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Regeneration is a complex process influenced by many independent or

combined factors, including inflammation, proliferation, and tissue remodeling.

The ocean, the most extensive resource on Earth, is rich in Seaweed. With

increasing research in recent years, researchers have discovered that seaweed

polysaccharides have various pharmacological effects, including a particular

efficacy in promoting bone tissue regeneration. However, the application of

this material in the field of bone tissue engineering is very limited. However, there

are few studies on the polysaccharide at home and abroad, and little is known

about its potential application value in bone repair. In addition, the bioavailability

of the seaweed polysaccharide is also low, and there are still many problems to

be solved. For example, the ease of solubility of fucoidan in water is a key issue

that restricts its practical application. In this review, we summarize the

applications and mechanisms of seaweed polysaccharides in bone healing. We

also propose to combine seaweed polysaccharides with novel technologies

through different types of preparations, hydrogels, scaffolds, and 3D printing to

improve their use in tissue healing and regeneration.

KEYWORDS

seaweed polysaccharide, polysaccharide sulfate, bone regeneration, novel formulation,
regenerative medicine
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GRAPHICAL ABSTRACT
1 Introduction

Bone tissue is a highly dynamic, complex vascularized tissue

that undergoes continuous remodeling throughout life (Hoseinpour

and Shariatinia, 2021). While bone tissue has a degree of self-

healing ability, its ability to repair itself is limited when faced with

severe injuries, such as trauma, infection, tumor removal, and joint

revision (McKinley et al., 2023). These diseases are beyond the

ability of humans to heal themselves, making it difficult to recover

through autologous bone tissue regeneration alone. The healing

time is long, and patients will suffer great pain. Bone tissue damage

often leads to severe disability (Alazzam et al., 2023). Therefore,

bone tissue regeneration is becoming a hot research topic, and it is

vital to explore promising treatment strategies (Fu et al., 2022).

Consequently, a new treatment is needed to promote bone

tissue regeneration.

As the largest part of the Earth, the ocean is rich in resources

containing different types of plants and animals, including seaweed.

As a simple marine plant, seaweed organisms consist mainly of

structural components such as extracellular matrix, cell wall, and cell

plasma (Giuliani, 2019). Primary and secondary metabolites in

seaweed organisms include large molecular weight biomass

components (e.g., seaweed polysaccharides, proteins, and brown

seaweed starch) and medium, small, and trace components, such as

fucoidan polyphenols, rock seaweed polysaccharides, carotenoids,

vitamins, and various mineral elements (Chudasama et al., 2022).

Bioactive substances in seaweed mainly include polysaccharides,

proteins, terpenoids, sterols, polyphenols, cyclic polysulfide

compounds, macrolides, etc. Seaweeds mainly include red algae,

green algae, brown algae, and microalgae. Red seaweed sulfated

polysaccharides are mainly classified as agar and carrageenan.The

polysaccharides of red algae are mainly composed of galactose with

sulfate, and may contain small amounts of xylose and mannose.
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Ulvan is the main water-soluble polysaccharide in green algae,

containing rhamnose, xylose, glucuronic acid and so on. There are

three main types of fucoidan: fucoidan, fucoidan sulfate and fucoidan

starch. Fucoidan in brown algae can be categorized into two main

groups according to their sources: one group mainly comes from

kelp, palm kelp, pine algae, branching tube algae, and cordyceps, etc.;

the other group comes from the genera Vesiculoblastus andMurraya.

Fucoidan has a complex structure, which not only has a variety of

connection methods, but also contains monosaccharides such as

fucose, a small amount of glucose, galactose, mannose, xylose and

so on. Microalgae are a class of widely distributed, nutrient-rich,

highly photosynthetically utilized autotrophic plants, and the

products of cellular metabolism have good prospects for

development in the fields of food, medicine, and genetic

engineering(Barkia et al., 2019; Dolganyuk et al., 2020). Seaweed

polysaccharides show superior bioactive diversity and good

therapeutic potential, with antioxidant, antitumor, anti-

inflammatory, antilipidemic, anticoagulant, antiviral, antibacterial,

immunomodulatory, and other functional properties (Carson et al.,

2018; Manlusoc et al., 2019; Cook et al., 2021). Current research has

shown that the amount of specific secondary metabolites determines

the potential for potent bioactivity of seaweeds also depend on the

structural activity relationship of the compounds present in them,

and that seaweed polysaccharides can reduce the risk of digestive

disorders and chronic diseases, such as diabetes, cancer and

cardiovascular disease, compared with other species of Seaweed,

such as microSeaweed. Therefore, the incorporation of seaweed

components into the production of novel natural medicines is one

of the goals of marine medicine, a new discipline of pharmacology

that has developed in recent decades. Some of these compounds have

osteogenic potential, with such osteogenic compounds being

dominated by the sulfated polysaccharides (SPs) of seaweed

polysaccharides (Carson et al., 2018).
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Regenerative medicine is an interdisciplinary discipline that has

developed over the years and shown great promise in treating

various diseases (Edgar et al., 2020). Studies have shown that

seaweed polysaccharides can be effectively used in regenerative

medicine (Chaves Filho et al., 2022), with bone tissue

regeneration a popular research topic (Venkatesan et al., 2019).

As research progresses, combining hydrogel, scaffold, and 3D

printing technologies with seaweed polysaccharides becomes a

new development trend. However, since few review articles cite

the role of seaweed polysaccharides in bone tissue regeneration, this

review focuses on their potential in bone regeneration. This review

will introduce the main mechanisms of seaweed polysaccharides for

bone regeneration and the novel preparations of seaweed

polysaccharides, aiming to contribute to the regenerative

medicine field.
2 Seaweed polysaccharides

The unique ecological environment of the ocean has led to the

production of many biologically active substances with novel

structures and diverse activities, the more notable being seaweed

plant polysaccharides (Lomartire and Goncalves, 2022). Seaweed is

one of the richest resources in the ocean, with high nutritional

value, and has attracted significant attention (Chudasama et al.,

2021). Polysaccharides are the main constituents of seaweeds,

accounting for up to 76% of their dry weight (Xu et al., 2017).

Polysaccharides are a structural component of the seaweed cell wall

(de Jesus Raposo et al., 2015). Seaweed polysaccharides have good

biological activity and have the advantages of being widely available,

residue-free, and non-biotolerant (Echave et al., 2021). SP extracted

from marine macroSeaweed can be used as a scaffolding system for

the extracellular matrix of bone tissue and is usually closely

associated with pharmacological activities such as anticoagulation,
Frontiers in Marine Science 03
antioxidant, antitumor, and tissue regeneration (Saravana

et al., 2018).

Seaweed SPs are a class of natural or chemically modified

polysaccharides, a polysaccharide complex extracted from

seaweed plants that can scavenge hydroxyl radicals and

superoxide anion radicals and has the advantages of non-toxic

side effects, inexpensive raw materials, easy to prepare, and easy to

use (Beaumont et al., 2021). SPs have been shown to have specific

biological activity in promoting bone tissue regeneration. These SPs

are mainly divided into agarose and galactose, especially the 4-

linked a-galactose residues of the l-series galactose called agarose

and the d-series called galactose (Seedevi et al., 2017). In most

seaweeds, the galactopyranosyl sulfate content is dominant, and

galactopyranosyl sulfate has a linear backbone consisting of

alternating 3-linked-D-galactopyranosyl units (A-unit) and 4-

linked-galactopyranosyl units (B-unit) (Ciancia et al., 2020). SPs

are classified as agarose and carrageenan according to their

stereochemistry. Specifically, galactose with four attached a-
galactose residues in the L series is called agarose, and galactose

in the D series is called carrageenan. MacroSeaweed SPs have

promising applications in building bone tissue repair and

regeneration. For example, Kwack designed a fucoidan and

polydopamine (PDA)-based composite membrane for use as a

culture platform for periodontal ligament stem cells (PDLSCs)

and explored the major molecular pathways induced during the

osteogenic differentiation of PDLSCs by transcriptome profiling,

showing that the fucoidan idan/PDA complex promotes the

osteogenic potential of PDLSCs by activating key molecular

pathways (Kwack et al., 2022) (Table 1).

Carrageenan is mainly derived from red seaweed, accounting

for about 30%–75% of the dry weight of the seaweed cell wall

(Qureshi et al., 2019). It is a natural polysaccharide carbohydrate

polymer consisting of alternating d-galactose and 3,6-

anhydrogalactose units (Ha et al., 2022) linked by a-1,3 and
TABLE 1 Types of seaweeds, their structure, characteristics and their range of applications.

Type Polysaccharides Main features Structure Distribution
area

Areas of
application

References

Red
seaweed

Carrageenan The plant body is mostly filamentous,
leafy, or dendritic, with a few unicellular
or groups.

Alternate units of d-
galactose and 3,6-
anhydrogalactose (3,6-
anhydrogalactose),
linked by a-1,3 and b-
1,4-glycosidic bonds

Near tropical and
subtropical coasts

Biomedical
Engineering,
Drug Delivery
and Biosensors

(Li et al., 2014;
Ha et al., 2022;
Thye et al.,
2022)

Brown
seaweed

Fucoidan Its branched filopodia composed of
uniseriate cells; evolved species with
differentiation similar to that of roots,
stems, and leaves, and its internal
structure with differentiation of
epidermal, cortical, and medullary tissues.

Polymerization of b-
D-mannuronic acid
(M) and a-L-
gulonuronic acid (G)
through 1,4-glycosidic
bonds

Western North
Pacific

Food,
biomedical, daily
chemicals, textile
printing and
dyeing, and
wastewater
treatment

(Dekamin et al.,
2018; Etman
et al., 2020;
Guo et al.,
2020)

Green
seaweed

Ulvan Has a central vesicle, pigmented in a
stroma, which varies in shape depending
on the species.

1,4-Glycosidic bonds
linked to uronic acid
(glucuronide and/or
iduronic acid)

Most abundant in
fresh water, but
also in seawater
and on land in
shady and wet
places

Feed, food and
drug
development

(Lakshmi et al.,
2020; Ahmad
et al., 2021;
Sulastri et al.,
2021)
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b-1,4-glycosidic bonds. More than 15 carrageenans have been

reported to date (Thye et al., 2022). It is abundant in the

extracellular matrix of red seaweeds (Usov, 2011). Carrageenan is

an anionic sulfated polygalactose consisting of repeating

disaccharide units with a sulfate content of 15%–40% and an

average relative molecular mass >100,000 (Prajapati et al., 2014).

Carrageenan has gained much attention in biomedical engineering,

drug delivery, and biosensor applications in recent years due to its

special properties, such as biocompatibility, biodegradability, and

gel-forming ability (Li et al., 2014). Cao et al. Conducted a study in

which they experimentally showed that k-carrageenan promotes the

adhesion and spreading, metabolic activity, proliferation, and

osteogenic differentiation of MC3T3-E1 preosteoblasts, suggesting

that k-carrageenan is a potential osteogenic inducer for bone

regeneration that could be used for clinical applications (Cao

et al., 2021).

Fucoidan is an SP usually isolated from brown seaweed

(Jayawardena et al., 2022). Kylin first isolated it in 1913

(Harada and Maeda, 1998). As a linear polysaccharide with

different physiological and biochemical properties according to

its structure and composition, fucoidan has great application

value and potential in food, medicine, and cosmetics (Mabate

et al., 2021). Fucoidan is a linear multimer consisting of b-D-
mannuronate and a-L-guluronate units linked by 1→4 glycosidic

bonds (Etman et al., 2020). Fucoidan can have different

compositions and structures from different sources, such as a

high fucoidan gulono-alkylate content (M/G residue ratio <1) in

Laminaria hyperborea, low fucoidan gulono-alkylate content in

marine macroSeaweed (Durvillaea potatorum), and acetylation in

bacteria (Li et al., 2008; van Weelden et al., 2019). Fucoidan

structure is also influenced by season, growth environment, age,

and site in some brown Seaweed (Fitton et al., 2019; Tran et al.,

2021). Small amounts of monosaccharides, such as glucose,

xylose, mannose, and galactose, are also present in the

molecular structure of fucoidan (Zayed et al., 2020).Fucoidan

can induce bone formation in MG-63 cells and has also been

shown to induce the osteogenic differentiation of stem cells for

bone tissue regeneration (Venkatesan et al., 2015; Citkowska

et al., 2019). Fucoidan has the molecular formula (C6H8O6)n
and is a naturally biocompatible and biodegradable polymer

widely used in various biomedical applications (Guo et al.,

2020). Fucoidan is a natural linear polymeric. Alginate is

present in the cell wall of brown Seaweed mainly as calcium

alginate and partially as magnesium alginate, potassium alginate,

and sodium alginate (SA) (Guo et al., 2020). Since fucoidan has

good biocompatibility and antioxidation, gelation, and other

properties, it is widely used in food, biomedicine, daily

chemicals, textile printing and dyeing, and wastewater

treatment (Dekamin et al., 2018). In bone tissue regeneration,

fucoidan has osteogenic ability and promotes stem cell

proliferation, resulting in sufficient osteoblast adhesion and

thus accelerating the healing of bone tissue (Sikkema et al.,

2021) . In cart i lage t issue engineer ing , i t provides a

microenvironment for chondrocyte growth, maintains the cell

phenotype and its expression, and enables faster cartilage tissue

healing (Huang et al., 2012).
Frontiers in Marine Science 04
Ulvan is the primary water-soluble polysaccharide found in

green Seaweed. Like other polysaccharides found in seaweeds, its

abundance in nature, wide range of sources, and high research value

in medicine have made ulvan a hot research topic (Kikionis et al.,

2022; Liu D. et al., 2022; Tanaka et al., 2022). Ulvan is a complex

anionic SP of the genus Ulva, and studies of its biological activities

have reported anticoagulant, antioxidant, antihyperlipidemic,

antibacterial, antimicrobial, antiviral, tissue regenerative, and

immunomodulatory properties. Several studies have found that

ulvan can be used as a biomaterial polymer with excellent

chemical properties, such as the easy hydrogel formation, scaffold

formation, and electrospinning of nanofibers, which could

potentially be used in biomedical applications (Ibrahim et al.,

2022). It has unique functional properties compared to other

seaweed polysaccharides, such as carboxyl, hydroxyl, and sulfate

groups (Lakshmi et al., 2020). The main component of ulvan’s

chemical structure is sulfated rhamnose, which is linked to uronic

acid (glucuronide and/or iduronic acid) by a 1,4-glycosidic bond

(Sulastri et al., 2021). Ulvan’s biosynthesis and, therefore, its

chemical structure vary by seaweed species, harvesting areas, and

growing conditions (Ahmad et al., 2021). These large differences in

chemical structure lead to differences in physiological functions,

although the exact mechanisms of action remain unclear.

The unique ecological environment of the ocean has led to the

production of many biologically active substances with novel

structures and diverse activities, the more notable of which are

seaweed polysaccharides. Their diverse and heterogeneous structure

makes studying their structure challenging and may hinder their

development as therapeutic agents. Due to their chemical and

biological properties, seaweed SPs have great potential for

biomedical applications, especially in bone tissue regeneration.

Seaweed polysulfates have promising applications in promoting

bone tissue repair and regeneration.
3 Application of seaweed
polysaccharides in bone regeneration

Bone tissue regeneration undergoes three ongoing and

overlapping phases: inflammation, regeneration, and remodeling.

Initial inflammation induces immune cells such as T cells or

monocytes. These cells produce cytokines such as tumor necrosis

factor (TNF) and interleukin (IL)-6. However, infection may lead to

prolonged inflammation, and systemic circulation of the remaining

pro-inflammatory cytokines, such as IL-6, TNF, and IL-1, can

adversely affect bone regeneration (Newman et al., 2021).

Seaweed polysaccharides can induce osteogenic differentiation of

stem/progenitor cells (Chaves Filho et al., 2022). It can also exert its

anti-inflammatory effects by modulating a series of inflammation-

related signaling pathways, including NF-kB, MAPK, JAK/STAT,

PI3K/AKT, and Nrf2/HO-1, thereby regulating the production of

various inflammation-related factors. Macrophages are an

important target for bone repair in bone tissue engineering

(Sadowska and Ginebra, 2020). Building a locally appropriate

bone immune microenvironment is a novel therapeutic strategy

(Schlundt et al., 2021; Healy et al., 2023). Macrophages secrete cells
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that regulate inflammation and control the function of osteoblasts.

M1 macrophages secrete inflammatory cytokines, including TNF,

IL-1b, IL-6, IL-12, and IL-23. M2 macrophages release anti-

inflammatory cytokines, including IL-10, transforming growth

factor (TGF)-b, and IL-1RA. One study on IL-10-deficient mice

showed that IL-10 enhances osteoblast differentiation. TGF-b is an

osteogenic factor upstream of the bone morphogenetic protein

(BMP) signaling pathway that ultimately induces osteoblast

differentiation (Lee et al., 2019). Factors such as TGF-b and IL-4

induce osteoblast migration, proliferation, or bone extracellular

matrix secretion in the early stages of differentiation (Apostolova

et al., 2020) (Figure 1).

Alginate significantly affects the phenotype and function of

macrophages (Sadowska and Ginebra, 2020; Li et al., 2023c).

Alginate is the most commonly used polysaccharide and

stimulates cartilage regeneration (Popa et al., 2015). Alginate is an

anionic biopolymer derived from brown Seaweed with a structure

similar to glycosaminoglycans in the extracellular matrix.

S imula t ion of ge la t in and a lg inate as co l lagen and

glycosaminoglycan in the extracellular matrix, respectively

(Valcarcel et al., 2017) creates hydrogels with excellent

mechanical properties, swelling stability, biodegradability, and

biocompatibility, meeting the requirements of tissue regeneration

(Taghipour et al., 2020; Ahmad Raus et al., 2021). Hydrogel

compounded with osteopontin significantly promoted bone

regeneration when used in a critical-size bone defect rat model

(Wu et al., 2023). A SA/G/MXene composite membrane was

prepared by combining the sol-gel and freeze-drying methods.

Adding SA/G/MXene improved the SA/G membranes ’

mechanical and hydrophilic properties and cell proliferation and

osteogenic differentiation (Qin et al., 2023).

Alginate can be introduced into the body through minimally

invasive techniques. Because alginate gels lack the proper
Frontiers in Marine Science 05
mechanical strength to withstand the initial stages of regeneration

without fixation, studies have demonstrated that they can deliver

growth factors and thus effectively promote bone regeneration

(Kothale et al., 2020). The controlled release of vascular

endothelial growth factor (VEGF) molecules encapsulated in

alginate particles in a collagen-hydroxyapatite (HAP) scaffold

promoted post-implantation scaffold angiogenesis (Quinlan et al.,

2017). The researchers tested bone healing with ethyl triacetate and

tributyl citrate plasticized alginate. In vivo studies have shown

alginate and triacetate-modified scaffolds to have a growth-

promoting effect on osteoblasts (Arslan et al., 2023). Alginate

shows promise in bone tissue engineering and regenerative

medicine, and it can also inform drug/growth factor delivery

therapeutic strategies for diseases requiring specific drug/growth

factor duration of action (Zhao et al., 2022).

Seaweed SPs have a role in promoting or enhancing

osteogenesis, which is closely related to osteoblast differentiation.

SP extracted from marine Seaweed can be used to construct

extracellular bone tissue matrix scaffold systems. In addition, SPs

have been shown to have osteoinductive properties, which are

important for developing artificial bone tissue. There will also be

differences in the form of polysulfate scaffold systems, such as

hydrogels, composites, blends, nanoparticles, electrostatically spun

fibers, and 3D printed materials (Venkatesan et al., 2019; Hakimi

et al., 2023). SPs significantly affected recombinant human BMP-2-

induced bone regeneration, with enhanced bone regeneration-

promoting ability in both in vivo and in vitro experiments.

Fucoidan is a naturally occurring active polysaccharide rich in

sulfate groups produced by brown Seaweed (Chollet et al., 2016; Li

et al., 2023a). Its slow and sustained release positively affects

osteogenic differentiation (Carson and Clarke, 2018; Yadav and

Song, 2022). Researchers have developed an alginate-nano HAP-

nano graphene oxide carrier of rockweed polysaccharide as an
FIGURE 1

Some cells in seaweed polysaccharide act on bone healing. Osteoblasts and osteoclasts in different species of seaweed can act in the process of bone
healing. Osteoblasts and osteoclasts promote bone healing by acting as an immune response to broken bone tissue through cytokines secreted by
immune cells. TNF(Tumor necrosis factor) TGF-b(Transforming growth factor-b) IL-6(interleukin 6) IL-1(interleukin 1 ) IL-10(interleukin 10).
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osteoinductive scaffold to repair and regenerate bone tissue (Devi

et al., 2022; Ohmes et al., 2022). The natural rockweed

polysaccharide (Fuc) extracted from brown Seaweed was coupled

with gelatin (gel) to form a template to prepare a bionic scaffold.

The Fuc-Gel-MTN peptide (MTNYDEAAMAIASLN)-b-tricalcium
phosphate/HAP scaffold could promote bone formation and

mineralization, and studies have shown that it has a very high

potential for bone tissue regeneration (Pajovich and Banerjee, 2017;

Nunes and Coimbra, 2019). Fucoidan and PDA were used as

carriers to construct an in vitro culture system for PDLSCs. The

main molecular pathways induced during PDLSC osteogenic

differentiation were explored by transcriptomic profiling, and the

key signaling pathways that play a critical role in PDLSC osteogenic

differentiation were screened. Their complexes promote the

osteogenic potential of PDLSCs by activating key molecular

pathways (Kwack et al., 2022; Nielsen et al., 2022).

Bone is highly vascularized. Growth factors such as VEGF and

BMP-2 are involved in angiogenesis (Liu et al., 2015). These

angiogenic factors can bind directly or indirectly to polymers

through covalent interactions or ligand-based adsorption,

respectively. Studies have reported that VEGF gene expression

and protein secretion were significantly increased with the

promotion of osteogenic differentiat ion by rockweed

polysaccharides and that VEGF/VEGF receptor inhibitors

significantly inhibited VEGF’s vasculogenic effect. One study

found that the medium of mesenchymal stem cell (MSC)

conditioned with rockweed polysaccharide upregulated the

phosphorylation of phosphoinositide 3-kinase (PI3K), protein

kinase B (AKT), endothelial nitric oxide synthase (eNOS) to

inhibit its pro-angiogenic effect via the AKT/eNOS pathway.

Animal experiments showed that rockweed polysaccharide has

s ignificant promotive effects on crania l defects and

neovascularization in rabbits (Kim et al., 2018).

Kappa carrageenan (k-CG) and ulvan have only recently

been featured in some reports. Carrageenan is an SP extracted

from red seaweed (Prajapati et al., 2014). It is highly hydrophilic

and biocompatible and enhances the activity of the pre-

osteoblastic cells required for bone regeneration (Yegappan

et al., 2018; Cao et al., 2021). Researchers found that k-CG
influenced the morphology and microstructure of the

octacalcium phosphate coating on titanium discs, resulting in

increased preosteoblast metabolic activity, proliferation, and

osteogenic differentiation (Cao et al., 2022). A series of

electrospun silk fiber (SF)/k-CG nanofiber membranes were

used to mimic the structure and composition of the bone

extracellular matrix to improve the biological properties of SF-

based nanofibers. The results show that combining k-CG and SF

could effectively improve the biological properties of

nanostructured scaffolds. k-CG also enhanced the SF

nanofibers’ osteogenic potential and bioactivity (Roshanfar

et al., 2022). A potassium chloride cross-linked 3D scaffold

composed of k-CG, chitosan, and gelatin was evaluated for its

mechanical and biological properties in bone tissue engineering.

All materials showed good biocompatibility and a high

differentiation potential with MC3T3-E1 preosteoblasts

(Loukelis et al., 2022).
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Ulvan, a biologically active marine SP, is of interest for its good

osteoinductive properties (Tziveleka et al., 2019). Because of the

lack of systematic studies on the relationship between the

conformation and properties of ulvan-like compounds, their

specific relevance is unclear (Tziveleka et al., 2019). Ulvan’s

osteoinductive ability meant that when it was incorporated into a

polycaprolactone matrix, it effectively improved cell attachment and

viability, demonstrating its potential for bone tissue regeneration

applications in biomedical scaffolds (Kikionis et al., 2021). The

hybrid sponge-like scaffold prepared by inoculating human

adipose-derived MSCs into selected ulvan/gelatin hybrid scaffolds

could effectively support MSC adhesion and proliferation, making it

a promising new bone tissue engineering material (Tziveleka et al.,

2020). Ulvan’s important bioactivity and tunable physicochemical

and rheological properties have made it of interest as a novel

composite biomedical material (Table 2).

Researchers have shown that the seaweed component SP has

favorable osteogenic activity. In fact, most of the in vitro

experiments have shown that SP has osteogenesis-promoting

effects, but only two experiments have investigated the function

of SP in vivo, so further experiments are needed to verify this. In

addition, since the in vitro environment does not fully mimic the

situation in living organisms, many cell types and systems are

osteogenic-promoting. Therefore, the study of osteogenesis by in

vivo experiments or using more complex animal models is an

important part of the process.
4 New dosage forms loaded with
seaweed polysaccharides

Seaweeds are a large group of low-level photosynthetic

autotrophs distributed in various seas and coastal zones

worldwide. They have become a hot spot for research globally

because they contain various bioactive components. Preparing new

polysaccharide dosage forms with suitable carriers will help reduce

adverse drug reactions, improve the therapeutic index, and enhance

targeting, making exploring seaweed polysaccharide dosage

forms important.
4.1 Hydrogel loaded with seaweed
polysaccharides

Natural polymer hydrogels have the advantages of good

biocompatibility, regeneration, and low immune rejection (Huang

et al., 2017). Alginate hydrogel is a special type of hydrogel extracted

and transformed from seaweed and is an attractive material for

cellular microencapsulation (Lertwimol et al., 2022; Wang et al.,

2022). SA has the characteristics of other easy-to-gel hydrogels and

the advantages of good biocompatibility, degradability, and non-

toxicity. Numerous studies have shown that ionic cross-linking with

divalent cations (e.g., Ca2+) to prepare hydrated gels is a new

biomaterial with very promising applications (Labowska et al.,

2023). SA/hydroxyethylcellulose/HAP porous scaffolds with pore

sizes larger than 89.5 ± 4.58 mm were prepared. The results showed
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that the compounding of hyaluronic acid (HA) enhanced the

mechanical properties of the composite scaffold material and

improved its biocompatibility and bioactivity (Tohamy et al.,

2018). The researchers developed biocompatible nanogel/hydrogel

nanocomposites and introduced pH, thermal, and magnetic

response properties into them as a sustained release drug carrier

for levodopa, developing a biocompatible hydrogel/nanocomposite

system for long-lasting delivery of biologically active substances

(Bardajee et al., 2020; Gan et al., 2023).

Carrageenan/chitosan hydrogels with physical properties are

constructed by electrostatically combining carrageenan with

chitosan, which have different charging properties. The composite

hydrogel maintains its mechanical properties in the physiological

pH range, showing the potential of the prepared hydrogel as a

multifunctional biomaterial for drug delivery, tissue engineering,

and bone repair (Papagiannopoulos et al., 2023). Researchers

prepared injectable sprayable hydrogels based on visible light

cross-linked methacrylic acid k-CG with high gel strength, low

weight loss, and high water retention capacity to maintain cell

apposition and proliferation in vitro (Tavakoli et al., 2019; Moncada

et al., 2023). HA is widely used in tissue engineering because of its

good biocompatibility and degradability. HA and rockweed

polysaccharide form a composite hydrogel with a flexible

structure and good ecological position for inducing osteogenic

differentiation, making it a new bone repair material with very

promising applications (Amin et al., 2021; Hsu et al., 2021;

Abouzeid et al., 2022). Trimethoprim-loaded chitosan/fucoidan

composite hydrogels were prepared by chemical cross-linking

method (Amiri et al., 2022; Carvalho et al., 2022). Adding

fucoidan to the composite hydrogel significantly improved its

swelling properties, mechanical strength, and adhesion properties

(Wang et al., 2021; Zheng et al., 2021).
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Despite the promising combination of seaweed polysaccharides

and hydrogels, some challenges remain in their clinical application.

Currently, most systems are studied in vitro, and their in vivo

mechanisms of action remain unclear. Therefore, future studies

should gradually shift to in vivo experiments.
4.2 Seaweed polysaccharide scaffolds

Because of their excellent biocompatibility, calcium alginate

hydrogels are widely used in the study of tissue engineering scaffold

materials (Chaudhari et al., 2016). The scaffold materials modulate

cell adhesion using arginine-glycine-aspartic acid (RGD) peptides

grafted onto alginate. In vitro cellular experiments have shown that

RGD grafting can positively affect osteogenic differentiation and

bone tissue repair (Ingavle et al., 2019). The gel material has good

surface adhesion and facilitates cell adhesion, proliferation, and

differentiation. It is also a highly porous structure that can provide

cell adhesion and stimulate new tissue growth. Using oxidized SA

complexed with borax and then reacted with Schiff bases and self-

crosslinked with gelatin resulted in an injectable hydrogel to repair

meniscal tissue. Chondrocytes can adhere and proliferate on the

surface of this composite hydrogel, and there is good integration

between the scaffold material and meniscal tissue (Resmi

et al., 2020).

Carrageenan is widely used as an injectable scaffold material due

to its superior properties (Sairaman et al., 2022). Different k-CG
concentrations were first mixed with filaggrin (FLG) to make a

composite gel, and then the scaffold was prepared by freeze-drying

to mimic the extracellular matrix component of bone, which has an

interconnected and highly porous structure. The scaffold

could promote human osteogenic sarcoma cell proliferation and
TABLE 2 Functions and advantages of seaweed polysaccharides in models.

Type Functions Advantages Types of cellular
models

Types of animal
models

Reference

Alginates Transport of
osteoinductive factors
Involved in immune
regulation

Shorten setting time
Increase compressive strength

Chick embryo chorionic
villus allantoic
membrane model
Bone marrow
mesenchymal stem cells

Diabetic mouse model
Mouse dorsal preparation
for skin defect trauma
model
Acute Liver Failure Rat
Model

(Popa et al., 2015; Wu et al.,
2023)

Fucoidan Anti-inflammatory and
pro-inflammatory factor
regulation

Antioxidant effect
Immune activity
Antitumor

Human breast cancer
cells
Colonial epithelial cells

Type 2 diabetes rat
model
Immunocompromised
mouse model

(Pajovich and Banerjee,
2017; Kim et al., 2018;
Kwack et al., 2022)

Carrageenans Induced macrophage
immune response
Adhesion proteins

Binds non-selectively to sugar
molecules on the surface of the
virus

Colonial epithelial cells
Rat ileum epithelial cells

Rat foot swelling model
Mouse Tail Thrombus
Model
Rat acute joint
inflammation model
Rat sodium urate-
induced gouty arthritis
model

(Cao et al., 2021; Roshanfar
et al., 2022)

Ulvan Reduces inflammatory
infiltration damage

High viscosity properties
High elasticity
Highly transparent
Excellent stability

An in vitro model of
porcine intestinal
epithelial cells

Hypercholesterolemic rat
model

(Tziveleka et al., 2019;
Kikionis et al., 2021)
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increase their alkaline phosphatase (ALP) activity, which can

potentially mimic the bone’s extracellular matrix component

(Nourmohammadi et al., 2017). k-CG sulfate was added to

scaffolds to affect bone matrix mineralization and cell adhesion

(Muscolino et al., 2022a), demonstrating the prospect of collagen/k-
CG scaffolds as biomaterials. Different ratios of polyvinyl alcohol

and k-CG were mixed using a cryogel technology to obtain 3D,

interconnected, highly porous, biodegradable scaffolds. The gel

scaffold had high compatibility with hemoglobin, and its scaffold

material also had excellent characteristics for tissue engineering

applications and long-term cell cryopreservation (Chopra et al.,

2016; Aslam Khan et al., 2021).

Rockweed polysaccharides can form stable 3D structures with

other polymers and, therefore, are used to develop delivery systems

or tissue regeneration scaffolds (Nunes and Coimbra, 2019). An

osteoinductive scaffold derived from diatom-derived alglucosidase

compounded with SA-nanoapatite-nano-graphene oxide could be

used as a bone graft substitute (Lu et al., 2019; Bharadwaz and

Jayasuriya, 2020; Devi et al., 2022). Polyether carbonate urea

nanofiber scaffolds loaded with the natural marine bioactive rock

Seaweed polysaccharide have been studied and found to have

potential applications (Carvalho et al., 2022; Yu et al., 2022).
4.3 3D printing with seaweed
polysaccharides

Seaweed can produce a wide range of polymers with properties

meeting the requirements of 3D printing and unique prospects for

use as biomaterials (Mandal et al., 2023). 3D bioprinting can mimic

the physical, chemical, and biological laws of nature to provide a

bionic structural environment for tissue generation and host

integration, enabling the use of living cells to build complex tissue

structures (Mahendiran et al., 2021; Fatimi, 2022). Its principle is

simply to add a 3D plane to the ordinary 2D plane. Like ordinary

printers, 3D printers use plastic, metal, or other powdered materials

to print out a single layer. Then, additional layers are progressively

added to form a 3D object (Li et al., 2023b). 3D bioprinting

technology enables rapid fabrication of complex 3D cell-loaded

scaffolds for tissue engineering applications (Kumari et al., 2022).

Alginate/G/cellulose nanocrystal composite hydrogels were

prepared using 3D printing technology, showing higher

mechanical strength than single-component polymer scaffolds. In

animal studies, this hydrogel helped to improve bone regeneration

potential (Dutta et al., 2021; Zineh et al., 2022). Bacterial cellulose

was incorporated into an alginate/bacterial cellulose nanocrystals-

chitosan- gelatin composite gelatin scaffold, which was shown to

have a good 3D structure (Abbasi-Ravasjani et al., 2022). In vitro

experiments showed that human osteoma and mouse cells exhibited

good pore structure on a composite gel scaffold, among other

advantages (Li et al., 2021).

Carrageenan is very promising as a 3D printing bio-ink material

in tissue engineering and regenerative medicine (Liu et al., 2023).

Hydrogels were prepared from k-CG methacrylate, in which mouse

embryonic cells were encapsulated. The cell-loaded hydrogels
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showed cytocompatibility and retained cell morphology (Lim

et al., 2020). 3D printing hydrogels using hybrid hydrogel inks

(polyvinyl alcohol and k-angle gum) with excellent rheological

properties and a strong affinity for cells allowed cells to bind

tightly to the hydrogel surface (Jiang et al., 2019; Muscolino et al.,

2022b). 3D porous scaffolds have been modified with a biosynthetic

alginate-sulfate base to slowly release the VEGF for its pro-

angiogenic activity (Liu Y. et al., 2022).

In an in vitro assay, rockweed polysaccharide significantly

promoted endothelial progenitor cells in microporous and

macroporous scaffolds (Purnama et al., 2015). Scaffolds created

from ulvan methacrylate and methacryloyl Gel had mechanics,

structures, and bioactivities that could reach a similar level to

human skin and had better cytocompatibility (Chen et al., 2021).

Therefore, a new bionic ink with both shear thinning, yield stress,

and tunable mechanical properties was prepared to realize the

bionic printing of 3D porous structures on the surface of bionic

materials. Ulvan, a biomaterial for 3D printing, has poor rheological

properties and has difficulty solubilizing in various solution systems

(Mahendiran et al., 2021).

However, many technical difficulties remain to be overcome to

realize the clinical application of this technology and to provide

technical assistance for future multidisciplinary printing. For

example, the geometries and microstructures of scaffolds made

with currently available materials do not yet meet the

requirements for clinical applications. Zhang et al. believe that

integrating biochemical molecules directly into 3D-printed scaffolds

may enhance their microstructure and ultimately accelerate bone

regeneration at the defect site (Zhang et al., 2019) (Table 3).
5 Conclusions and outlook

The ocean contains many compounds with a wide range of

applications in biomedicine and biotechnology. It is a major

renewable source of natural substances, further driving the

development of new medical systems and devices (Sharma et al.,

2023). In marine systems, macroSeaweed are an important source

of primary and secondary metabolites of biological importance

(Ren et al., 2022). Brown Seaweed contain the most compounds,

followed by green and red Seaweed (Alghazeer et al., 2022). In

recent years, the species and structures of seaweeds and seaweed

metabolites have been intensively studied in the hope of discovering

new bioactive compounds. Seaweed SPs have good potential for

exploitation as bioactive substances (Ngo and Kim, 2013;

Arokiarajan et al., 2022). Rockweed polysaccharides and

carrageenan are two important types of seaweed SPs with a wide

range of biological properties (Oliyaei et al., 2022).

Seaweed polysaccharides are considered a potential

biomedical material due to their unique chemical and biological

properties (Walsh et al., 2019). Carrageenan from red Seaweed,

rockweed polysaccharide from brown Seaweed, and ulvan from

green Seaweed show good biocompatibility. They could be used as

scaffolds, nanofibers, hydrogels, or other biocompatible materials,

which are expected to become a new generation of bone repair
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materials (Pajovich and Banerjee, 2017; Venkatesan et al., 2019).

With advancements in orthopedic technology and improvements

in biomaterial properties, bone tissue regeneration has been

real ized (Lopes et a l . , 2018; Ansari , 2019) . Seaweed

polysaccharides have promising applications in treating or

constructing bone tissue repair and regeneration (Chaves Filho

et al., 2018). However, few studies have explored seaweed

polysaccharides such as SP in the bone tissue engineering field.

In response to this situation, they should be systematically studied

in the future using animal research methods with large samples

(Veronesi et al., 2020). Stem cell therapy for osteoporosis is

currently a hot topic, but its mechanism of action remains

unclear. Combining seaweed polysaccharides with stem cells is

expected to be a new biomaterial with promising applications. 3D

tissue or cell cultures based on seaweed polysaccharides are also

being explored, and these materials could be applied in areas such

as drug evaluation, complex cell physiology, and tissue

engineering (Jain et al., 2018).
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TABLE 3 Materials, preparation methods, types, and advantages and disadvantages of dosage forms.

Formulations Materials Preparation
methods

Types Advantages Disadvantages Reference

Hydrogels Hyaluronic Acid
Collagen Sodium
Alginate
Polyacrylamide
Polyethylene glycol

Physical
Crosslinking
Chemical cross-
linking
Electrostatic
action

Natural Hydrogel
Synthetic hydrogels

High biocompatibility,
good physico-
mechanical properties,
long-term implant
stabilization

Excessive hardness,
poor biocompatibility,
defective mechanical
properties

(Huang et al.,
2017; Lertwimol
et al., 2022;
Wang et al.,
2022)

Scaffolds Coral, seaweed (acid
salts),
mucopolysaccharide,
chondroitin,
collagen, chitin
Various polymers,
metal alloys,
ceramics, silica gel,
etc.

Freeze-drying
method
Phase separation
technology
Foaming method
Self-assembly
technology
Rapid
Prototyping
Electrostatic
weaving

Porous stents, fiber stents,
microsphere stents,
hydrogel stents, composite
stents, decellularized
stents

Accelerates skin wound
healing, reduces
inflammation and
minimizes the area of
scarring

Uneven droplet size,
disorder, frequent
clogging of nozzles

(Chaudhari
et al., 2016;
Carvalho et al.,
2022; Yu et al.,
2022)

3D Printing Metals, ceramics,
polymers, bioinks

Inkjet Printing
Extrusion
Droplet type
Optical curing type

High porosity,
homogeneous structure,
organized and
controlled pore
structure

Limited by the
physical and chemical
properties of the
polysaccharide
material itself

(Mahendiran
et al., 2021;
Fatimi, 2022;
Mandal et al.,
2023)
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