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Toward the development of
smart capabilities for
understanding seafloor
stretching morphology and
biogeographic patterns via
DenseNet from high-resolution
multibeam bathymetric surveys
for underwater vehicles
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Guoyao Zhang1, Lina Zang1, Luyao Li1, Bo He1,
Tianhong Yan3 and Xishuang Li4

1School of Electronic Engineering, Ocean University of China, Qingdao, China, 2Bureau of
Administrative Service, Qingdao Municipal Government, Qingdao, China, 3School of Mechatronic
Engineering, China Jiliang University, Hangzhou, China, 4Key Laboratory of Marine Geology and
Metallogeny, Ministry of Nature Resources of People’s Republic of China, Qingdao, China
The increasing use of underwater vehicles facilitates deep-sea exploration at a wide

range of depths and spatial scales. In this paper, we make an initial attempt to

develop online computing strategies to identify seafloor categories and predict

biogeographic patterns with a deep learning-based architecture, DenseNet,

integrated with joint morphological cues, with the expectation of potentially

developing its embedded smart capacities. We utilized high-resolution multibeam

bathymetric measurements derived from MBES and denoted a collection of joint

morphological cues to help with semantic mapping and localization. We

systematically strengthened dominant feature propagation and promoted feature

reuse via DenseNet by applying the channel attention module and spatial pyramid

pooling. From our experiment results, the seafloor classification accuracy reached

up to 89.87%, 82.01%, and 73.52%on average in terms of PA,MPA, andMIoUmetrics,

achieving comparable performances with the state-of-the-art deep learning

frameworks. We made a preliminary study on potential biogeographic distribution

statistics, which allowed us to delicately distinguish the functionality of probable

submarine benthic habitats. This study demonstrates the premise of using

underwater vehicles through unbiased means or pre-programmed path planning

to quantify and estimate seafloor categories and the exhibited fine-scale

biogeographic patterns.

KEYWORDS

multi-beam bathymetric mapping, seafloor stretching morphology, DenseNet, channel
attention module, spatial pyramid pooling, biogeographic patterns
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1 Introduction

Deep sea is viewed as one of the least explored ocean ecosystems

(Snelgrove, 1998; Williams et al., 2010; Teixeira et al., 2013; Copley,

2014). The variety of physicochemical gradients in deep-sea habitats

is quite remarkable (Thornton et al., 2016), with diverse

biogeographic patterns. Due to difficulties in its sensing

accessibility, it is of great challenging to discover how the seafloor

surface stretches and functions as submarine benthic habitats in the

extremely deep sea (Jannasch and Mottl, 1985; Fisher et al., 1994;

Johnson et al., 1994; McCollom and Shock, 1997; Sarrazin et al.,

1999; Desbruyères et al., 2000; Luther et al., 2001; Van Dover et al.,

2002; Bergquist et al., 2007; Nakamura and Takai, 2014; Lamarche

et al., 2016).

Over the decades, a multitude of geomorphometric techniques

have utilized bathymetric sensors to characterize seafloor stretching

attributes (Chakraborty et al., 2013; Masetti et al., 2018; Neil et al.,

2019; Pillay et al., 2020; Wang et al., 2021a; Wang et al., 2021b). The

increasing use of underwater vehicles, such as Autonomous

Underwater Vehicles (AUVs) or Remotely Operated Vehicles

(ROVs), e.g., Bluefin (Panish and Taylor, 2011), Hugin

(Marthiniussen et al., 2004), Remus (Freitag et al., 2005), Autosub

(Furlong et al., 2012), JAMSTEC (Tamura et al., 2000), Urashima

(Sawa et al., 2005), and so forth, provides more opportunities to

facilitate deep-sea inspection with flexibility and adaptability (Singh

et al., 2004; Bewley et al., 2012; Smale et al., 2012; Huvenne

et al., 2018).

Advanced sensing techniques have provided the opportunity to

investigate the detailed seafloor stretching morphology over a wide

range of spatial scales. Underwater vehicles could be equipped with

a series of sensors and proceed at shallower depths closer to the

seafloor surface, providing higher-resolution morphological images

and benthic habitat observations. A multibeam echosounder

(MBES) is one of the most widely mounted sensors in

bathymetric surveys, which can give insight into noteworthy

benthic habitats at large scales, like hydrothermal vent sites, cold

springs, mud volcanoes, and seamounts along subduction zones

and trench areas. Meanwhile, the optical sensors would enable the

provision of video transects at increasing depths in the deep sea to

explore the potential biogeographic distribution, the submarine

benthic habitat, and biological community structure in detail at

smaller scales in the field.

Therefore, increasing attention has been paid to exploring the

regional and even global seafloor stretching morphology, the extent

of geographical ranges, and the submarine benthic habitats in the

deep sea (Lonsdale, 1977; Bach and Edwards, 2003; Trenkel et al.,

2004; Williams et al., 2012; Pizarro et al., 2013; Kuhnz et al., 2014;

Nakamura and Takai, 2014; Thornton et al., 2016; Thornton et al.,

2016; Dunlop et al., 2018; Misiuk and Brown, 2022). The increased

diversity of seafloor surface morphology may account for spatial

habitat heterogeneity. The formation and types of benthic habitats

are typically associated with the physical and geological attributes of

seafloor surface stretching. While the benthic habitat, indicator

taxa, biodiversity, and community assemblages at one site may still

be greatly different from other sites, they may show significant

differentiation along similar geomorphometric characteristics. The
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classification of the seafloor would probably serve as the physical

and geological elements to exert a significant impact on the benthic

habitats and the biodiversity of organisms inhabiting the

underwater environments. Corrêa et al. (2022) conducted an

exploration of the plateau and rifts in the Rio Grande Rise (RGR)

area with the HyBIS robot and analyzed the description of the

structuring factors regarding seafloor topography and habitat types,

which revealed highly heterogeneous and rapidly changing habitats

with differences in geomorphology, slope, and substrate textures.

Urra et al. (2021) characterized the geomorphologic diversity,

habitats, and associated biodiversity in the Gazul MV mud

volcanoes with underwater imaging and multibeam bathymetry

techniques, identifying habitats harboring a characteristic faunal

assemblage and highlighting the slope and water depth as the main

factors explaining the distribution of the assemblages. Perez et al.

(2022) explored seamounts located within the Discovery Rise and

classified the types of benthic habitats based on substrate hardness,

texture, slope, and physical and biological modifiers. Pierdomenico

et al. (2015) conducted a comprehensive analysis of acoustic

mapping and optical surveys with underwater vehicles to

complete ultra-high-resolution bathymetric and backscatter

imagery of geomorphological features of seafloor stretching and

to characterize benthic habitat variation in the Hudson Canyon.

Swanborn et al. (2023) examined how multiscale seafloor

heterogeneity influences commercially important fish families on

seamounts of the Southwest Indian Ridge by quantifying seascape

heterogeneity from bathymetry and geomorphological habitat

maps. De la Torriente et al. (2018) observed a highly diverse

range of habitats from multibeam bathymetry and high-resolution

seismic profiles with ROV at the Seco de los Olivos Seamount and

identified depth and slope as the main significant factors structuring

epibenthic assemblages.

Most of the seafloor bathymetric surveys tend to retrieve

comprehensive topographic and morphological factors and other

auxiliary variables and identify seafloor stretching attributes during

post-processing. With the rapid development of hardware

embedded in underwater vehicles, more and more expectations

are cast to promote online smart computing capabilities, enabling

the immediate understanding of seafloor surface stretching and

submarine benthic habitat on site from on-board perception

sensors rather than relying only on routine post-processing back

frommissions. Due to the great success of deep learning, all kinds of

emerging and advanced algorithms have been developed and

enhanced recently, from Deep Belief Networks (DBN) (Hinton

et al., 2006), Deep Convolutional Neural Networks (CNN)

(Karpathy et al., 2014), and AlexNet (Krizhevsky et al., 2012) to

more recent Generative Adversarial Networks (GANs) (Goodfellow

et al., 2014), Deep Residual Networks (ResNet) (He et al., 2016),

Densely Connected Convolutional Networks (DenseNet) (Huang

et al., 2017), and Transformer (Vaswani et al., 2017). Recently,

Conti et al. (2019) employed Marine Object-Based Image Analysis

(MOBIA) and machine learning classification to identify the

distribution and zonation of individual organisms on a cold-water

coral (CWC), the Piddington Mound within the Porcupine

Seabight, Ireland Margin, from a high-resolution reef-scale video

mosaic and ROV-mounted multibeam data. Qin et al. (2021)
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applied shallow-water, side-scan sonar imaging from the Pearl

River Estuary, established the ResNet architecture for acoustic

seafloor classification (ASC), and explored the use of GANs for

augmentation. Rimavicius and Gelzinis (2017) developed an

accurate Norwegian seafloor interpretation and classification

system with state-of-the-art deep learning techniques. Martin-

Abadal et al. (2019) presented a highprecision semantic

segmentation performed automatically in Posidonia oceanica

meadows and its habitat by a deep learning-based network,

VGG16. Dyer et al. (2020) proposed the identification of seafloor

landslides in images with the deep learning model ResNet101 in the

Gulf of Mexico, from the advanced bathymetry raster and its

derivatives rendered to high-resolution seafloor topography.

However, the above has not yet been extensively applied to

specify seafloor stretching characteristics and intrinsic relations

with the limited computation resources in underwater vehicles

due to the difficulties of simultaneously bathymetry mapping,

classifying, and validating. The hardware configuration for

embedded supercomputing, such as a high-performance Graphics

Processing Unit (GPU), may promote online computational

capacities. Hence, we attempted to accelerate the identification

and localization process of seafloor morphology and to deduce

possible biogeographic patterns with a deep learning-based

architecture, DenseNet. DenseNet connects each layer to every

other layer in a feed-forward fashion, where the feature maps of

all preceding layers are inputs and its own feature maps are inputs

to all subsequent layers (Huang et al., 2017). DenseNet offers

significant advantages over many state-of-the-art deep learning

algorithms. It addresses the vanishing gradient problem, enhances

feature propagation, and significantly reduces the number of

parameters, thereby demanding fewer computational resources.

Moreover, various new variants have been developed recently

(Jégou et al., 2017; Zhu and Newsam, 2017; Wang et al., 2018;

Lee et al., 2019; Lu et al., 2021; Xiao et al., 2021).

We aimed to establish a generalized deep learning-based

architecture so as to develop smart capabilities to identify seafloor

categories for underwater vehicles. This could facilitate online

computing strategies for unbiased path planning with real-time

perception and autonomous decision-making, and adapt to

dynamic, unknown, and complex underwater conditions. Such

unbiased path planning tends not to rely so much on

predetermined global seafloor mappings or predefined routes but

focuses on current environmental states, efficiently updating the path

selection with the understanding of seafloor categories or potential

biogeographic distribution retrieved along the mission route points.

The model parameters could be updated and fine-tuned by the local

underwater geology, dynamically promoting solutions to viable path

planning optimization in an online manner. This could also benefit

pre-programmed path planning that utilizes deterministic or

optimization algorithms to search offline for optimal or shortest

routes from the known underwater environment mapping. Such pre-

programmed path planning typically requires prior acquisition of

knowledge of regional and even global seafloor stretching

morphology. The quality and strength of such approaches partially

lie in the ability to identify seafloor categories with high quality and

high computational efficiency.
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In this paper, starting from the inspiration to explore the

seafloor surface stretching and biogeographic patterns along the

traces of underwater vesicles, we directly retrieved the multibeam

bathymetric mapping from the MBES scans and calculated a variety

of morphological parameters from the digital elevation to help

semantic segmentation and localization. We established online

computation strategies via DenseNet and took the multibeam

bathymetric measurements and the joint morphological cues as

inputs, with the annotations manually labeled as expected outputs.

The minimalistic transition-up blocks, the channel attention

module, and the spatial pyramid pooling have been seamlessly

integrated to systematically strengthen the dominant feature

propagation and encourage feature reuse with the global

contextual prior. The developed model has been comprehensively

evaluated in terms of PA (Pixel Accuracy), MPA (Mean Pixel

Accuracy), and MIoU (Mean Intersection over Union Ratio). We

further proposed a preliminary study on the potential

biogeographic distribution statistics to provide initial insights into

the connective and predictive evidence between seafloor categories,

benthic habitats, and even species assemblages.

The remainder of the paper is organized as follows: Sections 2,

3, and 4 describe the basic principles of multibeam bathymetric

mapping, the basics of seafloor surface morphological calculation,

and DenseNet, respectively. Section 5 introduces the seafloor

surface classification via DenseNet, coupled with the channel

attention module and spatial pyramid pooling. Section 6 shows

the simulation experiment and the analysis of the results. Finally,

the conclusions are given in Section 7.
2 High-resolution multibeam
bathymetric mapping

2.1 MBES principle

MBES refers to a type of highly integrated multibeam

bathymetric sensor. It could help with full-coverage depth

measurements at high resolution and determine the nature of

seafloor surfaces in the deep sea. The basic principle of MBES is

shown in Supplementary Figure A1 . The MBES transducer is

essentially a combination of an acoustic projector array and a

perpendicular hydrophone array. The former emits acoustic

pulses at a specific frequency, with a narrow opening along-track

angle and a wide across-track angle, in a given swath (Mahmud

and Yusof, 2006; Costa et al., 2009). The latter is built to listen to

echo reflections with received beams. Thus, the seafloor strips,

ensonified by the projectors, will intersect with those observed

by the hydrophones, producing the beam footprints. When

receiving across-track beams of certain time intervals one after

another, the position and depth of the seafloor measurement could

be calculated, given the angle of incidence and the two-way travel

time of each beam (Zhao et al., 2020; Wu et al., 2021). In a complete

transmission and reception period, the projector array runs only

once to generate acoustic pulses, while the hydrophone array

acquires multiple received beams with appropriate delays. As

underwater vehicles proceed forward, a strip of water depth
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measurements reflecting bathymetric mapping at a specific width

could be derived from the MBES, providing full coverage of the

seafloor surface morphology, which would benefit the identification

and location of seafloor categories with high precision, high density,

and high efficiency.
2.2 Digital elevation model

Essentially, we utilized the Digital Elevation Model (DEM) to

solve the numerical problem of visualizing the geospatial entities of

the seafloor surfaces with a finite set of depth measurements from the

MBES. The core interpolation calculation allows the production of a

gridded multibeam bathymetric map. We applied a weighted average

point-to-point interpolation to generate the digital elevation.

Assuming that the elevation point is to be inserted in the center of

each sliding sampled window, the elevation value EG is determined by

approximating the weighted averaging of the surrounding elevation

values within the window, which can be formulated as

EG =
o
n

i=1
Gi � Ei

o
n

i=1
Gi

(1)

where the number of neighboring elevation points in the sliding

window is denoted as n, Ei refers to the i th elevation value, and Gi

represents the corresponding weight. For the output elevation values,

the sum of the products between the surrounding elevation values

and their corresponding weights within the window is divided by the

sum of all the weights. Each weight Gi is defined as the reciprocal of

the spatial distance Di between the surrounding elevation points and

the center to be inserted,

Gi =
1
Di

(2)

The greater the spatial distance Di, the smaller the

corresponding weight Gi, and vice versa. An example of a seafloor

strip before and after the interpolation is shown in Figure 1, where

the color bar denotes the water depth values. We can see from the

experimental results that the high-resolution multibeam

bathymetric mapping could reasonably depict the integrity of the

seafloor surface stretching in the DEM, especially the stitching of

the gaps in the edges.
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3 Seafloor surface morphological
calculation

We further elaborated on the thematic maps of seafloor surface

morphological cues from high-resolution multibeam bathymetric

mapping. Let the depth value of the given elevation point on a

certain seafloor surface be z = f (x, y), with x and y representing the

horizontal and vertical coordinates at the seafloor location, respectively.

We essentially employed several topological attributes in aid of the first

and second derivatives calculated from the neighborhood within a

sliding window to consider every elevation point in turn.
3.1 Slope

The slope refers to the measurement that determines the

steepness or degree of inclination in seafloor bathymetric

mapping relative to the horizontal plane, which constitutes the

fundamental index of benthic habitat and colonization at a variety

of scales (Friedman et al., 2013). Multibeam bathymetric mapping

can be approximated by a bivariate quadratic equation, and we

compute the slope with the first derivative of the elevation values.

The slope with the origin at the central point in the local coordinate

system within the sliding window is hereby calculated as

S = tan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S  2x + S  2y

q
(3)

The slope direction A could be defined as,

A =
Sx
Sy

(4)

where Sx and Sy represent the slope with respect to x and y

directions, which can take a variety of forms. We determine the

slope value of the central point from the finite differential of the

surrounding neighbors within the sliding window, as is shown in

Supplementary Figure B.1. The slope Sx and Sy of the horizontal and

vertical directions could be denoted as,

Sx =
z1 − z3
2� Dl

(5)

Sy =
z4 − z2
2� Dl

(6)
A B

FIGURE 1

Example strip of seafloor surface mapping. (A) before interpolation, (B) after interpolation.
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where z1 − z4 are the elevation values in the sliding window,

respectively, and Dl is the grid length.
3.2 Curvature

The curvature behaves as a quantitative measurement of the

degree of distortion on the surface of the seafloor geomorphic

changes, providing a possible assessment of uplift or depression

(Shary, 1995). The profile curvature values stand for the stretching

morphology of the seafloor surface, with positive curvature attesting

to an upwardly concave and a negative curvature, indicating

upwardly convex, and a value of zero indicating flat seafloor

surfaces. It helps to delimit distinct habitat regions by identifying

boundaries in seafloor morphology, delineating between favorable

and unfavorable habitats for communities. The curvature is a

second spatial derivative of the seabed terrain, which can be

expressed as

Cv = −
l2r + 2lqs + q2t

(l2 + q2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + l2 + q2

p (7)

where l and q are the first derivatives of the elevation values in the

horizontal and vertical directions, respectively; r, s, t correspond to

the derivative of the horizontal slope with respect to x direction, the

derivative of the horizontal slope with respect to y direction, and the

derivative of the vertical slope with respect to y direction, respectively.

l =
dz
dx

=
z1 − z3
2� Dl

(8)

q =
dz
dy

=
z4 − z2
2� Dl

(9)

r =
∂2 Z
∂ x2

=
z01x − z03x
2� Dl

(10)

s =
∂2 Z
∂ x ∂ y

=
z04x − z02x
2� Dl

(11)

t =
∂2 Z
∂ y2

=
z04y − z02y
2� Dl

(12)

where z01x − z04x , z01y − z04y are the first derivatives of the elevation

values in the horizontal and vertical directions within the sliding

window, as is calculated in Supplementary Figure C1.
3.3 Roughness

Surface roughness reflects the degree of the structural

complexity of the seafloor surface stretching, which to some

extent indicates its macrotopographic characteristics and

undulation status, and can be defined as the ratio of the total

seafloor surface of the sampled region to a projected plane to

decouple measurements from the overall slope (Friedman et al.,
Frontiers in Marine Science 05
2013). Each topographic seafloor surface stretching can be divided

into non-overlapping virtual quadrats, and the surface roughness

value is derived from each virtual square as

Rs =
Ss
Sp

(13)

where Ss and Sp are the seafloor surface area and the horizontal

projected area, respectively, in a given virtual quadrat. Let the slope

at a given i th elevation point in the sliding window be Si, the

corresponding surface roughness Rs could then benefit from the

calculation of this available topographic factor as follows:

Rs =
1

cos (Si)
(14)

The surface roughness Rs of each virtual quadrat with n

elevation points can then be expressed as

Rs =
1
no

n
i=1

1
cos (Si)

(15)
3.4 Joint morphological cues

It was believed that such thematic maps of topological

parameters reflecting the seafloor elements and types are effective

in classifying seafloor categories in terms of their formation

processes and evolution (Burrough and McDonnell, 1998). The

topological parameters of high similarity would most likely be

shared with the identical seafloor categories. Since most attempts

to characterize seafloor elements are limited to a relatively restricted

range of morphological attributes, while seafloor types represent

characteristic patterns that repeat regardless of scales (MacMillan

et al., 2000), we endeavored to utilize high-resolution multibeam

bathymetric mapping to extract micro geomorphologic factors such

as slope and curvature, as well as macro geomorphologic factors like

surface roughness, and to assess the effectiveness of individual or

joint morphological cues in distinguishing seafloor surface types. It

should be noted that the formation of seafloor surfaces can be

viewed from a variety of spatial scales, and the effect of scales

involves geomorphology in a complex, hierarchical context. Thus,

seafloor classification is related to the issue of scales in different

geomorphological settings and the role that morphological cues

play in seafloor surface stretching (De Boer, 1992).

The thematic maps of topological parameters for a few example

MBES images are shown in Figure 2, with the original images, the

slope, the surface roughness, and the curvature, respectively,

displayed from top to bottom. The slope of the seamount generally

approached a large value with high-level relief amplitude; the slope of

the trench bottom basin was relatively small with nearly flat surfaces;

and the slope of the island slope deepwater terrace shifted frequently,

representing the divergence of the degree of seafloor surface

steepness. The surface roughness provides a macroscopic view of

the complexity of seafloor surfaces and reflects the degree to which

the seabed terrain is susceptible to erosion. Higher surface roughness

values corresponded to more complex or eroded seafloor terrain, e.g.,
frontiersin.org
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around the island slope deep water terrace. Conversely, flat seafloor

surfaces experienced less erosion and exhibited lower roughness

values. The curvature directly affected the net erosion, reflecting the

degree of seafloor surface fragmentation. When the curvature value

of the sea mount was relatively small, the degree of fragmentation

was the lowest, and the curvature value of the island slope deep water

terrace was relatively large, representing a high degree of

fragmentation. The curvature directly affected the net erosion,

reflecting the degree of seafloor surface fragmentation. When the

curvature value of the sea mount was relatively small, the degree of

fragmentation was the lowest, and the curvature value of the island

slope deep water terrace was relatively large, representing a high

degree of fragmentation.

We initially utilized basic clustering techniques (K-means) to

agglomeratively assign elevation points with highly similar

topological parameters into the same group and to deviate from

the significantly inconsistent outlier elevation points. We could

therefore locate and identify individual notions of landforms and

geological structures at certain scales with specific physical attributes

and translate them to the complete coverage of bathymetric mapping

to estimate the potentially appropriate scales as a whole for reference.

The individual and joint morphological cues in combinations have

served as the input to assess the clustering performances, in terms of

PA, MPA, and MIoU, as is shown in Supplementary Table E1, where

the first row is the clustering evaluation of only the bathymetric

topographic mapping from MBES, and the second, third, and fourth
Frontiers in Marine Science 06
rows are the evaluation results when introducing the additional

morphological cues, respectively, including the slope, surface

roughness and curvature. Among them, the clustering performance

was superior when both slope and surface roughness were fed as

inputs together with the original bathymetric mapping. The

comparison of clustering performance with the individual and joint

morphological cues for example MBES imaging is shown in Figure 3,

with the original example images, the clustering results from

bathymetric mapping+slope, +surface roughness, +curvature, and

the ground truth listed from left to right respectively. It was shown

that some regions of the trench seamount group were quite easily

misclassified as island slopes, leading to many mistakenly divided

holes. Owing to the complexity and variability of seafloor surfaces,

there exist large divergences even within identical seafloor types and

possible similarities across distinct seafloor types, all of which would

influence the discrimination process. We have tried to integrate the

joint morphological cues into the deep learning-based models to

improve the accuracy of distinguishing seafloor categories.
4 Network construction

4.1 Basics of DenseNet

The basic Densely Connected Convolutional Networks

(DenseNet) embraces the hypothesis that shorter connections
A

B

D

C

FIGURE 2

Extraction of topographic factors from MBES imagery. (A) Multibeam bathymetric topographic mapping, (B) slope, (C) surface roughness, (D) curvature.
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exhibit high performance in a substantially deeper network manner

(Huang et al., 2017; Jégou et al., 2017). The feature maps of all

previous layers are used as inputs for each layer, and its own feature

maps are introduced as inputs to all subsequent layers. Therefore, a

basic DenseNet comprising L layers will result in L(L + 1)=2 direct

connections in a feed-forward fashion. Let Hi( · ) be the non-linear

transformation implemented in the i th layer, with the output of the

i th layer denoted as xi. DenseNet proposes a dense connectivity

pattern that introduces direct connections from each layer to all

subsequent layers. Consequently, the i th layer receives the feature

maps of all previous layers as the input

xi = Hi(½x0, x1,…, xi−1�) (16)

where ½x0, x1,…, xi−1� refers to the concatenation of the feature maps

produced in the previous layers. For ease of implementation, the

multiple inputs of Hi(·) could be concatenated into a single tensor.

Since the concatenation operation may not be feasible if the size of

the feature maps changes during down-sampling, DenseNet would

be further divided into multiple dense blocks, with the transition

layers between them for convolution and pooling.
4.2 Backbone network architecture

We used DenseNet121 as the backbone network of our proposed

scheme for seafloor surface classification. The non-linear

transformation Hi(·) was initially defined as a composite function of

consecutive operations, i.e., Batch Normalization (BN), followed by a

Rectified Linear Unit (ReLU) and a Convolution (Conv). The design

of a 1×1 convolution was introduced as a bottleneck layer before each

3×3 convolution to improve computational efficiency. The

DenseNet121 network configuration was made up of four dense

blocks. Before entering the first dense block, the initial convolution

layer comprised 2k convolutions of size 7×7 with step size 2, and the
Frontiers in Marine Science 07
number of feature maps in all other layers followed from the setting k.

The transition layers took a 1×1 convolution, followed by a 2� 2

Average pooling between two contiguous dense blocks. At the end of

the last dense block, global Average pooling was performed and then a

softmax classifier was applied. The number of feature maps in the four

dense blocks was 6, 12, 24, and 16, respectively, and the corresponding

size of features was 1=4, 1=8, 1=16, 1=32 of the original input.
5 Seafloor surface classification
via DenseNet

Our proposed scheme consists of several correlative steps, as

follows: (1) Manual annotation: at the beginning, the seafloor

stretching annotation of the bathymetric mapping collected from

MBES scans is manually labeled as the standard reference. (2)

Network construction: an upgraded Densenet121 backbone is

established, in aid of the minimalistic transition-up blocks in the

upsampling path, the channel attention module, and the spatial

pyramid pooling, to explore the potential seafloor stretching

categories. (3) Morphological feature fusion: the morphological cues

are incorporated into the context of the DenseNet architecture from

the extracted topological parameters. (4) The seafloor stretching

classification would go through the statistics on potential

biogeographic distribution and jointly improve the understanding of

delineating the submarine benthic habitats. The flowchart of seafloor

surface classification via DenseNet is shown in Figure 4. It should be

noted that our proposed scheme could actually be extended to

accommodate multiple scales of input seafloor stretching surfaces. It

is well known that the parameters for describing the geomorphological

formations of seafloor surfaces can be quite sensitive to the scales

involved (Wong, 1973; Phillips, 1988; Mahmud and Yusof, 2006;

Millar, 2013). We have taken into account the issues of scales and

specifically designed the geomorphological modeling via deep
A B D EC

FIGURE 3

Clustering comparison with joint morphological cues. (A) Bathymetric topographic mapping, (B) +slope, (C) +slope+roughness, (D) +slope
+roughness+curvature, (E) ground truth.
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learning. We have tried to integrate the site-specific scales and

responded to recognize the appropriate spatial scales from the

individual physical attributes of the seafloor categories during the

reasoning process under the classification criterion.
5.1 Upsampling path

DenseNet121 transforms the input into a feature tensor by

gradually reducing the spatial resolution and increasing the number

of feature maps along a downsampling path. As for the design and the

upsampling path, the Tiramisu model has had great success in the

naive extension of DenseNet to fully convolutional networks, while

mitigating the linear growth of the feature map explosion in very deep

neural networks with very few parameters, replacing the convolution

operation with a sequence of dense blocks and the transposed
Frontiers in Marine Science 08
convolution referred to as transition-up (TU) blocks, with an

approximately 10-fold reduction with respect to the state-of-the-art

models (Jégou et al., 2017). In this paper, in order to explore the

possibilities of developing smart capabilities in understanding the

seafloor stretching morphology for underwater vehicles, we have

updated the DenseNet architecture with an upsampling path of a

more simplified transition-up process, i.e., the minimalistic

transition-up blocks, which could transform the low-resolution

features into high-resolution predictions by recovering details from

early layers with blending semantics from deeper layers (Kreso et al.,

2017). The design of minimalistic TU blocks is introduced to play the

role of the upsampling path in DenseNet121. TU blocks blend the

smaller and larger representations whose spatial resolutions differ by

a factor of 2 from the upsampling and downsampling paths,

respectively, via a skip connection. The blending procedure is

repeated recursively by simple summation along the upsampling
FIGURE 4

Flowchart of seafloor surface classification using DenseNet.
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path, with skip connections arriving from the outputs of each dense

block instead of the symmetric encoder-decoder network. The final

TU block produces logits at the resolution of the DenseNet stem. The

dense predictions at the input resolution are finally obtained by 4×

bilinear upsampling. The minimalistic design helps lightweight

semantic execution with a low memory footprint and low-

dimensional feature tensors during upsampling and discourages

overfitting to low-level textures, which potentially presents

significant online computation capacities in distinguishing seafloor

categories for underwater vehicles.
5.2 Channel attention module

We adaptively refined the input feature maps along channels by

seamlessly integrating the Convolutional Block Attention Module

(CBAM) (Woo et al., 2018) into DenseNet121. The CBAM module

sequentially infers channel-wise attention maps, which are

multiplied by input feature maps. Unlike the Squeeze-and-

Excitation (SE) module (Hu et al., 2018), we have tried to exploit

the inter-channel relationships by employing both Average pooling

and Max pooling in parallel. Given an intermediate feature map X

of size H �W � C, with H, W , C being the height, width, and

channel number of the feature map, respectively, the spatial

dimension of the feature map is squeezed as follows:

Xc
avg = Avgpool(X) (17)

Xc
max = Maxpool(X) (18)

where Xc
avg and Xc

max are the outputs of the Average pooling and the

Max pooling, respectively, with a size of 1� 1� C. The Average

pooling aggregates the spatial dimension to suggest the extent of the

seafloor surface stretching, and the Max pooling gathers clues of

distinctive seafloor surface features to simultaneously infer finer

channel-wise attention. Both descriptors allow the global receptive

fields to be embedded.

An excitation operation, where the specific activations govern

the excitation of the channels by the dependency, feeds the two

descriptors into a shared multi-layer perceptron (MLP) with a

hidden layer to produce the channel attention map. To reduce the

parameter overhead, the hidden activation size is set to C=r, where r

is the reduction ratio. The output in MLP is recovered to generate

the feature vectors of size 1� 1� C. After the shared MLP is

applied, the feature vectors are merged by the element-wise

summation. In short, channel attention is computed as

Mc(X) = s W2d W1 Xc
avg

� �� �
+W2d W1 Xc

maxð Þð Þ� �
(19)

whereW1 andW2 respectively refer to the weights of the two layers,

d stands for the ReLU activation function, and s denotes the

sigmoid function. Finally, the channel attention output Mc is

multiplied with the initial feature map X to retrieve the newly

refined features with calibration,

X0 = Mc(X)⊗X (20)
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where ⊗ denotes the element-wise multiplication. The weight

coefficient from the channel attention values is broadcast along

the spatial dimension during the multiplication to adaptively screen

the optimal feature map along the channels.
5.3 Pyramid pooling module

We have further embraced the idea of a kind of spatial pyramid

pooling module (SPP) (He et al., 2015) into our DenseNet121

architecture since it may not sufficiently incorporate the

momentous global contextual prior for the receptive fields of the

seafloor surface stretching, especially on high-level layers. The basic

module of the pyramid scene parsing network (PSPNet) is

developed to help exploit and enhance the capability of global

context-aware features through aggregation along with sub-regions

from multiple receptive fields. We have proposed the introduction

of a global context with a sub-region context that enriches to

distinguish seafloor surface categories in a pyramidal manner,

using both the Average pooling and the Max pooling, as is shown

in Supplementary Figure H1.

Let the number of channels from the channel attention module

be CD; the dimensionality reduction is first performed on the input

feature maps by a 1×1 convolution. The Average pooling and the

Max pooling simultaneously conclude the feature maps in sub-

regions of pyramid scales, with the latter appropriately

compensating for the former in detail, and then connect together

at pyramid levels along the channel dimension. To maintain the

weight of the global seafloor features, a 1×1 convolution layer is

applied after each pyramid level. The low-dimensional feature maps

are directly upsampled to obtain feature maps of the same size

before pooling by bilinear interpolation. Multiple levels of pyramid

pooling features are concatenated with the original feature maps

before the pooling stage as the final globally enhanced seafloor

features, and then output with 1� 1� CD=4 convolution for the

next upsampling.
5.4 Morphological feature fusion

We further proposed fusion strategies to merge with the

morphological cues in the context of DenseNet so as to enhance

the semantic understanding among seafloor surface types, as is

shown in Supplementary Figures I1 and I2. The first one is that we

have attempted to superimpose the morphological features as the

input of DenseNet together with the bathymetric seafloor mapping,

calibrating the deep-level feature mapping with the help of the

channel attention module, enhancing the global feature extraction

from the spatial pyramid pooling, and restoring the high-resolution

predictions in the up-sampling path for the pixel-level seafloor

surface classification. The second strategy is to make an up-

sampling of those morphological features through a 1� 1

convolution as a branch to join with the deep-level feature

mapping of the same dimensionality extracted from the DenseNet

branch to jointly contribute as the input of the residual block for the
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subsequent seafloor type prediction. Due to the existence of the

identity mapping in ResNet, the residual block could at least copy

the previous layer to prevent degradation and simultaneously refine

morphological details. In addition, we have evaluated the impact of

multiple morphological cues on promoting the descriptiveness and

distinguishability of seafloor surface classification.
6 Experimental results and analysis

6.1 Dataset for seafloor surface
classification

In our simulation experiment, the developed scheme has been

verified by the high-resolution multibeam bathymetric data from

the NOAA Office of Ocean Exploration and Research (OER) for the

expeditions EX1605L1, EX1605L2, and EX1605L3, with Kongsberg

EM302 multibeam echosounders on board the research vessel

Okeanos Explorer. The total time of the expedition is 1631.269 h,

lasting for 59 days, from the 20th of April to the 10th of July 2016,

with a track length of 26703.6897 km and an average speed of 16.33

km/h in the Mariana Trench Marine National Monument and the

Commonwealth of the Northern Mariana Islands, as is shown in

Supplementary Table K1.

Meanwhile, the submersible ROV Deep Discoverer (D2),

equipped with high-definition cameras and a lighting system, was

connected to the camera platform Seirios and the research vessel via

an umbilical cable, which provided the possibility of visual cues

about the benthic habitat and colonization that are difficult to

obtain in the deep sea (Cantwell, 2016). The detailed summary of

the ROV Deep Discoverer dive log of EX1605L3 is listed in

Supplementary Table L1, and it includes the latitude and

longitude, bottom time, and maximum depth.

First, we essentially utilized the manually labeled seafloor surface

annotation as the standard reference so as to identify eight seafloor

stretching categories via DenseNet. The normative standard of our

manual annotation is listed in Table 1, where the descriptive

morphological formation features are commonly known to

systematically evaluate the seafloor surface categories (Nishizawa et

al., 2009; Harris et al., 2014). In the beginning, we divided the original

MBES images into overlapping sub-blocks based on their relatively

independent physical attributes of morphological structures at the

given scales. We normalized the above MBES images at multiple

scales, with their corresponding morphological cues and manual

labeling into the basic uniform size 256×256. Such transformed sub-

blocks were varied with multiple processing steps, such as random flip,

rotation, translation, etc., to promote the diversity of the samples. The

selection of the basic uniform size satisfied a comprehensive view of

most seafloor topography in our experiment, allowing for

interpretation, classification, and validation under the given average

swath width of MBES scans. Once a variety of scales with regard to

geomorphological formations of seafloor surfaces have been used,

normalization would be taken to adapt to the proposed model. In

total, 11,720 sub-blocks were chosen, with 8200 samples for training

and 3520 for testing, of which 697 samples were originally labeled to

the island slope ridge category, 2765 samples to the island slope
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category, 1145 samples to the island slope deep water terrace

category, 2682 samples to the trench seamount group category, 1690

samples to the trench edge slope category, 1240 samples to the trench

bottom basin category, 840 samples to the island platform category,

and 661 samples to the slope fault basin category. We could further

accumulate and refine the seafloor surface annotation as the ground

truth through the acquisition of more MBES images.
6.2 Configuration details

The configuration of the supercomputing solutions during the

model building, training, and testing process was as follows:

NVIDIA TITAN Xp graphics card and GeForce GTX 1080Ti

graphics cards, an Intel Core i5-2410M CPU with a main

frequency of 2.3GHZ, 32GB of memory cards, an Ubuntu 16.04

operating system, a Tensorflow 1.3.0 deep learning framework, a

Python3.5 interpreter, data science libraries including Numpy and

Pandas, and netCDF data viewers. For optimization, the best Adam

optimizer was adopted, among which the exponential decay rate of

the first-order moment estimation b1 and the second-order

moment estimation b2 were 0.9 and 0.99, respectively, by using

the cross entropy as the loss function, the learning rate was initially

set to 0.001, with the batch size of 16. It should be noted that we

examined the hyper-parameters in our simulation experiment,

especially the learning rate and the batch size, to ensure the

impact on the convergence of our developed model. When the

batch size varied from 8 to 32 and the learning rate varied from

0.0005 to 0.01, it was demonstrated from our experimental results

that the selected parameters exhibited quite comparable

convergence for our proposed scheme.
TABLE 1 Annotation standard for seafloor surface categories.

Category Category features

Island slope
The deepening of the seafloor out from the shelf edge to the
upper limit of the continental rise around an island, or the
point where there is a general decrease in steepness.

Island slope
ridge

An isolated or a group of elongated, narrow elevations of
varying complexity with steep sides around an island (length/
width ratio >2).

Island slope
deep water
terrace

An isolated or a group of relatively flat horizontal or gently
inclined surfaces formed by the sloping area around an island.

Trench
seamount
group

A discrete or a group of large elevations of greater relief above
the seafloor, characterized by conical shape (length/width
ratio<2), located on the trench axis, usually where plate
subduction occurs.

Trench edge
slope

The sloping area on either side of a trench.

Trench
bottom
basin

A depression, at the deepest part of a trench in the seafloor, is
more or less equidimensional in plane and of variable extent
defined by a closed bathymetric contour.

Slope fault
basin

A subsided area controlled by faults within the slope area.

Island
platform

The area of shallow water around an island.
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6.3 Evaluation metrics

We employed PA, MPA, and MIoU metrics to quantify

semantic segmentation performance with the help of manual

annotation. Assuming that there are k categories of seafloor

surfaces, let nij be the total number of image pixels that originally

belonged to the i th category but have been incorrectly classified

into the j th category, and nji be the total number of image pixels

that originally belonged to the j th category but have been

incorrectly classified into the i th category, with nii the total

number of image pixels that belonged to the i th category and

have been correctly classified into the i th category.

PA refers to the ratio between the amount of properly classified

image pixels and the total number, which can be expressed as the

following formula:

PA = ok
i=1nii

ok
i=1ok

j=1nij
(21)

MPA refers to the ratio of the number of correctly classified

image pixels on a per-category basis, which is then averaged over

the total number of categories,

MPA =
1
ko

k
i=1

nii

ok
j=1nij

(22)

MIoU calculates the average IoU ratio across all categories,

which describes the degree of overlap ratio between the intersection

and union of categories,

IoU =
nii

ok
j=1nij +ok

j=1nji − nii
(23)

MIoU =
1
ko

k
i=1

nii

ok
j=1nij +ok

j=1nji − nii
(24)

We further started to evaluate the semantic segmentation

performance of our proposed scheme. First, we verified the

configuration of a variety of backbone networks, such as

ResNet50, ResNet101, and DenseNet121, to determine whether it

would be more effective to extract the possibly deeper level features

for the seafloor surface stretching by means of the identical

upsampling modules. As shown in Supplementary Figure J1, the

selection of DenseNet121 initially achieved comparable

performance for semantic segmentation of seafloor surface

stretching in terms of PA, MPA, and MIoU metrics.
6.4 Ablation studies

We carried out a series of ablation studies to quantitatively

investigate the extent to which the progress of semantic

segmentation performance could benefit individually from the

improvement of the channel attention module and spatial

pyramid pooling in our proposed model. The performance

verification for each step is listed in Tables 2 and 3 in our

ablation studies, respectively, in terms of PA, MPA, and MIoU
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metrics. The channel attention module combined both global

average pooling and global maximum pooling to optimize the

generation of the deep-level feature descriptors. We made the

comparative evaluation of the baseline Densenet121, with either

the global average pooling or the global maximum pooling, as well

as with both types of the pooling. In our experimental results, it has

been demonstrated that the effectiveness of both types of pooling

behaved better in parallel, where the maximum pooling supplied the

possible losses derived from the Average pooling. Spatial pyramid

pooling was added to the baseline Densenet121 with the channel

attention module, using various pooling selections at multiple

pyramid scales. It was shown that the Average pooling alone

outperformed the maximum pooling alone, while the two

complementary poolings in parallel improved the semantic

segmentation accuracy more.

We also examined which types of morphological cues are more

relevant to the semantic segmentation of seafloor surface categories,

together with the features retrieved directly fromMBES imagery via

Densenet. Table 4 lists the evaluation of the semantic segmentation

accuracy by merging multiple morphological cues into the

DenseNet backbone network with the embedded channel

attention module (C) and spatial pyramid pooling module (S) in

the context of two types of feature fusion strategies, including slope,

roughness, curvature, slope + roughness, slope + curvature,

roughness + curvature, and slope + roughness + curvature. The

first mode concatenated the individual or joint morphological cues

with multibeam bathymetric seafloor mapping in advance to

generate the multi-channel input for DenseNet, and the resulting

fused feature maps would be adaptively optimized with the channel

attention module, advanced into global feature representation with

the spatial pyramid pooling, then restored to high-resolution

predictions from up-sampling with the aid of transition-up

blocks, outputting the subsequent semantic seafloor classification.

In the second mode, the bathymetric seafloor mapping was

individually input into DenseNet, with the channel attention

module and spatial pyramid pooling employed. Concatenated

feature maps of the same dimensionality were extracted from up-

sampled morphological cues by convolution from another branch

in parallel, and then commonly fed the feature fusion into the

residual block to output the seafloor type prediction. From our

experimental results, the second mode achieved the overall

performance improvement compared to the baseline and the first

mode, which to a certain extent plays a role in compensating for the

loss in down-sampling, thereby improving the descriptiveness and
TABLE 2 Evaluation of the channel attention module in our ablation
studies.

Method PA (%) MPA (%) MIoU (%)

Baseline 87.63 79.65 70.92

+cha. average pooling 88.12 80.02 71.45

+cha. max pooling 87.91 79.96 71.13

+cha. average pooling
& max pooling

88.55 80.42 71.84
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distinguishability of seafloor surface categories. The morphological

cues of slope + roughness exhibited better performance, while the

curvature did not show a significant improvement in accuracy. It

was inferred that the slope tends to indicate the degree of steepness

in seafloor surface stretching, and the surface roughness might

display the extent of erosion in the seafloor surface topography, all

of which contribute to the semantic segmentation. Also, the

curvature reflects the degree of fragmentation, which might not

be seen as a very distinguishable index and might lead to

misclassification to a large extent.

Furthermore, the semantic segmentation accuracy of each

individual seafloor surface category was systematically evaluated

against the classic Fully Convolutional Network (FCN) (Long et al.,

2015) in terms of the IoUmeasure, as is shown in Table 5. Since IoU

describes the degree of overlap between the actual outputs and the

expected outputs of each category prediction, the higher the IoU

index value, the better the segmentation performance. It could be

seen from our experimental results that our proposed scheme has

made general progress in distinguishing individual seafloor surface
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categories from the rest via DenseNet with the channel attention

module and spatial pyramid pooling strategies, which tended to

enhance the feature mapping capability of the entire network and

thus improve the segmentation accuracy accordingly.

The overall performance evaluation of our developed scheme

has been illustrated in Table 6, where the semantic segmentation

accuracy calculation, from the baseline Densenet121 with the

minimalistic transition-up (TU) blocks (DT), embedded with the

channel attention module (DTC) and spatial pyramid pooling

module (DTCS), to the coupled feature fusion with the

morphological cues (DTCSF), was quantitatively measured step

by step in terms of PA, MPA, and MIoU metrics.
6.5 Comparison with state-of-the-art
methods

We further performed the comparative evaluation with some state-

of-the-art models for semantic segmentation of seafloor surface

stretching, including FCN-8s, SegNet (Badrinarayanan et al., 2017),

RefineNet (Lin et al., 2017), PSPNet (Zhao et al., 2017), DeepLab v3+

(Chen et al., 2018), and our developed scheme, as shown in Table 7.

The classic FCN-8s network integrates the multi-layer feature maps

during down-sampling in FCN. The SegNet network calls the pooling

index at the corresponding encoder in the decoder to upsample the

feature map through the unpooling operation. RefineNet explicitly

exploits all the information available along the down-sampling process

to enable high-resolution prediction through long-range residual

connections. PSPNet captures global context through different-

region-based context aggregation by the pyramid pooling module to

improve network performance. DeepLab v3+makes use of an encoder-
TABLE 3 Evaluation of the channel attention module in our ablation studies.

Method PA (%) MPA (%) MIoU (%)

Baseline+ Channel 88.55 80.42 71.84

+ spatial average
pooling

89.04 80.87 72.21

+ spatial max pooling 88.89 80.76 71.94

+ spatial average
pooling & max

pooling
89.21 81.25 72.71
TABLE 4 Evaluation of feature fusion in our ablation studies.

Method PA (%) MPA (%) MIoU (%)

Baseline+CS 89.21 81.25 72.71

Plan one

+slope 89.47 81.38 72.92

+roughness 89.35 81.31 72.76

+curvature 89.17 81.18 72.58

+slope + roughness 89.85 81.76 73.29

+slope + curvature 89.48 81.41 72.83

+ roughness + curvature 89.39 81.33 72.73

+ slope + roughness + curvature 89.59 81.47 73.02

Plan two

+slope 89.74 81.72 73.24

+roughness 89.56 81.52 73.03

+curvature 89.18 81.20 72.65

+slope + roughness 89.87 82.01 73.52

+slope + curvature 89.72 81.64 73.13

+ roughness + curvature 89.47 81.41 72.89

+ slope + roughness + curvature 89.85 82.01 73.51
The bold values highlight the scores that fit the best performances.
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decoder to perform multi-scale information fusion while retaining the

dilated convolutions and Atrous Spatial Pyramid Pooling (ASPP) layer

of the original DeepLab series. It should be noted that the above

segmentation results for seafloor stretching categories were initially

generated from the average product of 5-fold cross-validation with our

developed model by dividing into mutually exclusive subsets with

nearly equal numbers of randomly selected samples. From the

experimental results, it was demonstrated that our proposed scheme

had achieved a significant improvement in semantic segmentation

performance, with PA, MPA, and MIoU metrics reaching up to

89.87%, 82.01%, and 73.52%, respectively. The model also exhibited

a high level of stability in terms of PA, MPA, and MIoU metrics with a

series of cross-validation rounds.

The semantic segmentation of multibeam bathymetric seafloor

mapping has been further visualized, as is shown in Figure 5, where

the example MBES image, the segmentation results of both FCN-8s

and our proposed scheme, and the corresponding labels are listed

from left to right, respectively, with the island slope ridge in red, the

island slope in green, the island slope deepwater terrace in cyan,

the trench seamount group in yellow, the trench edge slope in

blue, the trench bottom basin in purple, the island platform in

orange, and the slope fault basin in black. From our experimental

results, it was demonstrated that our developed scheme visually

outperformed the classic FCN-8s, and simultaneously enhanced the

details in-between edges, with the ability to preserve the salient

features and eliminate redundancy on a global scale, showing its

superiority in the descriptiveness and distinguishability of the

seafloor surface categories. Some semantic segmentation results of

the example multibeam bathymetric seafloor mapping along

waypoints of the expedition track around the Mariana Trench are

shown in Figure 6, where the location of the waypoint, the original
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example MBES images, the segmentation results, and the ground

truth are listed from left to right.
6.6 Biogeographic patterns

Furthermore, we made an attempt to focus on a more delicate

observation and a preliminary study of how the seafloor surface

stretching functions as a submarine benthic habitat and what type

of biogeographic pattern distribution of the benthic organisms are

present in the extremely deep sea, with the help of both the acoustic

sensor on board the research vessel Okeanos Explorer and the

optical sensor mounted in the ROV Deep Discoverer. A total of

10,000 underwater images of the dominant resident biological

species and their corresponding habitats, at dive depths within a

range of 250-5000m, included Rimicaris, Austinograea, Symphurus

thermophiles, Bathymodiolus, Phenacolepadidae, Shinkailepas,

Thoridae Lebbeus, Lamellibrachia, etc., and were considered as

our alternative underwater vision dataset for this preliminary study.

The primary benthic species retrieved from the video of each dive

by the ROV Deep Discoverer during the EX1605L3 expedition

route are recorded in Supplementary Table M1.

We established a global geographical link between the ROV dive

path and the MBES bathymetric mapping route. Figure 7 shows the

connection between the latitude and longitude of the example

ROV dive paths and the location of the MBES imaging survey,

including the original example MBES bathymetric mapping, the

corresponding seafloor surface categories, the ROV dive paths on

Eifuku Seamount and Daikoku Seamount, and the possible

typical benthic habitats retrieved from visual cues along the

paths, thus linking the seafloor surface topography with the

primary benthic biogeographic patterns. We tried to statistically

match the corresponding primary benthic habitats and species with

the seafloor surface stretching by roughly retrieving the

microgeographic cues from each ROV dive, and subdividing the

benthic habitats with the visual cues from optical sensing. Figure 8

lists some examples of dominant benthic habitats and species that

visually reflect the possible biogeographic patterns that respectively

appeared and were distributed at distinct locations of the seamount

above Figures 8A–F and the seamount below Figures 8G–L, which

also makes it possible to provide an initial insight into the diversity

and distribution of the benthic community.

It could be seen from the visual clues from the ROV dive on

Eifuku Seamount that the benthic species, especially fish and

octocoral fauna, were unexpectedly diverse, and the typical

geomorphology discovered included the crater wall and the

hydrothermal chimney structure near the summit, while the

visual clues from the ROV dive on Daikoku Seamount

demonstrated the high activity of the hydrothermal vents, the

possible evidence of the recent eruption, the volcaniclastics,

the sulfur pond and the thick volcanic smoke, the plume, and the

flatfish communities, e.g., Symphurus thermophilus and Gandalfus

yunohana. The extent of the seafloor surface stretching and the

estimation of the primary benthic biogeographic patterns reflect

the coupling variation of multivariate environmental variables in

the deep sea. The associative study derived from the sparse
TABLE 6 Evaluation of the overall network performance.

Method PA (%) MPA (%) MIoU (%)

DenseNet+TU (DT) 87.63 79.65 70.92

+ Channel Attention (DTC) 88.55 80.42 71.84

+ Spatial Pooling (DTCS) 89.21 81.25 72.71

+ Feature Fusion (DTCSF) 89.87 82.01 73.52
The bold values highlight the scores that fit the best performances.
TABLE 5 Performance of semantic segmentation across categories.

Category FCN-8s IoU(%) Ours IoU(%)

Island slope ridge 68.75 75.12

Island slope 68.21 75.95

Island slope deep water terrace 58.74 67.28

Trench seamount group 56.28 75.21

Trench edge slope 55.69 73.53

Trench bottom basin 69.12 66.13

Slope fault basin 55.69 63.07

Island platform 56.28 64.19
The bold values highlight the scores that fit the best performances.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1205142
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Nian et al. 10.3389/fmars.2023.1205142
observation statistics through both acoustic and optical sensors not

only produces the possibility of capturing the potential relationships

between the full coverage of seafloor mapping and the benthic

habitats, even the benthic species assemblage maps, but also

provides the opportunity to examine the predicted biogeographic

patterns with better-described variations and uncertainties towards

the distinct geographical characteristics of seafloor surfaces.
Frontiers in Marine Science 14
7 Conclusion

The extent to which the seafloor surface stretches and the

benthic community survives and thrives, strongly reflecting the

coupling variation of multivariate environmental factors, is still

poorly understood in the extreme deep sea. With access to advanced

sensing techniques, especially those related to the deployment of
TABLE 7 Comparison of classification performance.

Method PA (%) MPA (%) MIoU (%) Time(ms)

Random forest 80.05 75.43 58.15 33.7

FCN-8s 84.62 77.05 62.76 33.2

SegNet 86.73 78.71 68.63 67.1

RefineNet 88.90 80.46 69.74 39.5

PSPNet 88.62 80.13 70.09 34.1

DeepLab v3+ 89.08 81.27 72.47 45.1

Ours 89.87 82.01 73.52 35.7
The bold values highlight the scores that fit the best performances.
A B DC

FIGURE 5

Visualization of an example MBES image segmentation result. (A) Example MBES image, (B) FCN-8s, (C) the proposed scheme, (D) ground truth.
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A B DC

FIGURE 6

Multibeam bathymetric seafloor mapping along waypoints around the Mariana Trench. (A) Location of waypoints, (B) Example MBES image,
(C) segmentation result, (D) ground truth.
A B

D

E F

C

FIGURE 7

The connection between the latitude and longitude of Dive8 and Dive9 path and the geographical location of MBES imaging survey. (A) MBES bathymetric
mapping, (B) geographical linkage between ROV diving path and the route of MBES bathymetric mapping, (C) segmentation result of MBES imaging,
(D) geographical linkage between ROV diving path and segmentation result of MBES imaging, (E) Dive8 diving path maps, (F) Dive9 diving path maps.
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ROVs and AUVs, more attention has been paid to accumulating

benthic biogeographic knowledge from these less-mapped or even

unknown deep-sea regions. In this paper, an effort has been made to

explore how to build online computing strategies for underwater

vehicles that enable them to reasonably classify seafloor surface

categories and identify the potential biogeographic patterns when

underwater vehicles proceed along waypoints, in favor of a deep

learning-based framework, DenseNet. We directly utilized

multibeam bathymetric mapping from high-resolution MBES

scans and manually labeled the seafloor surfaces as the standard

references, i.e., island slope ridge, island slope, island slope

deepwater terrace, trench seamount group, trench edge slope,

trench bottom basin, island platform, and slope fault basin. We

initially applied the individual and joint morphological cues in

combination, in terms of slope, surface roughness, and curvature, in
Frontiers in Marine Science 16
relation to the formation and evolution processes, to help semantic

mapping and localization, which agglomerated assigned elevation

points with highly similar topological parameters for the identical

seafloor categories and deviated from the significantly inconsistent

outlier elevation points. We then established an upgraded

Densenet121 backbone from the minimalistic transition-up blocks

in the upsampling path, systematically strengthening the dominant

feature propagation and encouraging multi-scale feature reuse by

employing both the channel attention module and the spatial

pyramid pooling, and derived the types of seafloor categories with

specific morphological parameters. We integrated the channel

attention module by sequentially inferring channel-wise attention

maps from both the Average pooling and the Max pooling in

parallel. Meanwhile, we applied spatial pyramid pooling to

incorporate the momentous global contextual prior by
A B

D E F

G IH

J K L

C

FIGURE 8

Preliminary study of benthic habitats with both acoustic and optical sensors along the ROV dive path above and below. (A) old hydrothermal
chimney, (B) coronaster seastar, (C) crater wall, (D) grouper, (E) volcaniclastics, (F) octocoral fauna, (G) sulfur, (H) Symphurus thermophilus,
(I) volcanic rock, (J) Gandalfus yunohana, (K) crater, (L) volcanic smoke.
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aggregation along with sub-regions from multiple receptive fields in

a pyramidal manner. From the experiment results, it was

demonstrated that the seafloor stretching classification accuracy

of our proposed scheme could reach up to 89.87%, 82.01%, and

73.52% on average in terms of PA, MPA, and MIoU metrics,

achieving comparable performances with state-of-the-art deep

learning frameworks such as FCN-8s, SegNet, RefineNet, PSPNet,

and DeepLab v3+, which permits us to delicately and adaptively

distinguish the specific seafloor categories and connect the probable

submarine benthic habitats. We also made a preliminary study on

the potential biogeographic distribution statistics, showing the

premise of deploying underwater vehicles through unbiased

means or pre-programmed path planning to quantify and

estimate the specific types of seafloor categories and the

exhibiting fine-scale biogeographic patterns. The proposed

scheme commits to developing smart capabilities embedded in

underwater vehicles that could integrate the geometrical,

topological, morphological, and biogeographic evidence yielded

from MBES and optical sensing and hopefully perform habitat

delineation, sampling programs, and other deep-sea tasks with

more flexibility and adaptability. In the future, we will tentatively

extend our proposed seafloor classification scheme with more

advanced deep learning frameworks, such as Transformers, and

further implant them in underwater vehicles through

lightweight solutions.
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