OPINION article

Front. Mar. Sci., 07 July 2023

Sec. Marine Conservation and Sustainability

Volume 10 - 2023 | https://doi.org/10.3389/fmars.2023.1200979

The science we need for the beaches we want: frontiers of the flourishing Brazilian ecological sandy beach research

  • 1. College of Science and Mathematics, University of the Virgin Islands, St. Thomas, VI, United States

  • 2. Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil

  • 3. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States

  • 4. Departamento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

  • 5. Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Macaé, Brazil

  • 6. Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

  • 7. Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil

  • 8. Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil

  • 9. Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil

  • 10. Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil

  • 11. Instituto de Ciências da Sociedade e Desenvolvimento Regional, Universidade Federal Fluminense, Campos dos Goytacazes, Brazil

  • 12. Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, Brazil

  • 13. Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil

  • 14. Departamento de Engenharia de Pesca e Aquicultura, Universidade Federal de Sergipe, São Cristóvão, Brazil

  • 15. Instituto do Mar, Universidade Federal de São Paulo, Santos, Brazil

  • 16. Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brazil

  • 17. Departamento de Oceanografia, Universidade Federal do Espirito Santo, Vitória, Brazil

  • 18. Instituto de Geociências, Universidade Federal do Pará, Belém, Brazil

  • 19. Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Sul, Brazil

  • 20. Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, Brazil

  • 21. Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, Brazil

  • 22. Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, Brazil

Article metrics

View details

16

Citations

5k

Views

1,2k

Downloads

1 Introduction

Sandy beaches are the most ubiquitous coastal ecosystem and provide essential benefits for people. However, they remain the least studied coastal environment (Lercari, 2023). To maintain the sandy beaches’ role in promoting societal welfare, researchers have highlighted critical scientific gaps, governance and regulatory issues that prevent us from developing appropriate management and conservation strategies. For instance, Amaral et al. (2016) prioritized six research areas to assess the influence of environmental changes on Brazilian sandy beaches, while Fanini et al. (2020) highlighted 21 knowledge gaps that preclude beach conservation worldwide.

Brazilian researchers have stood out in the scientific production on beaches in the last decade (Lercari, 2023). Nevertheless, this scientific knowledge is not enough if there are no changes in governance, regulations and culture of stakeholders and society. Herein, we combined the priority research areas and knowledge gaps identified by Amaral et al. (2016) and Fanini et al. (2020) into four major research topics (Table 1). Then, we presented ecological research performed on Brazilian sandy beaches over the last decade to assess the advances (or lack of) in each of these topics. Finally, we highlighted ongoing research and promising topics in sandy beach research in Brazil.

Table 1

Priority research areas Considerations
1) Knowledge of the environmental characteristics and biodiversity of Brazilian sandy beaches, including ecological links between habitats and biodiversity groups.
Amaral et al., 2016
Holistic studies on sandy beaches. Reduced number of studies investigated multiple beach habitats or biological groups.
Studies on the secondary production of key species to understand processes of energy transfer in the ecosystem of sandy beaches. Insufficient information on energy transfer in beach ecosystems.
Fanini et al., 2020
Knowledge about links and connectivity between the components of the littoral active zone (LAZ). Few studies assessed different zones of the LAZ.
The identification of key physical and ecological processes and their boundary areas, to manage the littoral active zone as a sedimentary unit. Few studies assessed different zones of the LAZ.
Studies of the ecohydrological links between the physical characteristics of the substratum, their dynamics, and the fauna of sandy beaches. Limited information on the ecological links in sandy beach ecosystems.
An increase in data emanating (and a better collation of those data) from case studies from less-represented areas, beach morphotypes, and issues. Larger number of studies performed in the Northern region, but the number remains low.
The production and delivery of autochthonous and allochthonous organic material related to different beach types, hydro physical conditions, and adjoining habitats. No study on this topic.
2) Standardized methods, long-term data, and FAIR principles.
Amaral et al., 2016
Temporal replication of sampling to allow the compilation of long-term data series. Reduced number of long-term studies.
Standardization of the methodologies used and the systematic application of monitoring protocols for large spatial and temporal scales. Monitoring protocols were developed but not applied in large-scale studies.
Fanini et al., 2020
The short and long-term storage of carbon and its utilization and turnover. No study done on this topic.
The development of long-term data sets and their collation/curation following internationally agreed standards (e.g. FAIR). Most data remain inaccessible.
The identification of standards, both for gathering and using data, and for the quality of beaches. Monitoring protocols were developed but not frequently applied in ecological investigations.
3) Ecological impacts related to climate change and anthropic activities
Amaral et al., 2016
Field and laboratory experiments to understand differences resulting from anthropogenic impacts and climate change. The number of experimental studies increased in comparison with previous decades; however, it is still low.
Fanini et al., 2020
The resistance and resilience of beaches to short (pulse) and long (press) term perturbations, including the physical system, residency and facultative behavior (i.e. spending only a stage of their life on beaches) of the biota. Studies, including experiments, assessed how perturbations affect beach ecosystems, but less attention was paid to the resilience of beach ecosystems and biodiversity.
An increase in data resulting from case-studies related to different human use, including urban beaches. Considerable number of studies assessed how human use affects beach ecosystems.
The quantities of sediment lost and gained through human activities, including mechanical maintenance, tourism frequency, extent and duration and soft and hard measures to counteract erosion. Few studies have been conducted on this topic. An overall method has yet to be established.
The resistance and resilience of beaches to global changes, including temperature fluctuation, temperature rise and sea level rise. Studies mainly focused on storm effects.
The assessment of short and long-term impacts of harmful micro- and macroalgal blooms. No study assessed the impact of harmful algal blooms on Brazilian sandy beaches.
The overlap (interference) of emergent phenomena such as beach litter, macro and microplastics with beach dynamics at micro, meso, and macro scales. A significant number of investigations examined the concentration and impact of marine litter on sandy beach ecosystems.
4) Sandy beach as socio-ecological systems and management strategies based on the ecosystem
Amaral et al., 2016
Improved interactions between scientists and decision makers. There was an increase in interaction between scientists and decision makers. However, this interaction is limited to a few researchers.
Fanini et al., 2020
Quantifying the ecosystem services and societal goods and benefits provided by beaches across different geographical areas, including the rate of economic dependency on beach-related resources, and the dynamics driven by seasonality. Limited number of studies on this topic.
The need to assess pollution on beaches in terms of human health and safety risks. Studies on pollution need to be performed on a larger number of beaches and with higher frequency.
The detection and rigorous assessment of social-ecological regime shifts and collapses, including the identification of early warning tipping points to support governance. Limited number of studies on this topic.
The identification of ecological and socio-economic indicators to undertake comprehensive and long-term impact assessments. Such broadening of the focus would necessarily include climate change-related stressors, market forces and governance regimes. Brazilian researchers advanced in the use of biodiversity as tools for environmental monitoring and assessment, including both species and assemblage-level.
The use of indicators to assess the performance of management interventions. Brazilian researchers advanced in the use of biodiversity as tools for environmental monitoring and assessment, including both species and assemblage-level.
The development of ecosystem-based solutions to readdress management failures, together with the establishment of networks combining Marine Protected Areas and community-based exploitation areas to facilitate spill-over effects and balance bio-socio-economic factors. Limited number of investigations on this topic. Studies were spatially restricted.
The carrying capacity of beach units for human activities (e.g. tourism) having a direct, quantifiable effect. This would allow a set of choices to be made adequately balancing recreation and conservation needs. There is also the need to determine the assimilative capacity of beaches in n which they can accept human activities without adverse effects. Very low number of studies investigated the carrying capacity of Brazilian beaches.

Priority research areas highlighted by Amaral et al. (2016) and Fanini et al. (2020) combined into the four broad topics, and considerations on the advances (or lack of) in each of these areas during the previous decade.

2 Ecological research on Brazilian sandy beaches

2.1 Topic 1. Knowledge of biodiversity, ecological links, and genetic connectivity

Brazilian sandy beaches are distributed along 9000 km of coastline and encompass all beach types, from wide tide-dominated flats in the North to microtidal wave-dominated beaches in the Southeast and South (Klein and Short, 2016). During the past decade, most studies were performed in Southeast and South Brazil. However, we found a recent increase in studies in North Brazil, with investigations showing that the local sandy beach fauna is strongly influenced by riverine discharge, rainfall, morphodynamics, and human activities (Santos and Aviz, 2018; Baia and Venekey, 2019; Santos and Aviz, 2020; Baia et al., 2021; Santos et al., 2021a; Santos et al., 2021b; Santos et al., 2022; Cardoso et al., 2023; Checon et al., 2023a). Information on population attributes of typical beach species, such as Ocypode quadrata (Souza et al., 2021) and Clibanarius symmetricus (Danin et al., 2020), has just been made available for the Amazon coast.

Studies were also spatially restricted to supratidal and intertidal zones, with only a few studies sampling the subtidal or the whole across-shore gradient (e.g., Corte et al., 2019; Corte et al., 2020; Corte et al., 2022). Investigations mainly focused on macrobenthos, despite recent contributions to fish (Shah Esmaeili et al., 2022) and bird ecology (da Rosa Leal et al., 2013; Linhares et al., 2021; Rangel et al., 2022). There is incipient information on microorganisms and few studies assessed the ecology of meiofauna (reviewed in Maria et al., 2016). The number of investigations on primary producers was also higher in Southeast and South Brazil. Conversely, Brazil was probably the country with the highest number of studies on the secondary production of beach species (Petracco et al., 2013).

Few studies simultaneously investigated multiple biological components and their connectivity (e.g., Lacerda et al., 2014; Corte et al., 2017a). Costa et al. (2017) modeled a sandy beach food web including detritus, phytoplankton, macroinvertebrates, fish, and seabirds, while Pinotti et al. (2014) reviewed macrobenthic trophic relationships along subtropical sandy shores. Data using molecular markers that provide information regarding genetic connectivity and cryptic diversity remain scarce. Hurtado et al. (2016) detected high levels of cryptic diversity for the isopod Excirolana braziliensis, warning about potential biases in latitudinal gradient studies. Similarly, Seixas et al. (2021) found new species within the Diopatra cuprea complex, while Silva et al. (2017) found new species within the Capitella capitata complex. Hernáez et al. (2022) described the ghost shrimp Callichirus corruptus. Furthermore, Mattos et al. (2019) showed how contrasting dispersal potentials can affect crustacean genetic structure and connectivity along the entire Brazilian coast.

2.2 Topic 2. Standardized methods, long-term data, and findable, accessible, interoperable and reusable principles

Despite efforts to produce monitoring protocols (e.g., ReBentos and MBON Pole-to-Pole), long-term ecological studies on Brazilian sandy beaches remain scarce. In one of the few examples, Costa et al. (2022b) compiled data from 2013–2021 and showed that the abundance of the ghost crab Ocypode quadrata increased during beach closures due to the COVID-19 pandemic. The only current long-term (> 20 years) ecological investigation is being performed at Cassino Beach, South Brazil (Odebrecht et al., 2017). FAIR principles are still hardly applied to sandy beach research in Brazil, and most raw data remain restricted even after the publication of scientific papers.

2.3 Topic 3. Ecological impacts related to climate change and anthropic activities

Brazilian beaches have been jeopardized by oil spills (Marques et al., 2017; Sills et al., 2020; da Rosa, 2022), sewage discharges (Roth et al., 2016), marine litter (Neves et al., 2022), overfishing (Bender et al., 2014), chemical contamination (Cabrini et al., 2017; Cabrini et al., 2018; Ragagnin and Turra, 2022), trampling and vehicles traffic (Bom and Colling, 2020; Santos et al., 2021b; Bom and Colling, 2022; Santos et al., 2022) and coastal urbanization (Rêgo et al., 2018; Corte et al., 2022; Laurino et al., 2022; Shah Esmaeili et al., 2022). Furthermore, researchers have shown that urbanization may increase parasitism in invertebrates and fishes (Corte, 2015; Shah Esmaeili et al., 2021a). Investigation of plastic pollution has advanced significantly (Costa et al., 2022b; Mengatto and Nagai, 2022), and studies suggested that assessments should consider the physical variables that regulate beach dynamics such as wave action and tidal cycles (Balthazar-Silva et al., 2020; Tsukada et al., 2021).

Investigations on the effects of climate change focused mainly on high-intensity storms (Machado et al., 2016; Turra et al., 2016; Corte et al., 2017b; Corte et al., 2018; Oliveira and Yokoyama, 2021). Experiments to assess anthropogenic and climate change impacts are still scarce (but see Laurino et al., 2020; Izar et al., 2022; Laurino et al., 2022, Laurino et al., 2023; Laurino and Turra, 2021). Nevertheless, Brazilian researchers advanced in the use of biodiversity as tools for environmental monitoring and assessment (Pombo and Turra, 2013; Cardoso et al., 2016; Gorman et al., 2017; Pombo and Turra, 2017; Checon et al., 2018a; Checon et al., 2018b; Costa and Zalmon, 2019; Costa et al., 2020b; Barboza et al., 2021; Costa and Zalmon, 2021; Costa et al., 2022a; Checon et al., 2023b; Checon et al., 2023c).

2.4 Topic 4. Sandy beach as socio-ecological systems and management strategies based on the ecosystem

While sandy beaches ecosystems provide regulating, cultural, supporting, and provisioning services (Harris and Defeo, 2022), studies in Brazil were mostly focused on cultural services such as tourism activities (Checon et al., 2022b). Accordingly, Brazilian sandy beach management remains overwhelmingly focused on social-economic aspects such as engineering interventions to mitigate erosion (e.g., armoring and nourishment), cleaning, and tourism support (e.g., Simões et al., 2022, Borges et al., 2023). To improve management practices, Xavier et al. (2020) and Corrêa et al. (2021) highlighted the need for a more holistic understanding of the beach environment, including the diversity and interactions of ecological and social components. Moreover, Araújo et al. (2021) adapted the conceptual model DPSWIR (Driving Force-Pressure-State-Impact-Well-being-Response) to assess the effects of coastal ecosystem services loss on human well-being.

Efforts have been also made to propose an Ecosystem-Based Management (EBM) approach for Brazilian sandy beaches (e.g. Bombana et al., 2022), but empirical and theoretical research on sandy beach management is still incipient (Xavier et al., 2020; Corrêa et al., 2021). Most studies aim to understand the anthropogenic drivers associated with social and ecological deterioration rather than assess the performance of management interventions (Xavier et al., 2020). Corrêa et al. (2020) identified two barriers to EBM implementation at the local level: overcoming current undesirable governance structures and fitting governance to multilevel ecosystem dynamics.

Nature-based solutions (NbS) assume that natural processes can solve management failures and have been proposed to mitigate the degradation and vulnerability of coastal environments to erosion (Slinger et al., 2021). Manes et al. (2023) estimated that nature-based shoreline protection can reduce the risks of climate-induced hazards to the Brazilian coastline by 2.5 times. Costa et al. (2020a) suggested the addition of natural obstructions in the supralittoral and reforestation to prevent ghost crabs and turtle hatchlings from being killed by vehicles on the sand.

3 Future directions

Sandy beach ecological studies performed in Brazil increased over the past decade; however, these advances do not ensure the preservation of our beaches. While ecological knowledge is crucial to preserve our beaches, it alone is insufficient since successful management is largely contingent upon changes in the environment, governance, and new technologies.

Management and governance have a key role in maintaining sustainable ecosystem services and their benefits (Harris and Defeo, 2022), and it is essential to use scientific knowledge to subsidize the decision-making process by developing evidence-based management strategies to reduce the harmful consequences of anthropic activities and mitigate climate change effects.

Collaborative and multidisciplinary networks are crucial for ensuring that the knowledge produced leads to effective changes in governance and cultural aspects towards beach ecosystems conservation. EBM should be fostered, integrating both social and natural systems in a transdisciplinary way, considering the temporal and spatial scales of processes, the benefits from beaches to people, and attempting to build socioecological models that support decision-making (Gonçalves et al., 2020; Corrêa et al., 2021; Xavier et al., 2022).

Incorporating ecological principles into engineering can improve management practices and foster the development of mechanisms to address complex challenges threatening beach conservation, such as the synergic effects of coastal urbanization and climate change. Emerging technologies such as eDNA, Remote Sensing (RS), and unmanned aerial vehicles for imaging are promising tools for evaluating sandy beach biodiversity and ecological processes, which can reduce the costs and effort associated with biodiversity assessment and monitoring (Barboza et al., 2021; Shah Esmaeili et al., 2021a; Checon et al., 2022a).

Long-term data are necessary to comprehend how climate change is affecting sandy beach ecosystems and may compromise their goods and services, as well as to understand the population dynamics of exploited species, changes in species distribution, storage and turnover of organic carbon, and impacts of human activities and harmful algal blooms (Fanini et al., 2020). Expanding knowledge about larval dispersion, settlement, and resilience to environmental changes is also needed to understand the dynamics of beach biodiversity. We have limited information on the diversity and ecological role of microorganisms (viruses, bacteria, fungi, parasites) and meiofaunal species, and beaches from North and Northeast Brazil remain largely understudied. Similarly, sublittoral communities and the backshore remain overlooked. Stable isotope analysis may help elucidate the connection between sandy beaches and adjacent habitats. Studies on the whole Littoral Active Zone are essential to identifying key physical and ecological processes and their boundary areas (Fanini et al., 2020). It is also urgent to conduct studies on the effects of heat waves on beach species and assemblages.

We strongly recommend that data collation/curation follow the FAIR principles that lead to legislation focused on advances in EBM. For example, data should be published in open-access databases (e.g., GBIF and OBIS) and made available using a CC-BY license.

Importantly, the effort for knowledge production should consider societal demands, and assist managers in providing assertive and applicable responses to such a complex system in a changing environment. In addition, an effort should be made to congregate the science we are doing and to implement the science we need for the beaches we want (e.g., ABC, 2021), promoting a better dialogue with the Sustainable Development Goals of the United Nations 2030 Agenda for Sustainable Development (UNGA, 2015) and the outcomes and challenges of the United Nations Decade of Ocean Science for Sustainable Development (IOC/UNESCO, 2020; Claudet et al., 2020).

Statements

Author contributions

GC and CaB led the analyses and writing of the manuscript. YSE, TM, LCos, GM, HC, NM, PP, PD, TC, VS, EB, JR, LCol, LR, LY, RC, MPo, PM, LX, TS, MPe, LB, IL, MD, CO, AK, CrB, AS-G, IZ, AA, and AT contributed critically to the drafts and gave final approval for publication. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by Fundaç ão Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) with grant number E-26/210.571/2021, and E-26/201.382/2021, Maré-Limpa: Pesquisas e Divulgação para redução do lixo no oceano” under the Grant TAC ALSUB Project contract 265/2022. “The TAC ALSUB Project is an environmental offset measure established through a Consent Decree/Conduct Adjustment Agreement between the Federal Public Ministry and the company PETROBRAS (process 1.30.001.000486/2019-08)”. YSE is supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2018/0955-5), TFM is supported by Research Department of UNIRIO, LLC is supported by FAPERJ (E 26/200.620/2022 and E-26/210.384/2022), PCP is supported by FAPERJ (E-26/200.375/2023) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (306788/2021-7), TC is supported by FAPERJ (E-26/210.527/2019 and E-26/211.433/2021), JSRF is supported by CNPq (303609/2022-2), PLM is supported by CAPES (code 001, PNPD scholarship), LYX is supported by USPSusten post-doctoral program, AS-G is supported by CNPq (301475/ 2017-2), ACZA is supported by CNPq (301551/2019-7), AT is supported by FAPESP (2018/19776-2), Fundação Grupo Boticário (1133_20182), and CNPq (310553/2019-9), and CAMB is supported by FAPERJ (E-26/201.382/2021).

Acknowledgments

We thank Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro for supporting the Ecology and Conservation of Sandy Beaches from Rio de Janeiro Symposium within the scope of the Programa de Apoio à Organização de Eventos Científicos, Tecnológicos e de Inovação no Estado do Rio de Janeiro – 2021 (E-26/210.571/2021). We thank Diego Lercari for his valuable comments that helped improve the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  • 1

    ABC (2021). Academia Brasileira de Ciências. Declaração da Academia Brasileira de Ciências sobre a Década da Ciência Oceânica para o Desenvolvimento Sustentável.

  • 2

    Amaral A. C. Z. Corte G. N. Filho J. S. R. Denadai M. R. Colling L. A. Borzone C. et al . (2016). Brazilian Sandy beaches: characteristics, ecosystem services, impacts, knowledge and priorities. Braz. J. Oceanogr64 (Special Issue 2), 516. doi: 10.1590/S1679875920160933064sp2

  • 3

    Araújo C. P. S. Santos D. S. Lins-de-Barros F. Hacon S. S. (2021). Linking ecosystem services and human health in coastal urban planning by DPSIWR framework. Ocean Coast. Manage.210, 105728. doi: 10.1016/j.ocecoaman.2021.105728

  • 4

    Baia E. Rollnic M. Venekey V. (2021). Seasonality of pluviosity and saline intrusion drive meiofauna and nematodes on an Amazon freshwater-oligohaline beach. J. Sea Res.170, 102022. doi: 10.1016/j.seares.2021.102022

  • 5

    Baia E. Venekey V. (2019). Distribution patterns of meiofauna on a tropical macrotidal sandy beach, with special focus on nematodes (Caixa d’Água, Amazon coast, Brazil). Braz. J. Oceanography67. doi: 10.1590/S1679-87592019023006701

  • 6

    Balthazar-Silva D. Turra A. Moreira F. T. Camargo R. M. Oliveira A. L. Barbosa L. et al . (2020). Rainfall and tidal cycle regulate seasonal inputs of microplastic pellets to sandy beaches. Front. Environ. Sci.8. doi: 10.3389/fenvs.2020.00123

  • 7

    Barboza C. A. M. Mattos G. Soares-Gomes A. Zalmon I. R. Costa L. L. (2021). Low densities of the ghost crab Ocypode quadrata related to large scale human modification of sandy shores. Front. Environ. Sci.8. doi: 10.3389/fmars.2021.589542

  • 8

    Bender M. G. Machado G. R. Silva P. J. A. Floeter S. R. Monteiro-Netto C. Luiz O. J. et al . (2014). Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the southwestern Atlantic. PloS One9, e110332. doi: 10.1371/journal.pone.0110332

  • 9

    Bom F. C. Colling L. A. (2020). Impact of vehicles on benthic macrofauna on a subtropical sand beach. Mar. Ecol.41, e12595. doi: 10.1111/maec.12595

  • 10

    Bom F. L. Colling L. A. (2022). The bivalves amarilladesma mactroides and donax hanleyanus as bioindicators of the impact of vehicles on cassino beach, southern Brazil. An. Acad. Bras. Ciênc.94, e20211265. doi: 10.1590/0001-3765202220211265

  • 11

    Bombana B. A. Turra A. Polette M. (2022). Gestão de praias: do conceito à prática Vol. 1 (São Paulo: Instituto de Estudos Avançados da Universidade de São Paulo), 441.

  • 12

    Borges J. A. de Moura Pereira J. Fernandes L. S. de Souza Z. M. de Araújo M. C.B. Silva-Cavalcanti J. S. et al . (2023). Temporal analysis of environmental quality of Ponta Negra beach (Natal-RN) related to coastal erosion: what has changed in 10 years? Environ Monit Assess195 (1), 156. doi: 10.1007/s10661-022-10724-2

  • 13

    Cabrini T. M. B. Barboza C. A. M. Skinner V. B. Hauser-Davis R. A. Rocha R. C. Saint’Pierre T. D. et al . (2017). Heavy metal contamination in sandy beach macrofauna communities from the Rio de Janeiro coast, southeastern Brazil. Environ. pollut.221, 116129. doi: 10.1016/j.envpol.2016.11.053

  • 14

    Cabrini T. M. B. Barboza C. A. M. Skinner V. B. Hauser-Davis R. A. Rocha R. C. Saint’Pierre T. D. et al . (2018). Investigating heavy metal bioaccumulation by macrofauna species from different feeding guilds from sandy beaches in Rio de Janeiro, Brazil. Ecotoxicol. Environ. Saf.162, 655662. doi: 10.1016/j.ecoenv.2018.06.077

  • 15

    Cardoso R. S. Barboza C. A. Skinner V. B. Cabrini T. M. (2016). Crustaceans as ecological indicators of metropolitan sandy beaches health. Ecol. Indic.62, 154162. doi: 10.1016/j.ecolind.2015.11.039

  • 16

    Cardoso E. M. P. Petracco M. Santos T. Venekey V. Aviz D. (2023). Effects of the ridge-and-runnel system on macrofaunal spatial distribution on a macrotidal sandy beach in the Brazilian Amazon coast. Mar. Ecol.00, e12755. doi: 10.1111/maec.12755

  • 17

    Checon H. H. Corte G. N. Muniz P. Brauko K. M. Domenico M. D. Bícego M. C. et al . (2018a). Unraveling the performance of the benthic index AMBI in a subtropical bay: the effects of data transformations and exclusion of low-reliability sites. Mar. pollut. Bull.126, 438448. doi: 10.1016/j.marpolbul.2017.11.059

  • 18

    Checon H. H. Corte G. N. Shah Esmaeili Y. Laurino I. R. A. Turra A. (2023c). Sandy beach bioindicators: how each benthic taxon tells its own story. Ocean Coast. Manage.240, 106645. doi: 10.1016/j.ocecoaman.2023.106645

  • 19

    Checon H. H. Corte G. N. Shah Esmaeili Y. Muniz P. Turra A. (2023b). The efficacy of benthic indices to evaluate the ecological quality and urbanization effects on sandy beach ecosystems. Sci.Total Environ.856, 159190. doi: 10.1016/j.scitotenv.2022.159190

  • 20

    Checon H. H. Costa H. H. R. Corte G. N. Souza F. M. Pombo M. (2023a). Rainfall influences the patterns of diversity and species distribution in sandy beaches of the Amazon coast. Sustainability15, 5417. doi: 10.3390/su15065417

  • 21

    Checon H. H. Shah Esmaeili Y. Corte G. N. Malinconico N. Turra A. (2022a). Locally developed models improve the accuracy of remotely assessed metrics as a rapid tool to classify sandy beach morphodynamics. PeerJ10, e13413. doi: 10.7717/peerj.13413

  • 22

    Checon H. H. Vieira D. C. Corte G. N. Sousa E. C. P. M. Fonseca G. Amaral A. C. Z. (2018b). Defining soft bottom habitats and potential indicator species as tools for monitoring coastal systems: a case study in a subtropical bay. Ocean Coast. Manage.164, 6878. doi: 10.1016/j.ocecoaman.2018.03.035

  • 23

    Checon H. H. Xavier L. Y. Gonçalves L. R. Carrilho C. D. da Silva A. G. (2022b). Beach market: what have we been computing in Brazil? Ocean Coast. Res.69, e21038. doi: 10.1590/2675-2824069.21031hhc

  • 24

    Claudet J. Bopp L. Cheung W. W. L. Devillers R. Escobar-Briones E. Haugan P. et al . (2020). A roadmap for using the UN decade of ocean science for sustainable development in support of science, policy, and action. One Earth2 (1), 3442.

  • 25

    Corrêa M. R. Xavier L. Y. Goncalves L. R. Andrade M. M. Oliveira M. Malinconico N. et al . (2021). Desafios para promoção da abordagem ecossistêmica à gestão de praias na América Latina e Caribe. Estudos Avançados35, 219236. doi: 10.1590/s0103-4014.2021.35103.012

  • 26

    Corrêa M. R. Xavier L. Y. Holzkämper E. Martins De Andrade M. Turra A. Glaser M. (2020). Shifting shores and shoring shifts-how can beach managers lead transformative change? A Study Challenges Opportunities Ecosystem-Based Management. Hum. Ecol. Rev.26, 5984. doi: 10.22459/HER.26.02.2020.04

  • 27

    Corte G. N. (2015). Reproductive cycle and parasitism in the clam Anomalocardia brasiliana (Bivalvia: Veneridae). Invertebr. Reprod. Dev.59 (2), 6680. doi: 10.1080/07924259.2015.1007215

  • 28

    Corte G. N. Checon H. H. Fonseca G. Vieira D. C. Gallucci F. Domenico M. D. et al . (2017a). Cross-taxon congruence in benthic communities: searching for surrogates in marine sediments. Ecol. Indic78, 173182. doi: 10.1016/j.ecolind.2017.03.031

  • 29

    Corte G. N. Checon H. H. Shah Esmaeili Y. Defeo O. Turra A. (2022). Evaluation of the effects of urbanization and environmental features on sandy beach macrobenthos highlights the importance of submerged zones. Mar. pollut. Bull.182, 113962. doi: 10.1016/j.marpolbul.2022.113962

  • 30

    Corte G. N. Gonçalves-Souza T. Checon H. H. Siegle E. Coleman R. A. Amaral A. C. Z. (2018). When time affects space: dispersal ability and extreme weather events determine metacommunity organization in marine sediments. Mar. Environ. Res.136, 139152. doi: 10.1016/j.marenvres.2018.02.009

  • 31

    Corte G. N. Schlacher T. A. Checon H. H. Barboza C. A. M. Siegle E. Coelman R. A. et al . (2017b). Storm effects on intertidal invertebrates: increased beta diversity of few individuals and species. PeerJ2017 (5), e3360. doi: 10.7717/peerj.3360

  • 32

    Corte G. N. Yokoyama L. Q. Checon H. H. Turra A. (2019). Spatial and temporal variation in the diet of the sandy beach gastropod Olivella minuta. Invertebr. Biol.138, e12269. doi: 10.1111/ivb.12269

  • 33

    Corte G. N. Yokoyama L. Q. Tardelli D. T. Checon H. H. Turra A. (2020). Spatial patterns of the gastropod Olivella minuta reveal the importance of tide-dominated beaches and the subtidal zone for sandy beach populations. Reg. Stud. Mar. Sci.39, 101454. doi: 10.1016/j.rsma.2020.101454

  • 34

    Costa L. L. Fanini L. Zalmon I. R. Defeo O. McLachlan A. (2022a). Cumulative stressors impact macrofauna differentially according to sandy beach type: a meta-analysis. J. Environ. Manage.307, 114594. doi: 10.1016/j.jenvman.2022.114594

  • 35

    Costa L. L. Machado P. M. Barboza C.A. M. Soares-Gomes A. Zalmon I. R. (2022b). Recovery of ghost crabs metapopulations on urban beaches during the covid-19 “anthropause”. Mar. Environ. Res.180, 105733. doi: 10.1016/j.marenvres.2022.105733

  • 36

    Costa L. L. Secco H. Arueira V. F. Zalmon I. R. (2020a). Mortality of the Atlantic ghost crab Ocypode quadrata (Fabricius 1787) due to vehicle traffic on sandy beaches: a road ecology approach. J. Environ. Manage.260, 110168. doi: 10.1016/j.jenvman.2020.110168

  • 37

    Costa L. L. Tavares D. C. Suciu M. C. Rangel D. F. Zalmon I. R. (2017). Human-induced changes in the trophic functioning of sandy beaches. Ecol. Indic.82, 304315. doi: 10.1016/j.ecolind.2017.07.016

  • 38

    Costa L. L. Zalmon I. R. (2019). Multiple metrics of the ghost crab Ocypode quadrata (Fabricius 1787) for impact assessments on sandy beaches. Estuar. Coast. Shelf Sci.218, 237245. doi: 10.1016/j.ecss.2018.12.013

  • 39

    Costa L. L. Zalmon I. R. (2021). Macroinvertebrates as umbrella species on sandy beaches. Biol. Conserv.253, 108922. doi: 10.1016/j.biocon.2020.108922

  • 40

    Costa L. L. Zalmon I. R. Fanini L. Defeo O. (2020b). Macroinvertebrates as indicators of human disturbances on sandy beaches: a global review. Ecol. Indic.118, 106764. doi: 10.1016/j.ecolind.2020.106764

  • 41

    Danin A. P. F. Pombo M. Martinelli-Lemos J. M. Santos C. R. M. Aviz D. Petracco M. (2020). Population ecology of the hermit crab Clibanarius symmetricus (Anomura: Diogenidae) on an exposed beach of the Brazilian Amazon coast. Reg. Stud. Mar. Sci.33, 100944. doi: 10.1016/j.rsma.2019.100944

  • 42

    da Rosa L. C. (2022). Sandy beach macroinfauna response to the worst oil spill in Brazilian coast: no evidence of an acute impact. Mar. pollut. Bull.180, 113753. doi: 10.1016/j.marpolbul.2022.113753

  • 43

    da Rosa Leal G. Efe M. A. Ozorio C. P. (2013). Use of sandy beaches by shorebirds in southern Brazil. Ornithologia6 (1), 1421.

  • 44

    Fanini L. Defeo O. Elliott M. (2020). Advances in sandy beach research – local and global perspectives. Estuar. Coast. Shelf Sci.234, 106646. doi: 10.1016/j.ecss.2020.106646

  • 45

    Gonçalves L. R. Oliveira M. Turra A. (2020). Assessing the complexity of social-ecological systems: taking stock of the cross-scale dependence. Sustainability12, 6236. doi: 10.3390/su12156236

  • 46

    Gorman D. Corte G. N. Checon H. H. Amaral A. C. Z. Turra A. (2017). Optimizing coastal and marine spatial planning through the use of high-resolution benthic sensitivity models. Ecol. Indic.82, 2331. doi: 10.1016/j.ecolind.2017.06.031

  • 47

    Harris L. R. Defeo O. (2022). Sandy shore ecosystem services, ecological infrastructure, and bundles: new insights and perspectives. Ecosyst. Serv.57, 101477. doi: 10.1016/j.ecoser.2022.101477

  • 48

    Hernáez P. Miranda M. S. Rio J. P. Pinheiro M. A. (2022). A new Callichirus ghost shrimp species from the south-western Atlantic, long confounded with C. major (Say 1818)(Decapoda: Axiidea: Callichiridae). J. Natural History56 (9-12), 533563. doi: 10.1080/00222933.2022.2067016

  • 49

    Hurtado L. A. Mateos M. Mattos G. Liu S. Haye P. A. Paiva P. C. (2016). Multiple transisthmian divergences, extensive cryptic diversity, occasional long-distance dispersal, and biogeographic patterns in a marine coastal isopod with an amphi-American distribution. Ecol. Evol.6, 77947808. doi: 10.1002/ece3.2397

  • 50

    IOC (Intergovernmental Oceanographic Commission) . (2015). UNESCO (United Nations Educational, Scientific and Cultural Organization). 2020. The science we need for the ocean we want: the United Nations Decade of Ocean Science for Sustainable Development (2021-2030). Paris: IOC Publishing.

  • 51

    Izar G. M. Laurino I. R. A. Tan T. Y. Nobe C. R. Gusso-houeri P. K. Moreno B. B. et al . (2022). Plastic pellets make Excirolana armata more aggressive: intraspecific interactions and mortality in field and laboratory ecotoxicological assays. Mar. pollut. Bull.185, 114325. doi: 10.1016/j.marpolbul.2022.114325

  • 52

    Klein A. H. F. Short A. D. (2016). “Brazilian Beach Systems: Introduction” in Brazilian Beach systems. Eds. ShortA. D.KleinA. H. F. (Cham: Springer International Publishing), 135. doi: 10.1007/978-3-319-30394-9_1

  • 53

    Lacerda C. H. F. Barletta M. Dantas D. V. (2014). Temporal patterns in the intertidal faunal community at the mouth of a tropical estuary. J. Fish Biol.85, 15711602. doi: 10.1111/jfb.12518

  • 54

    Laurino I. R. A. Checon H. H. Corte G. N. Turra A. (2020). Flooding affects vertical displacement of intertidal macrofauna: a proxy for the potential impacts of environmental changes on sandy beaches. Estuar. Coast. Shelf Sci.245, 106882. doi: 10.1016/j.ecss.2020.106882

  • 55

    Laurino I. R. A Lima T. P. Turra A . (2023). Effects of natural and anthropogenic storm-stranded debris in upper-beach arthropods: Is wrack a prey hotspot for birds? Sci. Total Environ.857, 159468.

  • 56

    Laurino I. R. A. Checon H. H. Corte G. N. Turra A. (2022). Does coastal armoring affect biodiversity and its functional composition on sandy beaches? Mar. Environ. Res.181, 105760. doi: 10.1016/j.marenvres.2022.105760

  • 57

    Laurino I. R. A. Turra A. (2021). The threat of freshwater input on sandy beaches: a small-scale approach to assess macrofaunal changes related to salinity reduction. Mar. Environ. Res.171, 105459. doi: 10.1016/j.marenvres.2021.105459

  • 58

    Lercari D. (2023). Sandy beaches: publication features, thematic areas and collaborative networks between 2009 and 2019. Estuar Coast. Shelf Sci.281, 108211. doi: 10.1016/j.ecss.2023.108211

  • 59

    Linhares B. D. A. Bordin J. Nunes G. T. Ott P. H. (2021). Breeding biology of the American oystercatcher Haematopus palliatus on a key site for conservation in southern Brazil. Ornithol. Res.29, 1621. doi: 10.1007/s43388-021-00042-5

  • 60

    Machado P. M. Costa L. L. Suciu M. C. Tavares D. C. Zalmon I. R. (2016). Extreme storm wave influence on sandy beach macrofauna with distinct human pressures. Mar. pollut. Bull.107, 125135. doi: 10.1016/j.marpolbul.2016.04.009

  • 61

    Manes S. Gama-Maia D. Vaz S. Pires A. P. F. Tardin R. H. Maricato G. et al . (2023). Nature as a solution for shoreline protection against coastal risks associated with ongoing sea-level rise. Ocean Coast. Manage.235, 106487. doi: 10.1016/j.ocecoaman.2023.106487

  • 62

    Maria T. F. Vanaverbeke J. Vanreusel A. Esteves A. M. (2016). Sandy beaches: state of the art of nematode ecology. An. Acad. Bras. Cienc.88 (3), 16351653. doi: 10.1590/0001-3765201620150282

  • 63

    Marques W. C. Stringari C. E. Kirinus E. P. Möller O. O. Toldo E. E. Andrade M. M. (2017). Numerical modeling of the tramandaí beach oil spill, Brazil–case study for January 2012 event. Appl. Ocean Res.65, 178191. doi: 10.1016/j.apor.2017.04.007

  • 64

    Mattos G. Seixas V. C. Paiva P. C. (2019). Comparative phylogeography and genetic connectivity of two crustacean species with contrasting life histories on south Atlantic sandy beaches. Hydrobiologia826, 319. doi: 10.1007/s10750-018-3744-3

  • 65

    Mengatto M. F. Nagai R. H. (2022). A first assessment of microplastic abundance in sandy beach sediments of the Paranaguá estuarine complex, south Brazil (RAMSAR site). Mar. pollut. Bull.177, 113530. doi: 10.1016/j.marpolbul.2022.113530

  • 66

    Neves R. A. F. Seixas J. T. C. Rodrigues N. Santos L. N. (2022). Impacts of the COVID-19 pandemic restrictions on solid waste pollution in the worldwide iconic Copacabana beach (Rio de Janeiro, Brazil). Mar. pollut. Bull.181, 113865. doi: 10.1016/j.marpolbul.2022.113865

  • 67

    Odebrecht C. Secchi E. R. Abreu P. C. Muelbert J. H. Uiblein F. (2017). Biota of the patos lagoon estuary and adjacent marine coast: long-term changes induced by natural and human-related factors. Mar. Biol. Res.13, 38. doi: 10.1080/17451000.2016.1258714

  • 68

    Oliveira F. R. F. Yokoyama L. Q. (2021). Response of Ocypode quadrata to storm waves on an urbanized sandy beach. Ocean Coast. Res.69, v69:e21005. doi: 10.1590/2675-2824069.20-339FRFO

  • 69

    Petracco M. Cardoso R. C. Turra A. (2013). Patterns of sandy-beach macrofauna production. J. Mar. Biol. Assoc. U.K.93, 17171725. doi: 10.1017/S0025315413000246

  • 70

    Pinotti R. M. Minasi D. M. Colling L. A. Bemvenuti C. E. (2014). A review on macrobenthic trophic relationships along subtropical sandy shores in southernmost Brazil. Biota Neotrop.14(3):e20140069. doi: 10.1590/1676-06032014006914

  • 71

    Pombo M. Turra A. (2013). Issues to be considered in counting burrows as a measure of Atlantic ghost crab populations, an important bioindicator of sandy beaches. PloS One8, e83792. doi: 10.1371/journal.pone.0083792

  • 72

    Pombo M. Turra A. (2017). Variation in the body growth parameters of the ghost crab ocypode quadrata from morphodynamically distinct sandy beaches. Braz. J. Oceanogr.65, 656665. doi: 10.1590/s1679-87592017114606504

  • 73

    Ragagnin M. N. Turra A. (2022). Imposex incidence in the sandy beach snail Hastula cinerea reveals continued and widespread tributyltin contamination after its international ban. Reg. Stud. Mar. Sci.49, 102118. doi: 10.1016/j.rsma.2021.102118

  • 74

    Rangel D. F. Silva E. F. N. Da and Costa L. L. (2022). Occurrence and behaviour of shorebirds depend on food availability and distance of beaches from urban settlements. Acta Ornithol.56, 217226. doi: 10.3161/00016454AO2021.56.2.008

  • 75

    Rêgo J. C. L. Soares-Gomes A. da Silva F. S. (2018). Loss of vegetation cover in a tropical island of the Amazon coastal zone (Maranhão island, Brazil). Land Use Policy71, 593601. doi: 10.1016/j.landusepol.2017.10.055

  • 76

    Roth F. Lessa G. C. Wild C. Kikuchi R. K. P. Naumann M. S. (2016). Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil). Mar. pollut. Bull.106 (1), 4348. doi: 10.1016/j.marpolbul.2016.03.048

  • 77

    Santos T. M. T. Almeida M. F. Aviz D. Rosa Filho J. S. (2021a). Patterns of spatial and temporal distribution of the macrobenthic fauna on an estuarine macrotidal sandy beach on the Amazon coast (Brazil). Mar. Ecol. Evol. Persp.42 (5), e12675. doi: 10.1111/maec.12675

  • 78

    Santos T. M. T. Aviz D. (2018). Macrobenthic fauna associated with Diopatra cuprea (Onuphidae: Polychaeta) tubes on a macrotidal sandy beach of the Brazilian Amazon coast. J. Mar. Biol. Assoc. U. K.99, 751759. doi: 10.1017/S0025315418000711

  • 79

    Santos T. M. T. Aviz D. (2020). Effects of a fish weir on the structure of the macrobenthic community of a tropical sandy beach on the Amazon coast. J. Mar. Biol. Assoc. U. K.100 (2), 211219. doi: 10.1017/S0025315419001231

  • 80

    Santos T. M. T. Petracco M. Venekey V. (2021b). Recreational activities trigger changes in meiofauna and free-living nematodes on Amazonian macrotidal sandy beaches. Mar. Environ. Res.167, 105289. doi: 10.1016/j.marenvres.2021.105289

  • 81

    Santos T. M. T. Petracco M. Venekey V. (2022). Effects of vehicle traffic and trampling on the macrobenthic community of Amazonian macrotidal sandy beaches. J. Mar. Biol. Assoc. U. K.102 (3-4), 285307. doi: 10.1017/S0025315422000480

  • 82

    Seixas V. C. Steiner T. M. Solé-Cava A. M. Amaral A. C. Z. Paiva P. C. (2021). Hidden diversity within the Diopatra cuprea complex (Annelida: Onuphidae): morphological and genetics analyses reveal four new species in the south-west Atlantic. Zool. J. Linn. Soc191 (3), 637671. doi: 10.1093/zoolinnean/zlaa032

  • 83

    Shah Esmaeili Y. Checon H. H. Corte G. N. Turra A. (2021b). Parasitism by isopods in sandy beach fish assemblages: role of urbanization and environmental characteristics. Hydrobiologia848 (20), 48854901. doi: 10.1007/s10750-021-04680-0

  • 84

    Shah Esmaeili Y. Corte G. N. Checon H. H. Bilatto C. G. Lefcheck J. S. Amaral A. C. Z. et al . (2022). Revealing the drivers of taxonomic and functional diversity of nearshore fish assemblages: implications for conservation priorities. Divers. Distrib.28, 15971609. doi: 10.1111/ddi.13453

  • 85

    Shah Esmaeili Y. Corte G. N. Checon H. H. Gomes T. Lefcheck J. Amaral A. C. Z. et al . (2021a). Comprehensive assessment of shallow surf zone fish biodiversity requires a combination of sampling methods. Mar. Ecol. Prog. Ser.667, 131144. doi: 10.3354/meps13711

  • 86

    Sills J. Soares M. O. Teixeira C. E. P. Bezerra L. E. A. Rossi S. Tavares T. et al . (2020). Brazil Oil spill response: time for coordination. Science367, 155. doi: 10.1126/science.aaz9993

  • 87

    Silva C. F. Seixas V. C. Barroso R. Di Domenico M. Amaral A. C. Paiva P. C. (2017). Demystifying the Capitella capitata complex (Annelida, Capitellidae) diversity by morphological and molecular data along the Brazilian coast. PloS One12 (5), e0177760. doi: 10.1371/journal.pone.0177760

  • 88

    Simões R. S. Calliari L. J. de Figueiredo S. A. de Oliveira U. R. de Almeida L. P. M. (2022). Coastline dynamics in the extreme south of Brazil and their socio-environmental impacts. Ocean Coast. Manage.230, 106373. doi: 10.1016/j.ocecoaman.2022.106373

  • 89

    Slinger J. Stive M. Luijendijk A. (2021). Nature-based solutions for coastal engineering and management. Water13 (7), 976. doi: 10.3390/w13070976

  • 90

    Soares M. O. Campos C. C. Carneiro P. M. B. Barroso H. S. Marins R. V. Teixeira C. E. P. et al . (2021). Challenges and perspectives for the Brazilian semi-arid coast under global environmental changes. Perspect. Ecol. Conserv.19 (3), 267278. doi: 10.1016/j.pecon.2021.06.001

  • 91

    Souza D. G. C. Petracco M. Danin A. P. F. Pombo M. (2021). Population structure and use of space by ghost crabs (Brachyura: Ocypodidae) on an equatorial, macrotidal sandy beach. Estuar. Coast. Shelf Sci.258, 107376. doi: 10.1016/j.ecss.2021.107376

  • 92

    Tsukada E. Fernandes E. Vidal C. Salla R. F. (2021). Beach morphodynamics and its relationship with the deposition of plastic particles: a preliminary study in southeastern Brazil. Mar. pollut. Bull.172, 112809. doi: 10.1016/j.marpolbul.2021.112809

  • 93

    Turra A. Pombo M. Petracco M. Siegle E. Fonseca M. Denadai M. R. (2016). Frequency, magnitude, and possible causes of stranding and mass-mortality events of the beach clam tivela mactroides (Bivalvia: veneridae). PloS One11(1), e0146323. doi: 10.1371/journal.pone.0146323

  • 94

    UNGA (United Nations General Assembly) . (2015). Transforming our world: the 2030 agenda for sustainable development. New York: UNGA.

  • 95

    Xavier L. Y. Gonçalves L. R. Checon H. H. Corte G. N. Turra A. (2020). Are we missing the bigger picture? an analysis of how science can contribute to an ecosystem-based approach for beach management on the são paulo macrometropolis. Ambiente Sociedade23, e01411. doi: 10.1590/1809-4422asoc20190141r1vu2020L2DE

  • 96

    Xavier L. Y. Guilhon M. P. Gonçalves L. R. Correa M. R. Turra A. (2022). Waves of change: towards ecosystem-based management to climate change adaptation. Sustainability14, 1317. doi: 10.3390/su14031317

Summary

Keywords

anthropocene, biodiversity, socio-ecological systems, conservation, management, ecosystem-based management

Citation

Corte GN, Shah Esmaeili Y, Maria TF, Costa LL, Mattos G, Checon HH, Malinconico N, Paiva PC, Debiasi P, Cabrini T, Seixas VC, Bulhões E, Rosa Filho JS, Colling LA, da Rosa LC, Yokoyama LQ, Cardoso R, Pombo M, Mancini PL, Xavier LY, Santos T, Petracco M, Bechara LS, Laurino IRA, Di Domenico M, Odebrecht C, Klein AHdF, Rocha Barreira CdA, Soares-Gomes A, Zalmon IR, Amaral ACZ, Turra A and Barboza CAdM (2023) The science we need for the beaches we want: frontiers of the flourishing Brazilian ecological sandy beach research. Front. Mar. Sci. 10:1200979. doi: 10.3389/fmars.2023.1200979

Received

05 April 2023

Accepted

13 June 2023

Published

07 July 2023

Volume

10 - 2023

Edited by

Salvatore Siciliano, Fundação Oswaldo Cruz (Fiocruz), Brazil

Reviewed by

Diego Lercari, Faculty of Science, Marine Science Unit, Universidad de la República, Uruguay

Updates

Copyright

*Correspondence: Guilherme Nascimento Corte, ; Carlos Alberto de Moura Barboza,

Disclaimer

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Outline

Cite article

Copy to clipboard


Export citation file


Share article

Article metrics