

total stock that is subject to fishing (presumably resulting in overly
02
conservative catch quotas), while response B will either confound

survey extent and abundance index trends or require estimating a

complicated process for time-varying catchability. Finally, response

C will require estimating many additional movement parameters,

which is likely difficult without extensive tagging information

(Thompson and Thorson, 2019).

The development of model-based abundance indices has

become more common in the fisheries and ecosystem literature.

Approaches including delta-generalized linear and mixed models

(delta-GLMs and delta-GLMMs), as well as spatio-temporal models

have been frequently used. The intention of using these approaches

is to provide accurate and improved estimates of precision while

incorporating information about factors that cannot be accounted

for in the statistical design of surveys. A key aspect shared among

the approaches is separating the survey catch process into two

components: the probability of encountering a species and the

probability of a positive catch rate when encountered (Lo et al.,

1992; Stefansson, 1996; Maunder and Punt, 2004). In doing so,

covariates that are hypothesized to change stock range and

abundance can be accounted for in each component of the catch

process outside the assessment model. For example, catchability

covariates, such as changes in survey gear and fishing power

differences among survey vessels, have been included in delta-

GLMs and delta-GLMMs to account for their impacts on the

survey abundance (Thorson and Ward, 2013). Accounting for

spatial and spatio-temporal variation has also been shown to be

important given inter-annual and spatial variation in abundance

due to changes in fishing pressure and movement patterns (Shelton

et al., 2014; Thorson and Barnett, 2017; Grüss and Thorson, 2019;

Perretti and Thorson, 2019). Spatio-temporal models evolved from

delta-GLMM approaches to explicitly model spatial and spatio-

temporal variation. Programs like the vector-autoregressive spatial

temporal (VAST) R package can provide estimates for multiple

locations over time by assuming that observation and process errors

are more similar to its nearest neighbor (Thorson and Barnett, 2017;

Thorson, 2019b). VAST also models catchability covariates and

habitat covariates (e.g., bottom temperature or cold pool extent in

the eastern Bering Sea) separately. Catchability covariates are those

expected to impact catch rates such as vessel and gear characteristics

and fishing method. Including them in the model reduces bias in the

spatio-temporal variation and increases precision in the density

estimates (Thorson, 2019b). Habitat covariates are applied to the

expected density and catch rates and are extremely useful to include

when survey observations are spatially coarse or missing entirely
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(Thorson, 2019a; Thorson, 2019b). Habitat covariates are associated

with each location and can aid in extrapolating population density

in areas with limited or no data.

Accurate and precise estimates of abundance from fishery-

independent surveys are important to effectively manage our

fishery resources. Modifications to survey strategies are often

needed due to logistical (e.g., staffing issues, gear and vessel

failures, and inclement weather) and budgetary constraints (ICES,

2020). Population distribution shifts further complicate the

decision-making process in light of logistic and budgetary

considerations. Outright cancellation of a survey in a given year,

reduced spatial coverage, and reduced sampling intensity are

potential survey modifications. The biggest concern is that

modifications to survey designs can lead to spatially and/or

temporally unbalanced time series that result in biased or

imprecise (or both) abundance estimates (ICES, 2020).

Directional bias can lead to unintended over- or under-

exploitation, while imprecision will increase the uncertainty in

our stock assessments and management advice. Therefore,

understanding the minimum sampling needs to produce reliable

abundance estimates is important to the entire management system

from data collection, stock assessment, and management

decision making.

Spatial distribution shifts of several commercially important

species in Alaska, as the cold-pool extent weakens, underscores the

need to design fishery-independent surveys that can capture these

shifts and adequately estimate abundance/biomass (Mueter and

Litzow, 2008; Stevenson and Lauth, 2019; Spies et al., 2020). The

EBS bottom trawl survey (BTS) represents a long-term (i.e., over 30

years) annual time-series that not only collects population

information but also important environmental data for the

region. This survey has extended northward infrequently over

time (e.g., 1982, 1985, 1988, 1991, 2010, and 2017-2019) to

ascertain the prevalence of abundance outside the standard EBS

BTS area. In the majority of years this extension was exploratory;

however, the survey was officially expanded in 2017. The observed

fish populations in the standard EBS trawl survey and the northern

survey extension, or northern Bering Sea (NBS), is the same;

therefore, it would be worthwhile to combine these data to derive

a single, spatially and temporally comprehensive index. Spatio-

temporal modeling using habitat covariates is a promising approach

to fill in these spatial and temporal data gaps (Thorson, 2019b) and

has been used to derive abundance indices for walleye pollock and

Pacific cod (Thompson and Thorson, 2019; O’Leary et al., 2020).

Therefore, evaluating the spatio-temporal model’s ability to

effectively estimate abundance in infrequently sampled survey

areas is of utmost importance. Identifying appropriate levels of

sampling frequency and intensity in this “newer” stratum is also

needed in the face of budget limitations and the need to survey the

NBS more consistently to better capture shifts in abundance with

advancing climate change. Therefore, we aim to answer two

questions with this project: (1) how well can spatio-temporal

index standardization estimate the proportion of abundance in a

new “climate-adaptive” spatial stratum? and (2) does annual

sampling at reduced density or biennial sampling result in better

model-based abundance indices? We address the first question
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empirically, where we first drop survey data from large areas of

the EBS BTS in years when the NBS was not surveyed. We then fit a

spatio-temporal model using a habitat covariate to extrapolate

abundance in the missing areas and compare the estimates to the

estimates from a full model to determine whether (A) estimates

using reduced data are accurate and (B) uncertainty estimates when

reducing data still include the estimates arising from fitting to all

data. The second question is addressed with a simulation

experiment conditioned upon estimated densities when fitting to

all available survey data for walleye pollock in the EBS and the NBS.

We simulate survey data from alternative sampling designs that

involve full sampling every year, reduced sampling in the NBS every

year, or full sampling in the NBS every other year. Similar to the

empirical experiment, we fit a spatio-temporal model using a

habitat covariate to the simulated data. We then measure bias in

the NBS abundance estimate.
2 Methods

2.1 Survey area and data

A fishery-independent EBS BTS has been conducted annually

since 1982 (Bakkala, 1993) (Figure 1). The one exception was in

2020 due to the global pandemic. The EBS BTS is conducted from

June to August of each year and follows a standardized

methodology using the same standard trawl in all years (Stauffer,

2004). The standard survey includes 376 stations covering depths

from 20m to 200m. The EBS BTS has been extended beyond its core

area to the NBS in 1982, 1985, 1988, 2010, and 2017-2019 and used

the same standardized methods as the EBS BTS (Markowitz et al.,

2022). The number of stations surveyed in the NBS extension varied

in the early years, but included an additional 143 stations with

depths ranging from 10m - 80m in 2017 and 2019. The number of

stations in the NBS was reduced to 41 stations in 2018. Station level

catch rates are derived and represent numbers and weight per area-

swept. The station level catch rates are then used to develop

spatially-aggregated biomass/abundance indices to provide

information about stock trends over time in Alaska Region stock

assessment models.

The EBS BTS also collects important oceanographic data used

to develop environmental indices that help to explain species

distributions (Stevenson and Lauth, 2019). One such index is the

cold pool index (CPI). The CPI is an annual index derived from

bottom temperature measurements taken at each survey station and

measures the spatial extent (km2) of the cold pool. The cold pool is

defined by bottom temperatures in the Bering Sea that are < 2°C

(Wyllie-Echeverria andWooster, 1998). This dynamic feature of the

EBS is largely determined by annual sea ice coverage that regulates

bottom temperature. Sea ice retreat in late winter/early spring leads

to a small cold pool with bottom temperatures > 2°C. Conversely,

later sea ice retreat maintains bottom temperature below 2°C and

results in a larger cold pool. Species distributional changes with

northward movement linked to the cold pool extent for some

species in the Bering Sea have been predicted and documented

(Stabeno et al., 2012; Stevenson and Lauth, 2019).
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Model-based indices using the vector autoregressive spatio-

temporal (VAST) model have been developed for walleye pollock

and Pacific cod to combine the data from the standard EBS survey

and the NBS extension (Thompson and Thorson, 2019; O’Leary

et al., 2020). The CPI was included as a habitat covariate in the

model to account for its impact on the distribution of these species

over time. It is therefore imperative that we evaluate how well a

spatio-temporal model can estimate abundance in a climate

adaptive survey area, like the NBS extension, in years when not

surveyed. Additionally, given the shifts in species distributions the

expansion of the EBS BTS to the NBS needs to be conducted more

frequently. An understanding of the required frequency and

intensity of sampling is of utmost importance, so that survey

resources can be allocated efficiently and effectively.
2.2 Empirical analysis

We conducted an empirical analysis to evaluate how well a

spatio-temporal model can estimate biomass in a new or

infrequently surveyed spatial stratum. We obtained and used EBS

BTS catch rate data for four species of interest; walleye pollock,

Pacific cod, yellowfin sole (Limanda aspera), and snow crab. All are

among the most commercially important species in this region.

They also exhibit different spatial distributions, where walleye

pollock and Pacific cod have more widespread distributions,

yellowfin sole is generally concentrated in the eastern portion of

the EBS, and snow crab are predominately in the northwest. The full
Frontiers in Marine Science 04
dataset (14,089 samples at approximately 376 unique stations) was

reduced by dropping survey stations from one of four large areas in

the EBS that were designed to mimic a circumstance where survey

data were periodically unavailable in the eastern, northern,

southern, or western portion of the full survey extent (Figure 2).

The number of sampled stations retained was 11,399, 12,322,

10,367, and 11,357 when the eastern, western, northern, and

southern stations were removed, respectively. We adopted the

NBS sampling frequency, when the stations were dropped in all

years of the time series except for those when the NBS was surveyed

(i.e., keeping data across the full survey area only in 1982/1985/

1988/1991/2010 and 2017-2019). This was done to mimic the

unbalanced survey design of the NBS extension. The reduced

dataset was then fitted to a spatio-temporal model developed in

VAST (Thorson, 2019b) within R to estimate biomass indices for

each species (Thorson and Barnett, 2017). The biomass indices

from the full and reduced data sets were then compared.

The spatio-temporal model used for this analysis followed the

guidelines in (Thorson, 2019b) and accounted for cold-pool effects.

Biomass per unit area observations, bi, from all EBS BTS grid cells

for 1982-2019 were fit using a Poisson-link delta-gamma

distribution. We wanted to estimate biomass in large unsampled

areas in some years; therefore, the extrapolation to these areas was

informed by estimating a zero-centered spatially varying coefficient

(SVC) that measures the local response to an annual index of cold-

pool extent index (Thorson, 2019b; Thorson et al., 2023). The SVC

was estimated for both the linear predictors of the delta model. The

variance of the SVC to cold-pool extent was estimated at zero for
FIGURE 1

The Bering Sea bottom trawl survey grid, including the eastern Bering Sea standard survey area and the extension in the northern Bering Sea. Each
square and circle (corner station) represents a survey station grid cell. The 50m, 100m, and 200m bathymetry lines are included for reference.
https://www.fisheries.noaa.gov/alaska/science-data/near-real-time-temperatures-bering-sea-bottom-trawl-survey-2023
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the second linear predictor of the yellowfin sole model. Therefore, it

was removed from the yellowfin sole model for all scenarios. The

two linear predictors of the delta model represent the encounter

probability, pi, and positive biomass per unit area, ri.

The probability distribution of biomass sample bi was specified

as:

Pr(bi > 0) = 1 −  pi

and
bijB > 0  ∼   Gamma(B;   q−2

b , riq
2
b Þ;

where we specified a gamma distribution for positive catch rates

where ri is the mean and qb is the coefficient of variation and we use

the shape-scale parameterization. We estimated geometric
Frontiers in Marine Science 05
anisotropy (i.e., the tendency for correlations to decline more

rapidly in certain cardinal directions) (Thorson et al., 2015), and

a spatial and spatio-temporal term for both linear predictors was

included in the model. We also used epsilon bias-correlation to

correct for retransformation bias (Thorson and Kristensen, 2016).

The linear predictors for numbers density, ni, and biomass per

individual, wi, were

log(ni) = bn(t) + wn(s) + ϵn(s, t) + gn(s)T(t)

and
log(wi) = bw(t) + ww(s) + ϵw(s, t) + gw(s)T(t Þ;

where wn and ww represent the time-invariant spatial variation, ϵn
(t) and ϵw(t) represent the time-varying spatial variation, bn(t) and
FIGURE 2

The survey footprint of the eastern Bering Sea bottom trawl survey standard area and four scenarios where data were removed from large areas.
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bw(t) represent the annual intercepts which are treated as fixed

effects, T(t) is the cold-pool index (CPI) in each year, and gn and

gwrepresents the log-linear impact of the CPI which vary spatially.

We treat spatial terms (wn and ww) and SVCs (gn and gw) as

Gaussian Markov random fields (GMRFs) and estimate them as

random effects while estimating their variance as fixed effects.

Similarly, we estimate spatio-temporal terms (ϵn(t) and ϵw(t)) as

GMRFs that follow a first-order autoregressive process, and

estimate their variance and temporal autocorrelation as fixed

effects. The spatial domain included 100 knots and 2000

extrapolation grid cells that define the value of Gaussian Markov

random fields (GMRFs) at the location of those knots, and the value

of GMRFs elsewhere is calculated via bilinear interpolation.

Linear predictors were then transformed to calculate encounter

probability pi and positive catch rate ri following the Poisson-linked

delta model:

pi = 1 − eaini

and

ri =
aini
pi

wi ;

where ai is the area swept for each sample (Thorson, 2018). The

spatio-temporal terms were estimated following a first-order

autoregressive process across years to better estimate density

hotspots. The temporal intercepts were treated as fixed effects for

each linear predictor and year. Treating the temporal intercepts as

fixed effects reduces the correlation structure among years so that

the estimates can be used for assessment purposes. Lastly, the SVC

gp(s) and gr(s) were estimated and assumed independent for pi
and ri.
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2.3 Simulation experiment

We also conducted a simulation experiment to evaluate the

impact of sampling intensity and frequency on our biomass

estimates in a new climate adaptive area. The operating model

made the same structural assumptions as the estimation model used

in the empirical analysis. The main difference between the two is

that the spatial extent of the survey-sampling grid included the EBS

and NBS bottom trawl survey stations (Figure 3). The OM was

conditioned on the EBS BTS standard survey (1982-2018) and the

NBS 2017 data through an initial model fit. Given the inconsistent

frequency and unbalanced design of the NBS extension, we used the

location of bottom trawl survey data in the NBS in 2017 to define

the location of NBS sampling in 1982-2016 and 2018 to enable the

OM to simulate data in the NBS in all years. The CPI was used in

the model as an annual habitat covariate while estimating a zero-

centered SVC for both predictors. In each simulation replicate, we

then simulated new values for all fixed and random effects from the

joint precision matrix estimated when fitting to real world data. We

then simulated new survey observations conditional upon these

simulated values for fixed and random effects. Therefore, each

simulation replicate for a given sampling scenario differs in terms

of true underlying densities, as well as resulting simulated samples

of those densities.

The estimation model made the same structural assumptions as

the OM; however, we reduced the number of knots to 50 from 250.

Additionally, we subset the data to include the years 2000-2018.

Using a subset of the data and reducing the number of knots

reduced runtime. A total of 100 replicates were simulated for three

survey sampling scenarios. The sampling scenarios included 1)

annual and full sampling, 2) annual and full sampling in the EBS
FIGURE 3

An example of the simulated sampling design scenarios: annual scenarios (left panel) and biennial scenario (middle panel), as well as the number of
sampled stations per year (right panel).
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and a 50% reduction in survey stations while maintaining annual

sampling in the NBS, and 3) annual and full sampling in the EBS

and biennial sampling in the NBS, where odd years were sampled at

all NBS stations. We randomly selected ~50% of NBS stations in

scenario 2. We then evaluated performance by comparing the true

proportion of biomass in the NBS in a given simulation replicate

with the estimated proportion from each of three sampling

scenarios. We specifically calculated bias on a log scale and the

median absolute error in the proportion of biomass in the NBS to

determine differences in the model estimation capabilities among

the scenarios.
3 Results

3.1 Empirical analysis

Eliminating data from the eastern, western, northern, or

southern portions for the majority of years and comparing results

with those when using all data shows that the scale and trends in

estimated biomass are generally similar for all four species

(Figure 4). Removing data from large areas, thereby reducing the

survey footprint, leads to greater uncertainty in the density

estimates for all species and inaccuracy for some species. An

interaction between species and the area removed was apparent,

where greater uncertainty in the density estimates arose for

particular areas for each species (e.g., comparing Figures 4, 5).

For example, standard errors were larger when the west and north

data were removed for walleye pollock, where they have tended to

have increased density in years with low CPI (Figure 4, top row).

Standard errors and inaccuracy were highest when the eastern data

were removed for yellowfin sole (Figure 4, third row), which

corresponds to core habitat for this species (Figure 5, third row;

Table 1). Finally, removing the northern data resulted in the highest

standard errors and inaccuracy for snow crab, which again

corresponds to core habitat for snow crab (Figures 4, 5, bottom

row; Table 1). The increased standard errors were similar across the

removed areas for Pacific cod since this species has a more even

distribution in the EBS than the other focal species (Figure 4, second

row and where average density is similar across all scenarios

in Table 1).
3.2 Simulation experiment

We evaluated model convergence prior to processing the results

and a total of 96, 87, and 96 model runs out of 100 converged for the

annual, annual reduced, and biennial sampling scenarios,

respectively. Of the model runs that converged, 82 simulations

were in common among the scenarios. Greater bias was associated

with biennial sampling than the annual sampling strategies

(Figure 6). This was driven by the bias in the estimated

proportion of biomass in years when the NBS was not surveyed

(i.e., odd years). Bias in the biennial sampling was greater than the

annual sampling strategies in the non-surveyed years, whereas the

estimates were more similar among the sampling strategies when
Frontiers in Marine Science 07
there was a temporal overlap in sampling. The biennial sampling

strategy also exhibited greater uncertainty than the annual sampling

strategies (Figure 6). The results are not unexpected given the total

loss of information in the NBS in the even years.
4 Discussion

Our study demonstrated that spatio-temporal models can

successfully fill in data gaps in many circumstances when

estimating abundance. Our empirical approach adopted the

northern Bering Sea bottom trawl survey’s sampling frequency

and removed observations from four large areas of the eastern

Bering Sea standard survey area. We specifically showed that a

spatio-temporal model using an environmental covariate (1) results

in accurate biomass indices when the core of the stock’s range is not

excluded from sampling, and (2) when the core of the stock’s range

is excluded from data, the confidence intervals increase in width to

still capture the abundance index that would arise using full data.

We also used a simulation experiment to explore likely performance

under alternative sampling strategies involving an infrequently

surveyed area or a newer climate-adaptive survey area. The

simulation experiment shows that the model has minimal bias

and is precise when full sampling coverage is available in every year.

However, if a reduction in sample sizes is necessary, reducing

sampling density and maintaining annual sampling is more

advantageous than maintaining sampling density at biennial

sampling intervals. The overlap in the sampling and species

spatial distributions, as well as survey frequency and intensity

influenced the uncertainty estimates in our predictions. The

benefits of adequate spatial coverage and annual sampling (i.e.,

reduced uncertainty in our biomass estimates) were obvious from

our empirical and simulation experiments. For example, the better

performance of the annual, reduced scenario in the simulation

exercise indicates that having some information every year will

improve annual estimates as opposed to have full information every

other year. Spatio-temporal models, like VAST, rely on information

from nearby locations and among years for extrapolation. It is

therefore intuitive that excluding data from a large subarea that

contains the center of a species distribution results in increased

uncertainty. Similar results were shown for walleye pollock, where

uncertainty estimates from a model similar to the one used in this

study and using similar data was greater in years when the survey

did not sample in the northern Bering Sea (O’Leary et al., 2020).

Grüss and Thorson (2019) produced similar results to this study

when simulating two scenarios: 1) the removal of the northwestern

Gulf of Mexico (GOM) survey sample for red snapper (Lutjanus

campechanus) and 2) not surveying the GOM over a number of

early years. Uncertainty in their abundance estimates increased

when either large spatial areas were not surveyed over time or a

number of consecutive years were not sampled.

The uncertainty associated with survey biomass is an important

stock assessment input, where estimates are calculated outside of

the assessment and then inputted as the coefficient of variation

(CV) into an assessment model. The CV value provides the model

with a relative data weight associated with each observation and in
frontiersin.org

https://doi.org/10.3389/fmars.2023.1198260
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bryan and Thorson 10.3389/fmars.2023.1198260
relation to other sources of information. The data weights are used

in the likelihood component of the assessment model and effectively

determines how well the model will fit individual data points, as well

as the entire time series (Francis, 2011). Stock assessment model

outcomes can be highly sensitive to input data weights leading to

greater uncertainty in estimates of current stock size and stock

status and in the estimation of management reference points

(Francis, 2011; Maunder et al., 2017; Punt, 2017). Hence, studies

like the one presented here are important to conduct and ascertain

how a change in survey sampling will affect the estimate of biomass

and uncertainty.

Fishery-independent surveys collect a wide variety of data that

go beyond biomass/abundance and include length and age

composition data, as well as environmental data. Composition
Frontiers in Marine Science 08
data provides information about changes in size and age

structure, recruitment, growth, natural mortality, and in some

cases sex ratio. Composition data are often included as

proportions within a size or age class and the input sample size

provides a measure of uncertainty. Biological (e.g., ontogenetic

habitat, depth, and food preferences) and environmental drivers

(e.g., bottom temperature) can lead to strong distribution patterns

among lengths/ages within a species. Spatio-temporal models have

been shown to effectively estimate compositional data and improve

estimates of multinomial sample size (Thorson and Haltuch, 2019;

O’Leary et al., 2020). This study focused on the impact of changing

survey sampling on abundance estimates, but it is equally important

to conduct a similar evaluation for composition data. A similar

study should be conducted to determine the potential bias and
FIGURE 4

Biomass index estimates when the model was fit to all data (black line) and reduced data (red line) by species (rows) and areas removed from the
data set (columns).Shaded regions represent the 95% confidence interval.
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uncertainty in the proportions at size/age and input sample size

with changes in survey sampling. A loss of critical environmental

data will be expected with changes in survey sampling. In the

eastern Bering Sea the cold pool is an important oceanographic

feature that is known to control species distribution in this region.

Using an environmental index as a habitat covariate in a spatio-

temporal model has been shown to be an effective way to model

changes in species distributions and reduce uncertainty in

abundance estimates (Thorson, 2019b; O’Leary et al., 2020). In

our empirical analysis and simulations, we assumed that

environmental data were available thereby we assumed we had

perfect information about CPI. In reality, removing survey stations

from a large area of the overall survey grid as was done for the

empirical analysis would lead to a loss of information and affect our
Frontiers in Marine Science 09
ability to calculate the CPI. In these cases, CPI could instead be

calculated from other information, e.g., the Bering-10K Regional

Ocean Modelling System which has been validated previously for

this use (Kearney et al., 2021). Having an incomplete or alternative

environmental index would lead to greater uncertainty in the

model-based index. Therefore, our estimates may be optimistic

and the loss of environmental information resulting from decreased

sampling should be evaluated in the future.

The need to restructure sampling strategies will always be in the

forefront for survey programs due to funding uncertainties, changes

in species distributions and stock status, and the frequency of other

unanticipated events like the COVID pandemic, or reduced or

cancelled surveys due to inclement weather or a lack of funding.

One certainty is that including biased inputs into a stock assessment
FIGURE 5

Estimate of log-biomass density, loge(kg/km
2), for evenly spaced years (columns) for each species (row) analyzed in the empirical analysis, estimated

using the “full data set”. See Figure 2 for how these ranges overlap with the data-removal experiments.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1198260
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bryan and Thorson 10.3389/fmars.2023.1198260
will lead to biased results and management advice. Survey abundance

is an assumed absolute measure or a relative measure and

proportional to population biomass. The results from an

assessment model will be impacted by the bias in the survey

estimate and in turn lead to biased population estimates and
Frontiers in Marine Science 10
management reference points. Therefore, obtaining unbiased survey

estimates is integral to any assessment. The spatio-temporal model

that we presented can provide unbiased estimates; however, it cannot

ameliorate problems with non-representative sampling, as was

demonstrated for yellowfin sole and snow crab when we excluded
TABLE 1 The average (top rows) or coefficient of variation (bottom rows) for estimated density across years when fitting to all BT data in the eastern
Bering Sea, computed at the set of extrapolation-grid cells that were retained across all years for a given sampling design.

All No_east No_west No_north No_south

Average density

Gadus chalcogrammus 7.987 8.155 7.826 8.121 7.786

Gadus macrocephalus 6.821 6.791 6.812 7.011 6.794

Limanda aspera 4.79 3.285 6.091 5.629 5.112

Chionoecetes opilio 3.756 5.012 3.309 3.106 3.84

Average CV

Gadus chalcogrammus 0.158 0.156 0.165 0.141 0.17

Gadus macrocephalus 0.129 0.131 0.131 0.098 0.144

Limanda aspera 0.186 0.232 0.135 0.083 0.236

Chionoecetes opilio 0.184 0.249 0.149 0.173 0.129
f

These retained extrapolation-grid cells either included the entire eastern Bering Sea extent (“All” in 2nd column), or dropped extrapolation-grid cells in the eastern, western, northern, or southern
areas (3rd-6th columns) for each species (rows). For example, the design that dropped data in the eastern Bering Sea (3rd column) for Limanda aspera has lower average density and higher average
CV (compared with the values calculated for the entire eastern Bering Sea), indicating that the survey design dropping eastern stations is excluding the core habitat area for that species.
FIGURE 6

Bias in the estimated proportion of biomass in the northern Bering Sea for different sampling design scenarios (top panel) and the median absolute
error among sampling scenarios (bottom panel). The boxplots are defined by the median (line), interquartile range (IQR, box), the furthest points
from the 1.5 the IQR (whiskers), and outliers (points).
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data from their core distributions. The empirical results also showed a

non-uniform response among species and a trade-off among species

and the removal of regional data. This has important implications on

future surveys. As species distributions shift due to a changing

climate, our surveys must adapt to effectively monitor variability

and changing centers of distribution. The consequence of not doing

so will likely be biased estimates; however, adaptability is no small

task. Sampling optimization for all species within a multispecies

fishery-independent survey is incredibly difficult. Spatio-temporal

models and optimization methods should be used to identify trade-

offs in bias/inaccuracy and uncertainty among species and strive to

achieve representative sampling for as many species possible

(Oyafuso et al., 2021).
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

All authors conceived the ideas, designed methodology, and

analyzed the data and were equally involved in manuscript writing.

All authors contributed to the article and approved the

submitted version.
Frontiers in Marine Science 11
Acknowledgments

We would like to thank the NOAA Alaska Fisheries Science

Center (AFSC) Groundfish Assessment Program and their

tremendous efforts during the eastern and northern Bering Sea

shelf bottom trawl survey to collect the data and make it available

for this analysis. We would also like to thank NOAA-AFSC reviewers

Sandra Lowe and Drs. Steve Barbeaux and Zack Oyafuso for their

valuable comments, as well as the journal reviewers.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Bakkala, R. G. (1993). Structure and historical changes in the groundfish complex of
the eastern Bering Sea (United States Department of Commerce: NOAA Technical
Memorandum NMFS 114), 86.

Francis, R. I. C. C. (2011). Data weighting in statistical fisheries stock assessment
models. Can. J. Fish. Aquat. Sci. 68, 1124–1138. doi: 10.1139/f2011-025

Grüss, A., and Thorson, J. T. (2019). Developing spatio-temporal models using
multiple data types for evaluating population trends and habitat usage. ICES J. Mar. Sci.
76, 1748–1761. doi: 10.1093/icesjms/fsz075

ICES (2020). Workshop on unavoidable survey effort reduction (WKUSER) (No.
2:72), ICES scientific reports (Copenhagen: ICES).

Kearney, K. A., Alexander, M., Aydin, K., Cheng, W., Hermann, A. J., Hervieux, G.,
et al. (2021). Seasonal predictability of sea ice and bottom temperature across the
eastern Bering Sea shelf. J. Geophys. Res.: Ocean. 126, e2021JC017545. doi: 10.1029/
2021JC017545

Lo, N. C., Jacobson, L. D., and Squire, J. L. (1992). Indices of relative abundance from
fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49, 2515–
2526. doi: 10.1139/f92-278

Markowitz, E. H., Dawson, E. J., Charriere, N. E., Prohaska, B. K., Rohan, S. K.,
Stevenson, D. E., et al. (2022). Results of the 2021 eastern and northern Bering Sea
continental shelf bottom trawl survey of groundfish and invertebrate fauna (United
States Department of Commerce: NOAA Technical Memorandum NMFS-AFSC-452),
215.

Maunder, M. N., and Punt, A. E. (2004). Standardizing catch and effort data: a review
of recent approaches. Fish. Res. 70, 141–159. doi: 10.1016/j.fishres.2004.08.002

Maunder, M. N., Punt, A. E., Valero, J. L., and Semmens, B. X. (2017). Data conflict
and weighting, likelihood functions and process error. Fisheries Research 192, 1–4.
doi: 10.1016/j.fishres.2017.03.006

Mueter, F. J., and Litzow, M. A. (2008). Sea Ice retreat alters the biogeography of the
Bering Sea continental shelf. Ecol. Appl. 18, 309–320. doi: 10.1890/07-0564.1

O’Leary, C. A., DeFilippo, L. B., Thorson, J. T., Kotwicki, S., Hoff, G. R., Kulik, V. V.,
et al. (2022). Understanding transboundary stocks’ availability by combining multiple
fisheries-independent surveys and oceanographic conditions in spatiotemporal models.
ICES J. Mar. Sci. 79, 1063–1074. doi: 10.1093/icesjms/fsac046
O’Leary, C. A., Thorson, J. T., Ianelli, J. N., and Kotwicki, S. (2020). Adapting to
climate-driven distribution shifts using model-based indices and age composition from
multiple surveys in the walleye pollock (Gadus chalcogrammus) stock assessment. Fish.
Oceanog. 29, 541–557. doi: 10.1111/fog.12494

Oyafuso, Z. S., Barnett, L. A. K., and Kotwicki, S. (2021). Incorporating spatiotemporal
variability in multispecies survey design optimization addresses trade-offs in uncertainty.
ICES J. Mar. Sci. 78, 1288–1300. doi: 10.1093/icesjms/fsab038

Pecl, G. T., Araujo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., et al. (2017).
Biodiversity redistribution under climate change: impacts on ecosystems and human
well being. Science 355, eaai9214. doi: 10.1126/science.aai9214

Perretti, C. T., and Thorson, J. T. (2019). Spatio-temporal dynamics of summer
flounder (Paralichthys dentatus) on the northeast US shelf. Fish. Res. 215, 62–68.
doi: 10.1016/j.fishres.2019.03.006

Pinsky, M. L., Worm, B., Fogarty, M. J., Sarimiento, J. L., and Levin, S. A. (2013). Marine
taxa track local climate velocities. Science 341, 1239–1242. doi: 10.1126/science.1239352

Poloczanska, E., Brown, C., Sydeman, W., Kiessling, W., Schoeman, D. S., and
Moore, P. J. (2013). Global imprint of climate change on marine life. Nature Climate
Change 3, 919–915. doi: 10.1038/nclimate1958

Punt, A. E. (2017). Some insights into data weighting in integrated stock
assessments. Fish. Res. 192, 52–65. doi: 10.1016/j.fishres.2015.12.006

Shelton, A. O., Thorson, J. T., Ward, E. J., and Feist, B. E. (2014). Spatial
semiparametric models improve estimates of species abundance and distribution.
Can. J. Fish. Aquat. Sci. 71, 1655–1666. doi: 10.1139/cjfas-2013-0508

Spies, I., Gruenthal, K. M., Drinan, D. P., Hollowed, A. B., Stevenson, D. E., Tarpey,
C. M., et al. (2020). Genetic evidence of a northward range expansion in the eastern
Bering Sea stock of pacific cod. Evolution. Appl. 13, 362–375. doi: 10.1111/eva.12874

Stabeno, P. J., Farley, E. V.Jr., Kachel, N. B., Moore, S., Mordy, C. W., Napp, J. M.,
et al. (2012). A comparison of the physics of the northern and southern shelves of the
eastern Bering Sea and some implications for the ecosystem. Deep-Sea Res. II 65–70,
14–30. doi: 10.1016/j.dsr2.2012.02.019

Stauffer, G. (2004). NOAA Protocols for groundfish bottom trawl surveys of the
nation’s fishery resources (United States Department of Commerce: NOAA Technical
Memorandum NMFS-F/SPO-65), 205.
frontiersin.org

https://doi.org/10.1139/f2011-025
https://doi.org/10.1093/icesjms/fsz075
https://doi.org/10.1029/2021JC017545
https://doi.org/10.1029/2021JC017545
https://doi.org/10.1139/f92-278
https://doi.org/10.1016/j.fishres.2004.08.002
https://doi.org/10.1016/j.fishres.2017.03.006
https://doi.org/10.1890/07-0564.1
https://doi.org/10.1093/icesjms/fsac046
https://doi.org/10.1111/fog.12494
https://doi.org/10.1093/icesjms/fsab038
https://doi.org/10.1126/science.aai9214
https://doi.org/10.1016/j.fishres.2019.03.006
https://doi.org/10.1126/science.1239352
https://doi.org/10.1038/nclimate1958
https://doi.org/10.1016/j.fishres.2015.12.006
https://doi.org/10.1139/cjfas-2013-0508
https://doi.org/10.1111/eva.12874
https://doi.org/10.1016/j.dsr2.2012.02.019
https://doi.org/10.3389/fmars.2023.1198260
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bryan and Thorson 10.3389/fmars.2023.1198260
Stefansson, G. (1996). Analysis of groundfish survey abundance data: combining the
GLM and delta approaches. ICES J. Mar. Sci. 53, 577–588. doi: 10.1006/jmsc.1996.0079

Stevenson, D. E., and Lauth, R. R. (2019). Bottom trawl surveys in the northern
Bering Sea indicate recent shifts in the distribution of marine species. Polar. Biol. 42,
407–421. doi: 10.1007/s00300-018-2431-1

Thompson, G. G., and Thorson, J. T. (2019). “Assessment of the pacific cod stock in
the Eastern Bering Sea,” in Stock assessment and fishery evaluation report for the
groundfish resources of the Bering Sea and Aleutian islands (605 W. 4th Avenue Suite
306, Anchorage: North Pacific Fishery Management Council).

Thorson, J. T. (2018). Three problems with the conventional delta-model for
biomass sampling data, and a computationally efficient alternative. Can. J. Fish.
Aquat. Sci. 75, 1369–1382. doi: 10.1139/cjfas-2017-0266

Thorson, J. T. (2019a). Measuring the impact of oceanographic indices on species
distribution shifts: the spatially varying effect of cold-pool extent in the eastern Bering
Sea. Limnol. Oceanog. 64, 2632–2645. doi: 10.1002/lno.11238

Thorson, J. T. (2019b). Guidance for decisions using the vector autoregressive
spatio-temporal (VAST) package in stock, ecosystem, habitat and climate assessments.
Fish. Res., 143–161. doi: 10.1016/j.fishres.2018.10.013

Thorson, J. T., Arimitsu, M. L., Barnett, L. A. K., Cheng, W., Eisner, L. B., Haynie, A.
C., et al. (2021). Forecasting community reassembly using climate-linked spatio-
temporal ecosystem models. Ecography 44, 612–625. doi: 10.1111/ecog.05471
Frontiers in Marine Science 12
Thorson, J. T., Barnes, C. L., Friedman, S. T., Morano, J. L., and Siple, M. C. (2023).
Spatially varying coefficients can improve parsimony and descriptive power for species
distribution models. Ecography 2023, e06510. doi: 10.1111/ecog.06510

Thorson, J. T., and Barnett, L. A. K. (2017). Comparing estimates of abundance
trends and distribution shifts using single- and multispecies models of fishes and
biogenic habitat. ICES J. Mar. Sci. 74, 1311–1321. doi: 10.1093/icesjms/fsw193

Thorson, J. T., and Haltuch, M. A. (2019). Spatiotemporal analysis of compositional
data: increased precision and improved workflow using model-based inputs to stock
assessment. Can. J. Fish. Aquat. Sci. 76, 401–414. doi: 10.1139/cjfas-2018-0015

Thorson, J. T., and Kristensen, K. (2016). Implementing a generic method for bias
correction in statistical models using random effects, with spatial and population
dynamics examples. Fish. Res. 175, 66–74. doi: 10.1016/j.fishres.2015.11.016

Thorson, J. T., Shelton, A. O., Ward, E. J., and Skaug, H. J. (2015). Geostatistical
delta-generalized linear mixed models improve precision for estimated abundance
indices for West coast groundfishes. ICES J. Mar. Sci. 72, 1297–1310. doi: 10.1093/
icesjms/fsu243

Thorson, J. T., andWard, E. J. (2013). Accounting for space–time interactions in index
standardization models. Fish. Res. 147, 426–433. doi: 10.1016/j.fishres.2013.03.012

Wyllie-Echeverria, T., and Wooster, W. S. (1998). Year-to-year variations in Bering
Sea ice cover and some consequences for fish distributions. Fish. Oceanog. 7, 159–170.
doi: 10.1046/j.1365-2419.1998.00058.x
frontiersin.org

https://doi.org/10.1006/jmsc.1996.0079
https://doi.org/10.1007/s00300-018-2431-1
https://doi.org/10.1139/cjfas-2017-0266
https://doi.org/10.1002/lno.11238
https://doi.org/10.1016/j.fishres.2018.10.013
https://doi.org/10.1111/ecog.05471
https://doi.org/10.1111/ecog.06510
https://doi.org/10.1093/icesjms/fsw193
https://doi.org/10.1139/cjfas-2018-0015
https://doi.org/10.1016/j.fishres.2015.11.016
https://doi.org/10.1093/icesjms/fsu243
https://doi.org/10.1093/icesjms/fsu243
https://doi.org/10.1016/j.fishres.2013.03.012
https://doi.org/10.1046/j.1365-2419.1998.00058.x
https://doi.org/10.3389/fmars.2023.1198260
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	The performance of model-based indices given alternative sampling strategies in a climate-adaptive survey design
	1 Introduction
	2 Methods
	2.1 Survey area and data
	2.2 Empirical analysis
	2.3 Simulation experiment

	3 Results
	3.1 Empirical analysis
	3.2 Simulation experiment

	4 Discussion
	Data availability statement
	Author contributions
	Acknowledgments
	References


