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Circular RNAs (circRNAs) play key roles in several biological processes in animals

and their regulatory mechanism in body color formation or pigmentation in fish

remains unclear. Here, circRNAs from black and red individuals of Plectropomus

leopardus were identified to clarify the mechanism of circRNAs and the

competing endogenous RNA (ceRNA) network (circRNA-microRNA (miRNA)-

messenger RNA (mRNA)) in body color formation. We detected a total of 1,424

novel circRNAs. Expression analysis of circRNAs in black vs. red P. leopardus

revealed 24 differentially expressed circRNAs (DECs), and 11 and 13 of these DECs

were up-regulated and down-regulated in red individuals relative to black

individuals, respectively (P<0.05 and |log2 Fold Change (FC)|>1). We identified a

total of 19 significant miRNA-circRNA-mRNA ceRNA networks through the

analysis of DECs, differentially expressed miRNAs (DEMs) and differentially

expressed genes (DEGs). Pathway enrichment analyses of the DEGs involved in

the ceRNA network revealed that they were mainly involved in melanin

metabolism and immune response. Our findings showed the possibility of the

regulatory functions of circRNAs and the corresponding ceRNA network in the

body color formation process and will aid the breeding selection process

of P. leopardus.
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1 Introduction

Fisheries and aquaculture provide important sources of food and

income, and their importance continues to grow as wild fish stocks

decline (Jennings et al., 2016; Belton et al., 2018). Body color is an

essential phenotypic trait that has implications for predator avoidance

and thermoregulation in animals (Leclercq et al., 2010). In fish, body

color can be an indicator of the quality and economic value of fish, as

fish with brighter, more vibrant colors are generally preferred by

consumers (Vissio et al., 2021). Several genes, miRNAs, and

metabolites that affect body color have been identified in previous

studies (Curran et al., 2009; Zhu et al., 2021; Hao et al., 2022a). For

example, Forkhead boxD3 (Foxd3) controls melanophore specification

in the zebrafish neural crest by regulation of microphthalmia

transcription factor (Mitf) which upstream of multiple genes

necessary for melanin production (Curran et al., 2009). Zhu et al.

(2021) reported that low-density lipoproteins receptor adapter 1,

guanosine triphosphatase, and regulator of G-protein signaling genes

and metabolites including tyrosine, lecithin, prostacyclin may

contribute to skin color differences in P. leopardus. A total of 158

differentially expressed miRNAs were identified in the skin color

differentiation of red tilapia and among them, miR-138-5p and miR-

722 were predicted to play important roles in regulating the

pigmentation process (Wang et al., 2018a). However, the molecular

regulatory mechanisms of these genes have not yet been clarified

(Bertolini et al., 2020).

Circular RNAs (circRNAs) are a large class of non-coding

RNAs with covalent bonds that link the 3´ and 5´ ends by back

splicing; they are involved in the regulation of various biological

processes in eukaryotic cells (Zhang et al., 2014). CircRNAs are

highly stable and resistant to degradation by ribonucleases because

they lack free 3′ or 5´ ends (Lasda and Parker, 2016). CircRNAs

perform their functions in various biological processes by binding

to their source genes via the formation of an R-loop, which results

in the cessation of transcription and even changes in phenotype (Xu

et al., 2020). CircRNAs might also function as microRNA (miRNA)

sponges and hinder miRNA-mediated gene inhibition or silencing

through competing endogenous RNA (ceRNA) networks (Salmena

et al., 2011; Memczak et al., 2013). Ribonucleoprotein complexes

can be formed by the binding of circRNAs to transcription factors

and RNA-binding proteins (Aktas et al., 2017; Quan et al., 2021).

Several studies have reported that circRNAs function in muscle

development (Kotb et al., 2015), transcriptional regulation (Zhang

et al., 2013), as well as cellular communication and signal

transduction (Li et al., 2015). Studies of circRNAs in fish have

mainly examined the roles of circRNAs in the pathogenesis of

various diseases in grass carp (Ctenopharyngodon idellus) (He et al.,

2017; Liu et al., 2019), flounder (Paralichthys olivaceus) (Xiu et al.,

2019), and Nile tilapia (Oreochromis niloticus) (Fan et al., 2019).

However, few studies have examined the function of circRNAs in

body color formation.

Several miRNAs involved in body color formation have been

documented in fish (Wang et al., 2018a; Dong et al., 2012; Kennell

et al., 2012; Dong et al., 2020). Multiple miRNAs in red tilapia and

common carp have been reported to regulate the expression of body
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color formation related genes (Wang et al., 2018a; Yan et al., 2013;

Luo et al., 2018). Recent studies have shown that messenger RNAs

(mRNAs) are not the only molecules regulated by miRNAs

(Poliseno et al., 2010; Quinn and Chang, 2016). CircRNAs can

mediate decreases in the expression of miRNAs via ceRNA

networks by acting as miRNA sponges, and this can have

downstream regulatory effects on the expression of target mRNAs

(Jiang et al., 2020).

P. leopardus is an important tropical and subtropical fish that

varies in body color (Zhu et al., 2021). Several body color-related

genes of P. leopardus have been identified in previous transcriptome

analyses (Zhu et al., 2021; Hao et al., 2022b; Yang et al., 2020a).

However, the specific regulatory mechanism of these genes has not

yet been clarified. Here, we identified several circRNAs in black and

red P. leopardus to clarify the molecular mechanism by which

circRNAs, via their corresponding ceRNAs, regulate the expression

of mRNAs involved in body color formation in P. leopardus.
2 Materials and methods

2.1 Experimental animals

Black and red P. leopardus fish (four months old) were obtained

and fed with Dongwan grouper feed (Guangdong Yuequn

Biotechnology Co., Ltd., China) twice per day (10 a.m. and 4

p.m.). Six red-colored and six black-colored individuals were

utilized for this experiment. Both the red-colored and black-

colored groups were obtained from base stock established with

the breeders collected from Hainan and Taiwan provinces of China,

Australia and Philippines. They were reared in the same conditions

with studies of Zhu et al. (2021) and Hao et al. (2022a). After

temporary rearing for one week, eugenol was used to anesthetize

fish; fish were then sacrificed, and skin tissue samples were taken.

All animal experiments were conducted in accordance with the

guidelines and approval of the respective Animal Care and Use

Committee of Guangdong Ocean University, China.
2.2 Sequencing of circRNAs and
bioinformatics analysis

Total RNA was extracted from skin tissue samples, and linear

RNAs were removed via treatment with RNase R. A strand-specific

library of the present study was constructed and sequenced using an

Illumina NovaSeq_6000 platform with the purified RNAs. The

sequenced data were then filtered by fastp (version 0.18.0) (Chen

et al., 2018). TopHat2 (version 2. 1.1) (Kim et al., 2013) was used to

map these filtered reads to the reference genome (Zhou et al., 2020).

The software find_circ (version 1) (Memczak et al., 2013) was used

to identify circRNAs. Types of circRNAs, their distribution on

chromosomes, and their length distribution were analyzed; circBase

(Glažar et al., 2014) annotations of the circRNAs were obtained via

BLAST searches. Novel circRNAs were circRNAs that could not

be annotated.
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2.3 Quantification of circRNA abundance

Reads per million mapped reads of circRNAs were

calculated using edgeR package (version 3.12.1) (http://

www.r-project.org/) to quantify the abundance of circRNAs.

DECs were identified (|log2FC|>1 and P < 0.05). The genes from

which circRNAs were derived were referred to as source genes.

Gene ontology (GO) and Kyoto Encylopaedia of Genes and

Genomes (KEGG) enrichment analyses of DECs source genes

were conducted to clarify the role of identified circRNAs.
2.4 CeRNA network analysis

The ceRNA network was constructed via analysis of DEGs

(|log2FC|>1 and false discovery rate (FDR) < 0.05), DECs (|log2FC|

>1 and P < 0.05), and DEMs (|log2FC|>1 and P < 0.05) between black

and red fish. miRNAs target genes were predicted using Mireap,

Miranda (version 3.3a), and TargetScan (version 7.0). The ceRNA

network was constructed using the following rules: regulator–target

relationships must exist between miRNAs and ceRNAs, and their

expression must be negatively correlated; there are only positive

correlations in the expression of ceRNAs; and there is competition

among ceRNAs for binding to the same miRNA. Significant

correlations between mRNAs and miRNAs, between circRNAs and

miRNAs, and between circRNAs and mRNAs were identified

(Spearman Rank correlation coefficient (SCC) < -0.7 and

Pearson correlation coefficient > 0.9). The significance of the

common miRNA sponges between two genes was evaluated using a

hypergeometric cumulative distribution function test (P< 0.05).DEGs

from the ceRNAs were analyzed via GO and KEGG pathway

enrichment analyses.
3 Results

3.1 Identification of circRNAs

The skin tissues of black and red P. leopardus were used to

construct circRNA libraries. A total of 75,683,350 and 76,705,950

reads were obtained from skin tissues of black and red fish, and the

number of clean reads for black and red fish samples was 75,560,371

and 76,569,781, respectively (Table 1). The raw data presented in
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the study are deposited in the Sequence Read Archive of the NCBI

(SRR22522288, SRR22522289, SRR22522290, SRR22522291,

SRR22522292, SRR22522293). The accession number is

PRJNA908242. The Q30 (the accuracy of each base is 99.9%)

values for the black and red fish were 94.4% and 94.6%,

respectively, which suggests that the data were sufficiently robust

for subsequent analysis. We identified a total of 1,424 circRNAs,

including 1,086 and 1,084 in the black and red group, respectively.

Analysis of the spliced lengths of the candidate circRNAs (which

ranged from 89 nucleotides (nt) to 72,726 nt) revealed that

approximately 90.9% and 49.0% of circRNAs had spliced lengths

less than 2,000 nt and between 201 and 500 nt, respectively

(Figure 1A). Analysis of the genes from which circRNAs were

derived revealed that most circRNAs (55.76%, 794 circRNAs) were

spliced from annot_exons, and only 1.69% of circRNAs (24

circRNAs) were intronic circRNAs (Figure 1B). Analysis of the

chromosomal distribution of circRNAs revealed that they were

present on every chromosome (Figure 1C).
3.2 Expression analysis of circRNAs

Expression of circRNAs in skin tissues of black and red P.

leopardus were analyzed. Principal component analysis (PCA)

revealed clear differences in circRNA expression between black

and red fish (Figure 2A). The numbers and distribution of circRNAs

are shown in a volcano plot (Figure 2B). We identified a total of 24

circRNAs (P < 0.05 and |log2 FC| > 1) (Supplemental Table 1;

Figure 2C). The expression of 11 and 13 DECs was up-regulated

and down-regulated in red fish compared with black fish,

respectively. A heatmap was made to visualize the expression

profiles of these DECs (Figure 2D). The heatmap revealed that

the expression profiles of DECs differed in black and red fish.
3.3 Pathway analysis of DEC source genes

A total of four DECs of the 24 DECs identified were circular

intronic RNAs with no source gene; the remaining 20 DECs were

circular exonic circRNAs and exon-intron circRNAs derived from

20 source genes. GO analysis showed that DEC source genes were

mainly involved in cellular component, molecular function, and

biological process (P < 0.5) and enriched in Golgi related pathway
TABLE 1 Sequencing data analysis of circRNA.

Sample Raw Reads Clean Reads (%) Q30 (%) GC content (%)

B-1 75863170 75747414 (99.85%) 94.46% 52.39%

B-2 77295838 77182800 (99.85%) 94.54% 52.82%

B-3 73891042 73750900 (99.81%) 94.13% 52.38%

R-1 75358516 75231890 (99.83%) 94.77% 53.06%

R-2 78443422 78294144 (99.81%) 94.44% 53.83%

R-3 76315912 76183310 (99.83%) 94.57% 52.97%
“B” and “R” represented black-colored and red-colored group, respectively.
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including Golgi apparatus part, Golgi membrane, and Golgi

apparatus (Figure 3A; Supplemental Table 2). KEGG pathway

enrichment of DEC source genes indicated that they were

enriched in several pathways, including bacterial invasion of

epithelial cells, chemokine signaling pathway, cellular senescence,

and ubiquitin-mediated proteolysis (Figure 3B).
3.4 Integrated analysis of DEMs with
DEGs and DECs

The DEG, DEM, and DEC datasets for red and black P.

leopardus were used to conduct an integrated analysis of DEMs

with DECs and DEGs. A total of 489 DEGs (Supplemental Table 3, |

log2FC|>1 and FDR < 0.05), 60 DEMs (Hao et al., 2022a, |log2FC|>1

and P < 0.05), and 24 DECs (Supplemental Table 1, |log2FC|>1 and

P < 0.05) were analyzed. A total of 2,173 mRNA–miRNA pairs,

including 379 DEGs and 59 DEMs, and 104 circRNA-miRNA pairs,

including 21 DECs and 53 DEMs, were identified in red and black P.

leopardus. SCC was less than -0.7 for 605 miRNA-mRNA pairs and

31 miRNA-circRNA pairs, and network analysis was conducted

using these miRNA-mRNA and miRNA-circRNA pairs

(Supplemental Tables 4, 5).
3.5 Analysis of the regulatory ceRNA
network (DECs-DEMs-DEGs)

The network analysis revealed 357 circRNA-mRNA pairs,

containing eight circRNAs and 272 mRNAs with an SCC greater

than 0.9. The final ceRNA network containing 19 miRNA-circRNA

andmiRNA-mRNA pairs (six circRNAs, 16 miRNAs, and 18mRNAs)

was generated by conducting hypergeometric cumulative distribution

function tests (P < 0.05, Supplemental Table 6). Connectivity analysis

was conducted on the hub genes of the net-work with important

functions. In the ceRNA network, APC membrane recruitment 2

(Dxb_GLEAN_10011350) was regulated by five miRNAs (miR-192-

z, miR-466-x, miR-625-x, novel-m0120-5p, and novel-m0121-3p) and

one circRNA (novel_circ_000127) (Figure 4). The tyrosine

family member genes tyrosinase related protein 1 (TYRP1)

(Dxb_GLEAN_10020133; Dxb_GLEAN_10003424) and tyrosinase

related protein 2 (TYRP2) (Dxb_GLEAN_10014015) were regulated

by one circRNA (novel_circ_000495) and one miRNA (novel-

m0095-3p).
3.6 GO analysis of ceRNA network DEGs

GO analysis revealed that DEGs of the ceRNA network were

significantly enriched in 71 GO terms (P < 0.05; Figure 5). These

71 GO terms included pigment-related terms (melanin metabolic

process, tyrosine metabolic process, pigment metabolic process,

pigment granule, pigmentation, pigment granule organization,

cellular pigmentation, pigment cell differentiation, and

developmental pigmentation), as well as immune-related terms or

stress response terms containing cellular response to glucocorticoid
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stimulus, response to ammoniumion, cellular response to

corticosteroid stimulus, and response to glucagon.
3.7 KEGG pathway analysis of ceRNA
network DEGs

A total of 24 enriched pathways, including pigmentation-

related pathways (tyrosine metabolism and melanogenesis) and

immune system pathways (C-type lectin receptor signaling

pathway, nucleotide-binding, oligomerization domain (NOD)-like

receptor signaling pathway, and chemokine signaling pathway)

(Figure 6) were detected in the KEGG pathway analysis of ceRNA

network DEGs. Infectious disease-related pathways such as

pertussis, Yersinia infection, and Salmonella infection were

also enriched.
4 Discussion

Body color is an essential phenotypic trait that affects the

adaptation of P. leopardus to its environment (Chen et al., 2019).

An increasing number of studies have examined the regulatory roles

of circRNAs in body color formation (Zhu et al., 2020). However,

the special mechanism by which circRNAs regulate body color

formation in marine animals has not been extensively studied. We

identified circRNAs involved in body color formation and

constructed circRNA-miRNA-mRNA networks in P. leopardus.

Pathway enrichment analyses were clarified to show the functions

of circRNAs in body color formation; the results of these analyses

provide data that could be used in future studies of the regulatory

mechanism by which circRNAs participate in marine animal body

color formation. The potential for miRNAs and mRNAs to be used

to alter the body color offish is low given that their half-lives in cells

and tissues are short. The potential for circRNAs to be used for this

purpose through targeted miRNA silencing is higher than that of

linear RNAs given that circRNAs are more chemically stable than

linear RNAs (Holdt et al., 2018; Rbbani et al., 2021).

We identified circRNAs in individuals of P. leopardus varying in

body color; these circRNAs were classified as exonic circRNAs

(one_exon, annot_exon, and exon_intron), intronic circRNAs, and

intergenic circRNAs. Exonic circRNAs were the most common, and

these findings are consistent with the results of previous studies of

tilapia and mice (Jeck et al., 2013; Fan et al., 2019). In tilapia,

multiple circRNAs can be derived from a single gene (Fan et al.,

2019). In our study, one source gene could generate multiple

circRNA isoforms in P. leopardus, and this was associated with

alternative back splicing.

CircRNAs are synthesized by back splicing, which differs from

the traditional splicing mechanism of linear mRNAs; study of the

function of the source mRNAs can provide insights into the

functions of circRNAs. A total of 24 DECs were identified via

analysis of the expression of DECs between black and red P.

leopardus. CircRNAs can be co-expressed with their source genes

in the same locus (Huang et al., 2017), and they can play a role in

regulating the expression of their source genes by mediating
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decreases in the quantity of pre-mRNA for canonical splicing

(Salzman et al., 2012). In addition, the linear transcripts of the

source gene might regulate the expression of circRNAs. The

novel_circ_001296 DEC was transcribed from the foxp1b

(Dxb_GLEAN_10021390) gene. Previous studies have shown that

miR-429 silencing can lead to an increase in Foxd3 expression in

vivo and inhibit MITF expression, which leads to decreases in the
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expression of downstream genes, including the melanin synthesis-

related genes tyrosinase (TYR), TYRP1, and TYRP2 (Yan et al.,

2013). The novel_circ_000160 DEC was transcribed from the

SLC9A7 (Dxb_GLEAN_10021160) gene. Solute carriers (SLCs)

play a role in skin pigmentation or body color formation, and

many SLC genes are differentially expressed in chicken, tilapia, and

leopard grouper individuals varying in color (Hao et al., 2022b;
A B

C

FIGURE 1

Analysis of the circRNAs identified in P. leopardus. (A) Length distribution of circRNAs. The column represents the frequency of length (left longitudinal
axis), and the curve represents the percentage of length (right longitudinal axis) (B) Categories of circRNAs including annot_exons, antisense,
exon_intron, intergenic, intronic and one_exon. (C) The chromosomal locations of circRNAs which showed that cirRNAs were present on
every chromosome.
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Hoglund et al., 2011; Zhu et al., 2016; Chen et al., 2020). The source

genes of the DECs are also involved in protein ubiquitination. E3

ubiquitin-protein ligase CBL (Dxb_GLEAN_10018739) is involved

in the process of ubiquitin-mediated protein degradation

(Hochrainer et al., 2005), and the up-regulation of the gene

encoding this protein in black fish relative to red fish suggests

that protein degradation has occurred. However, additional studies

are needed to clarify the relationships between source genes

and circRNAs.

The activity and expression of miRNAs can be inhibited by

circRNAs, and this can alter the expression of the target genes of

miRNAs (Hansen et al., 2011; Hansen et al., 2013). Genetics plays a role

in trait inheritances and the SNP detection of trait-related genes or

regulatory molecules to obtain potential markers for phenotype in

breeding has been widely used in aquaculture (Fan et al., 2017; Lei et al.,

2019; Yang et al., 2020b). In the present study, differential expression of
Frontiers in Marine Science 06
circRNAs and genes in the two phenotypes is evident, which may

suggest a direction for the SNPs detection which were associated with

body color formation. Color phenotype is determined by the

combination of genetics and environmental factors, and changes in

environmental factors can also trigger variations in hormone and

neuron secretion, resulting in different skin color responses (Luo

et al., 2021). For example, background color signals are transmitted

to the brain via vision, and are processed by the central nervous system

to act on skin pigment cells to adjust the body color to the background

color (Zimmermann et al., 2018). Dietary Cys and Tyr could affect the

melanin synthesis pathway in the red tilapia and participate in the skin

color differentiation (Wang et al., 2018b). Therefore, it is reasonable to

hypothesize that body color changes triggered by environmental factor

is partially related to the expression level changes in molecules

including circRNAs, miRNAs and mRNAs through participating in

or regulating pigmentation related pathway.
A B

DC

FIGURE 2

Analysis of the expression of circRNAs. (A) Results of a PCA of the expression levels of circRNAs in black and red P. leopardus. (B) Volcano plot of
circRNAs. Red and blue dot represented up-regulated and down-regulated genes in the red-colored group compared with black-colored group,
respectively. (C) Analysis of DEGs in black and red P. leopardus. Red and blue columns represented the number of up-regulated and down-regulated
genes in the red-colored group compared with black-colored group, respectively. (D) Heatmap of the expression profiles of circRNAs. Red and blue
represented high expression and low expression, respectively. “B” and “R” represented black-colored and red-colored group, respectively.
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A B

FIGURE 3

Enrichment analysis of circRNA source genes. (A) GO terms analysis of circRNA source genes. Red, green and blue represented the biological process,
cellular component, and molecular function terms, respectively. (B) KEGG pathway enrichment analysis of circRNA source genes. The length of column
showed the number and percent of pathway, and the depth of color showed q-value of pathway.
FIGURE 4

ceRNA network connectivity analysis. The first, second, and third column showed the DECs, DEMs, and DEGs, respectively. In the first and third
column, the same color showed the same DECs and DEGs network, respectively.
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A B

FIGURE 5

GO analysis of DEGs from the ceRNA network. (A) Analysis of the GO terms enrichment of DEGs from the ceRNA network. The first circle: the top
20 GO terms in the enrichment analysis, and the outside circle is the coordinate scale for the number of DEGs. Different colors represent different
Ontology; Circle 2: The DEGs number and Q value of the GO term in background. The more the number of DEGs, the longer the bars, and the
smaller the Q value, the redder the color; Circle 3: The number of DEGs in the GO term; Circle 4: RichFactor value of each GO term. (B) GO terms
analysis of DEGs from the ceRNA network. Red, green and blue represented the biological process, cellular component, and molecular function
terms, respectively.
A B

FIGURE 6

KEGG pathway analysis of DEGs from the ceRNA network. (A) KEGG pathway enrichment analysis of DEGs from the ceRNA network. The length of
column showed the number and percent of pathway, and the depth of color showed q-value of pathway. (B) Analysis of the KO enrichment of DEGs
from the ceRNA network. The first circle: the top 20 pathway in the enrichment analysis, and the outside circle is the coordinate scale for the
number of DEGs. Different colors represent different class; Circle 2: The DEGs number and Q value of the pathway in background. The more the
number of DEGs, the longer the bars, and the smaller the Q value, the redder the color; Circle 3: The number of DEGs in the pathway; Circle 4:
RichFactor value of each pathway.
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GO analysis of DEC source genes revealed that genes related to

body color variation were involved in Golgi apparatus part, Golgi

membrane, and Golgi apparatus. Tyrosinase family proteins involved

in melanin biosynthesis might be trafficked through the Golgi

apparatus and then to type II melanosomes, where they promote

melanin deposition (Dooley et al., 2013). Therefore, novel_circ_001363

might regulate the expression of its source gene to modify the transport

of TYR and TYRP1 through the Golgi apparatus (Hu et al., 2022).

Black body color is highly associated with melanin synthesis (Henning

et al., 2013); in our study, DEGs in the ceRNA network were enriched

in melanin synthesis-related pathways, including melanogenesis and

tyrosine metabolism (Kelsh, 2004).

RNAs with the same miRNA-binding site may compete with each

other for miRNA binding and function as ceRNAs. Previous studies

have shown that circRNAs play a regulatory role in determining the

color of the hair on the skin of mice via the circRNA-miRNA-mRNA

ceRNA network (Zhu et al., 2018; Zhu et al., 2020). In our study, the

ceRNA network was constructed, and related DEGs were enriched in

several immune pathways, indicating that circRNAs might regulate the

immunity of fish varying in body color. Higher levels of melanin

promote immune defense and wound healing in Amphiprion percula

(Smith et al., 2018). Darker eumelanic individuals show higher

immune activity than lighter individuals (McGraw, 2005; Ducrest

et al., 2008). However, additional studies are necessary to determine

whether these genes are targeted by circRNAs or whether they affect the

body color of P. leopardus.
5 Conclusions

A total of 1,424 novel circRNAs were identified in black and red

P. leopardus. A total of 24 circRNAs were detected as DECs.

Integrated analysis of DECs, DEMs, and DEGs yielded a ceRNA

network with 19 significant miRNA-circRNA and miRNA-mRNA

pairs. Pathway enrichment of ceRNA network DEGs revealed that

they may participate in the regulation of the immune response and

melanin-related metabolism. The results indicated the potential

functions of circRNAs and the ceRNA network in body color

formation and will aid future efforts to breed P. leopardus

individuals with colors.
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