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Porewater exchange
drives the dissolved
silicate export across the
wetland‐estuarine continuum

Fenfang Wang1,2, Zeyang Lu1,2, Yao Wang1, Ruifeng Yan1

and Nengwang Chen1,2*

1Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the
Environment and Ecology, Xiamen University, Xiamen, China, 2State Key Laboratory of Marine
Environmental Science, Xiamen University, Xiamen, China
Coastal wetlands are an important hotspot for nutrient cycling and transport

from the land to the ocean. Silicon (Si) as a vital biogenic element affects plant

growth and health of coastal ecosystems. The understanding of key factors and

processes controlling dissolved silicate (DSi) exchange between the wetlands

and coastal water has been limited due to the lack of measured data. We carried

out intensive investigations of time-series DSi concentrations and porewater

exchange across the Sediment-Water Interface (SWI) along a tidal creek with a

mangrove-salt marsh gradient during neap and spring tides in 2020. Seasonal

observations of surface water in a tidal creek and Zhangjiang Estuary (Fujian

Province, China) were conducted from 2017 to 2020. The results showed that

there was a net export of DSi from the mangroves to tidal creek with rates of 2.11

and 2.40 mmol m-2 d-1 in neap and spring tides respectively, suggesting the

mangroves served as the source of DSi. However, the salt marshes had a net DSi

import with one or two orders of magnitude lower than the export from the

mangroves. DSi export across the wetland‐estuarine continuum was largely

controlled by porewater exchange, groundwater geochemistry (pH,

temperature) and plant root uptake. Groundwater in the mangroves has larger

ratios of DSi : DIN (dissolved inorganic nitrogen) (2.5 ± 0.6) and DSi : DRP

(dissolved reactive phosphorus) (1257 ± 35) compared with surface water. The

net export of DSi from mangroves would modify the nutrient stoichiometry and

mitigate the effects of reduced river DSi flux caused by damming on coastal

ecosystem. This study provides new insights into the wetland Si cycling for

sustaining coastal ecosystem health.

KEYWORDS

nutrient fluxes, mangrove, salt marsh, coastal water quality, Zhangjiang Estuary
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1206776/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1206776/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1206776/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1206776/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1206776&domain=pdf&date_stamp=2023-05-08
mailto:nwchen@xmu.edu.cn
https://doi.org/10.3389/fmars.2023.1206776
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1206776
https://www.frontiersin.org/journals/marine-science


Wang et al. 10.3389/fmars.2023.1206776
GRAPHICAL ABSTRACT

Conceptual schematic
Highlights:

• DSi export from wetlands to estuary driven by porewater

exchange was explored.

•Mangroves had a large net export of DSi but salt marshes had

a minor import.

• DSi export from mangroves would mitigate effects of reduced

river DSi by dam.
1 Introduction

Mangroves are known as a critical “blue carbon” system with high

productivity of 635 Tg C yr-1 and large carbon storage of 739 Mg ha-1

(Alongi, 2014; Alongi, 2020). Nitrogen (N) and phosphorus (P)

cycling and transport in mangroves and adjacent estuary have been

well studied, revealing wetland’s positive or negative effects on coastal

ecosystems (Wang et al., 2019; Wang et al., 2021). Silicon (Si, the

second most abundant element in the earth’s crust) is an important

element for wetlands and marine ecosystems (Epstein, 1994; Ma and

Takahashi, 2004). Many studies focused on Si concentrations,

compositions and their variations in plants and sediments (de

Bakker et al., 1999; Elizondo et al., 2021). However, the export-

import pattern of dissolved silicate (DSi) in mangrove wetlands was

rarely studied. In some parts of the world, such as Asia, Africa,

Australia, and N. America, mangroves are invading salt marshes with

warming climate (Saintilan et al., 2014). In China, the Spartina

alterniflora, a type of salt marshes with high tolerance to salinity

and hypoxia, strong capacity for competitiveness, is invading the

native mangroves or mudflats, forming a mangrove-salt marsh

coexistent ecotone (Li et al., 2009; Zhang et al., 2012; Wang and

Lin, 2023). The potential effects of salt marsh invasion on DSi export-

import patterns in native wetlands have received little attention.
Frontiers in Marine Science 02
Wetlands have been recognized as “hot spots” for Si cycling due to

the critical role in Si transport and processing (Struyf and Conley,

2009). Plants are efficient in taking up and storing Si, and also release Si

into the sediments supporting further biogeochemical cycling (Hou

et al., 2010; Liang et al., 2015). Si is involved in the nutrient cycling,

organic matter degradation and carbon storage (Xia et al., 2020). This

biogeochemical processes about Si in wetlands determined the form

and amount available for exchange with coastal ecosystems. The land-

ocean fluxes of DSi are controlled by the geochemical, biological, and

hydrodynamic processes (Cornelis et al., 2010). The sources or sinks of

Si in the wetland ecosystem have been studied with inconsistent

conclusion. A study based on sequential extractions of Si and Fe,

modeling of the soil aqueous phase, and X-ray diffraction of the fine

clay fraction showed that the hypersaline tidal flat soils tend to be the

sink of Si due to the adsorption, (co)precipitation, and reactions

involving clay minerals (Sartor et al., 2019). The study in Gazi Bay

with the growth of mangroves and seagrasses showed that benthic

fluxes were themajor source of Si4+ with larger fluxes inmangrove than

in seagrass, which play a significant role in the functional

understanding and protection and restoration of the coastal wetlands

(Mwashote and Jumba, 2002). However, the underlying mechanisms

controlling DSi export-import pattern in wetlands are still unknown.

Dams are recognized as “in-stream” reactors to impede nutrient

transport (Maavara et al., 2020b), altering DSi fluxes along the land-

ocean aquatic continuum by retention (Laruelle et al., 2009; Harrison

et al., 2012; Chen et al., 2014). A study in the Jiulong River, Southeast

China, showed that dam retention caused a 16% decrease in DSi flux

(Chen et al., 2014). Studies based on nutrient cycling and mechanistic

model predicted that dams will retain 5.3% of global reactive silicon,

and more than half of rivers will experience greater removal of Si over

N and P by the midcentury (Maavara et al., 2014; Maavara et al.,

2020a). The decreased DSi flux from the land to the ocean has altered

nutrient stoichiometry and phytoplankton structures, increasing the
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risk of non-diatom bloom (Li et al., 2019). Our companion research has

explored the N and P source-sink pattern in a mangrove-salt marsh-

estuary system driven by the porewater exchange and nutrient cycling

(Wang et al., 2022b). Under the scenario of a decrease in land-ocean

silica fluxes caused by river damming, it is crucial to obtain a better

insight into the role of wetlands in the Si transport between land and

ocean. Here, we assume wetlands have potential to increase DSi export

and the increased fluxes will mitigate the negative effects of reduced

global river Si on marine ecosystem caused by worldwide damming.

The porewater or groundwater exchange (PEX) is recognized as a

major pathway for material transport from the land to the ocean (Chen

et al., 2019; Santos et al., 2019; Santos et al., 2021; Hu et al., 2022). The

contributions of Si fluxes driven by PEX to total Si fluxes differed in

heterogeneous environments with the contributions of 14-32% in the

Jiulong River Estuary, 5% in a salt marsh of the Changjiang River

Estuary, China, and 58-90% in the Krka River Estuary characterized as

oligotrophy (Wang et al., 2015; Liu et al., 2019; Chen et al., 2021). Tides

are recognized as a major control for Si fluxes by affecting hydraulic

gradient, hydraulic retention time and wave setup (Moore, 1996;

Taniguchi, 2002). Studies based on high-resolution time-series

observation suggested the water parameters such as salinity, pH, and

redox potential varied with tides, and thus affected the microbial

activities, nutrient cycling, the distribution of reduced species and the

elemental adsorption and desorption (Taniguchi, 2002; Delgard et al.,

2012). The exploration of hydrogeological impacts is crucial to

understand Si export or import in wetlands.

Herein, we focused on the spatial and temporal distribution of

DSi and vertical DSi fluxes across the Sediment-Water Interface

(hereafter “SWI”) in a subtropical mangrove wetland system

invaded by the salt marshes. We conducted seasonal observations

in the mangrove-salt marsh-tidal creek-Zhangjiang Estuary

continuum from 2017 to 2020. Two time-series observations of

physicochemical parameters and DSi concentrations in surface

water and groundwater were conducted during a spring-neap

tidal cycle in 2020. The specific objectives of this study were to:

(1) explore the seasonal and spatial variations of DSi concentration

across the mangrove-salt marsh creek‐estuary continuum; (2)

estimate DSi fluxes across the SWI in the mangroves and salt

marshes; (3) reveal the key factors and processes controlling DSi

export-import pattern in the mangrove-salt marsh ecotone.
2 Materials and methods

2.1 Description of the study site

The study was conducted in a National Mangrove Reserve and

the adjacent Zhangjiang Estuary (117°24′-117°30′E, 23°53′-23°56′
N) in Southeast China (Figure 1). The dominant mangrove species

are Kandelia candel, Avicennia marina and Aegiceras corniculatum

with a total area of 2.6 km2 (Zhou et al., 2010). The wetlands

experience a semidiurnal tide with a tidal range of 0.43-4.67 m, and

a subtropical monsoon climate with an annual mean temperature of

22.8 ± 5.7°C and precipitation of 1,679 mm (Wang et al., 2019). The

salt marshes (mainly Spartina alterniflora) have invaded mudflat

areas with an expansion on the edge of mangroves. Zhangjiang
Frontiers in Marine Science 03
Estuary, connected with wetlands, has a length of 58 km with a

watershed area of 855 km2.
2.2 Sampling campaigns and
chemical analysis

The seasonal observations in the mangrove-salt marsh creek-

Zhangjiang Eestuary continuum were carried out from 2017 to 2020.

Surface water samples (0.5 m) were collected along the route from the

mangrove-salt marsh creek to the adjacent estuary (Figure 1B). The

samples in tidal creek were collected in flood and ebb tides and those

in the estuary were collected at high tides (the periods offlood, ebb and

high tides were shown in Figure S1). Surface water samples were

collected during the monitoring periods using a Niskin hydrophore.

Two fixed sites along the creek edges of the mangroves and salt

marshes (Figure 1C) were chosen to conduct time-series

measurements (25 h) of surface water (0.5 m) and groundwater

during neap tides on 11th-12th October and spring tides on 20th-21st

October 2020, respectively. A “paired-wells” device (70 cm) equipped

with two CTD-Diver loggers (vanEssen, Netherlands) was installed in

the creek edge sediments. Water temperature, conductivity and

pressure were recorded using upper (5 cm) and lower (65 cm)

loggers at a frequency of 30 minutes to quantify PEX rates (See the

schematic diagram of the device in Figure S2). The monitoring began

two days after installation to minimize the impact of sediment

disturbance. Surface water samples were collected hourly in whole

tidal cycles using a Niskin hydrophore. Groundwater samples were

collected hourly at low tides using a peristaltic pump.

Water samples were filtrated immediately in the field with a GF/

F membrane (0.7 mm) and stored at 4°C until analysis. The

concentrations of ammonium (NH4-N), nitrate (NO3-N), nitrite

(NO2-N), dissolved reactive phosphorus (DRP) and DSi were

analyzed using segmented flow colorimetry (San++ analyzer,

Germany) (Detailed about the measurement method are showed

in Text S1). Dissolved inorganic nitrogen (DIN) was the sum of

NH4-N, NO3-N and NO2-N. Salinity, pH, dissolved oxygen (DO)

concentration, and temperature were measured in-situ using a

multiparameter portable meter (Multi WTW 3430, Germany).
2.3 DSi offset and PEX rate

The DSi offset of a mangrove creek in ebb tides from the

conservative mixing line of the estuary was calculated with

equations (1) and (2).

DSiExp =  ax  +  b (1)

DSiOffset =  DSiObs −  DSiExp (2)

where DSiOffset is DSi offset from the mixing lines of the estuary

(mmol L-1); a and b is the slope and intercept of the mixing line,

respectively; x is the observed salinity in tidal creek in ebb tides;

DSiExp and DSiObs is the calculated and observed concentration in

tidal creek (mmol L-1), respectively.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1206776
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2023.1206776
Linear regression was carried out to analyze the relationship

between DSi offset and tidal range in ebb tides.

The vertical PEX rate was calculated by the hydraulic gradient

and vertical hydraulic conductivity, which were based on the

generalized form of Darcy’s law and in-situ falling head method,

respectively. See more details in supporting information (Text S2).
3 Results

3.1 Spatial and temporal variations of DSi

DSi showed spatial variations in mangrove-salt marsh tidal creek-

estuary continuum (Figure 2 and Table 1). The average concentration of

DSi in the estuary was 154 ± 37 mmol L-1. In salt marsh creek, the

average concentration in flood and ebb tides was similar to or slightly

larger than in the estuary. In mangrove creek, the average concentration

in ebb and flood tides was 19% and 14% larger than in the estuary.

DSi‐salinity diagrams showed that DSi had a mostly

conservative behavior against salinity gradient in the estuary

(Figure 2). DSi in mangrove creek in flood tides, and in salt

marsh creek in both flood and ebb tides were nearly on the
Frontiers in Marine Science 04
mixing line. In ebb tides, DSi in mangrove creek was larger than

those in the estuary at a given salinity with the exceptions in autumn

2017 (October) and 2019 (November). There was a strong positive

correlation (R2 = 0.58, p<0.05) between DSi offset and tidal range in

the mangrove creek in ebb tides (Figure 3).
3.2 Time-series physicochemical
parameters and DSi concentrations

Water depth during spring tides (0.68-3.93 m) was larger than

during neap tides (0.85-3.28 m) (Figure 4). The average pH values

during neap and spring tides of mangrove groundwater (6.86 ± 0.14)

were smaller than those of salt marsh groundwater (7.44 ± 0.08). The

average temperature of mangrove groundwater (27.5 ± 1.8°C) was

higher than of salt marsh groundwater (25.4 ± 1.9°C). The salinity and

DO of salt marsh groundwater were larger than those of mangrove

groundwater (Figure 4; See more details in Wang et al., 2022b).

The DSi concentrations varied with tidal cycles, water types,

and habitats (Figure 4 and Table 2, S1). During neap tides, the

average DSi concentration at low tides was 10% higher than at high

tides in mangrove surface water (Figure 4), and the average DSi
FIGURE 1

Study area and sampling sites (modified from Wang et al., 2022b). (A) The location of the study area to the South China Sea. (B) The sampling sites
along the mangrove tidal creek and Zhangjiang Estuary. A line with arrows indicates the cruise track and direction. (C) The time-series observation
sites of surface water and groundwater in the mangroves (M, left area of the yellow line) and salt marshes (S, right area of the yellow line).
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concentration in groundwater was 43% higher than in surface water

(Table 2). In the salt marshes, the DSi concentration at low tides was

3% higher than at high tides (Table S1), and the average

concentration was 31% higher in groundwater than in surface

water (Table 2). During spring tides, DSi concentrations were

lower than during neap tides in both the mangroves and salt

marshes with an exception in mangrove groundwater, which was

39% higher than during neap tides (Figure 4). The DSi

concentration at low tides was 19% and 7% larger than at high

tides in the mangroves and salt marshes, respectively (Table S1). In
Frontiers in Marine Science 05
the mangroves, the DSi concentration in groundwater was twice as

high as during neap tides, 69% larger than in surface water (Figure 4

and Table 2). In the salt marshes, the DSi concentration in

groundwater was similar to in surface water, much smaller than

in mangrove groundwater (Table 2).

The DIN and DRP concentrations varied with water types and

habitats (Figure S3). In mangroves, the DIN concentrations in

surface water was similar during spring (76 ± 14 moml L-1) and

neap tides (74 ± 7 moml L-1), 64% and 20% smaller than in

groundwater. The average DIN in salt marsh surface water (71 ±
A B

D E F

G H I

C

FIGURE 2

Diagrams of DSi against salinity (2017-2020). The squares and triangles indicate the concentrations in mangrove (M, blue) and salt marsh (S, red)
creek in flood and ebb tides, respectively. The green circles mean the concentrations in Zhangjiang Estuary, showing a conservative mixing (black
dotted line) along the salinity gradient.
TABLE 1 The DSi concentration (Mean ± SD) in mangrove (M) and salt marsh (S)-tidal creek, and estuary in flood and ebb tides.

Date
DSi (mmol L-1)

M-creek-flood S-creek-flood Estuary M-creek-ebb S-creek-ebb

2017.01.13 193 ± 5 160 ± 8 180 ± 56 208 ± 6 204 ± 8

2017.04.28 185 ± 21 146 ± 2 158 ± 45 203 ± 10 185 ± 8

2017.06.22 258 ± 10 245 ± 8 212 ± 48 269 ± 4 261 ± 3

2017.10.31 163 ± 3 172 ± 15 197 ± 40 164 ± 14 180 ± 19

2018.06.30 222 ± 4 193 ± 9 139 ± 76 260 ± 45 192 ± 0

2019.11.17 111 ± 3 108 ± 8 108 ± 27 112 ± 2 118 ± 3

2020.05.27 205 ± 5 166 ± 4 147 ± 37 183 ± 13 156 ± 2

2020.08.17 176 ± 28 148 ± 5 149 ± 71 213 ± 4 196 ± 3

2020.12.17 103 ± 5 92 ± 2 93 ± 28 106 ± 10 91 ± 2
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1 moml L-1) was close to that in mangrove surface water (75 ± 1

moml L-1), but DIN in salt marsh groundwater (56 ± 20 moml L-1)

was 63% smaller than in mangrove groundwater (152 ± 84 moml

L-1). The DRP concentrations in mangrove groundwater was 5-15

times smaller than in surface water (Figure S3). DRP in surface

water and groundwater in salt marshes were lower than that in

mangroves during neap tides. During spring tides, DRP was similar

in salt marsh surface water and groundwater, both higher than that

during neap tides.

The ratios of DSi : DIN (dissolved inorganic nitrogen) ranged

from 1.77 to 2.12 and 2.07 to 4.98 in surface water and groundwater,

respectively (Table 2). The ratios were 29% and 14% larger in

mangrove groundwater, and 57% and 15% larger in salt marsh

groundwater than in their surface water during neap and spring

tides. The ratios of DSi : DRP (dissolved reactive phosphorus)

ranged from 58 to 167 and 89 to 1829 in surface water and

groundwater, respectively (Table 2). The DSi : DRP ratios were

96% and 94% larger in mangrove groundwater, and 91% and 30%

larger in salt marsh groundwater than in their surface water during

neap and spring tides.
3.3 PEX and DSi fluxes

The PEX across SWI varied with tidal types and habitats (Figure

S2). In the mangroves, the average outflow rates during neap and

spring tides were 0.75 and 0.41 mm h-1, much larger than inflow rates

(0.20 mm h-1 during both neap and spring tides). In the salt marshes,

the outflow rates of groundwater were close to the inflow rates of

surface water during spring tides. The inflow rate (0.26 mm h-1) was

42% larger than the outflow rate during neap tide.

The magnitude and direction of DSi fluxes across SWI varied

with tidal types and habitats (Figure 5). DSi was exported from

groundwater to surface water at low tides, while was imported to
Frontiers in Marine Science 06
groundwater from surface water at high tides in both the mangroves

and salt marshes. In the mangroves, DSi had a net export, and the

efflux during spring tides (2.40 mmol m-2 d-1) was 10% larger than

during neap tides (2.11 mmol m-2 d-1) (Figure 5). In the salt

marshes, DSi had a net import, and the influx during neap tides

(0.38 mmol m-2 d-1) was larger than during spring tides (0.06 mmol

m-2 d-1) (Figure 5), both much smaller than the efflux in

the mangroves.
4 Discussion

4.1 Hydrological controls on DSi export or
import

Tides are recognized as a key factor controlling material

transport from wetlands to coastal areas (Liu et al., 2017; Wang

et al., 2019). DSi-salinity relationship showed that DSi in mangrove

creek in ebb tides mostly fell above the conservative mixing lines of

the estuary while fell on the mixing lines in flood tide (Figure 2).

This suggested the groundwater discharge from mangrove

sediments affected DSi concentration in the tidal creek in ebb

tides, while seawater played a leading role in flood tides. The DSi

concentrations in salt marsh creek fell on or slightly above the

mixing lines in both flood and ebb tides (Figure 2), suggesting the

groundwater discharged from salt marsh sediments played a minor

role in the creek water. The significant positive relationship between

DSi offset and tidal range in the mangroves suggested the control of

tidal pumping on the groundwater discharge from the sediments to

tidal creek (Figure 3). This was consistent with a previous study

showing that porewater exchange significantly contributes to the

mangrove source function of dissolved metal, carbon, and nutrient

driven by tidal pumping (Sadat-Noori and Glamore, 2019).

The PEX was controlled by the hydraulic conductivity of

sediments and hydraulic gradient (Santos et al., 2014; Oh et al.,

2020). Salt marshes had a smaller PEX than the mangroves, and the

vertical hydraulic conductivity in the salt marsh was slightly larger

but the hydraulic gradient was smaller than in the mangroves

(Figure S2), suggesting the hydraulic gradient played a more

important role in the salt marsh PEX. The larger hydraulic

gradient caused by a larger slope of creek bank (22% larger than

the salt marshes) and higher surface elevation resulted in a larger

PEX in the mangroves (Figure S2). A larger hydraulic gradient

during neap tides explained larger net groundwater efflux in the

mangroves. All of these demonstrated the hydrological controls on

the PEX difference between the mangroves and salt marshes in this

study area.
4.2 Contrasting DSi fluxes across SWI
between the mangroves and salt marshes

The DSi concentration in porewater of sediments was the net

result of equilibrium between the uptake and restitution of Si

(Street-Perrott and Barker, 2008). Plants take up Si from

porewater released by weathering of mineral or phytolith and
FIGURE 3

The relationship between tidal range and DSi offset from
conservative mixing line of estuary in mangrove creek in ebb tides
during 2017-2020 (refer to Figure 2). The pink shaded area means
95% confidence band.
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FIGURE 4

Tidal variations of water depth, salinity, DO concentrations, pH values, temperature and DSi concentrations in surface water (grey circles) and
groundwater (red circles) in the mangroves and salt marshes during neap tides (11th-12th October 2020) and spring tides (20th-21st October 2020).
The data on water depth, salinity and DO was derived from our companion article (Wang et al., 2022b).
TABLE 2 Mean ( ± SD) DSi, ratios of DSi : DIN and DSi : DIP in surface water (SW) and groundwater (GW) in the mangroves (M) and salt marshes (S)
during neap tides (11th-12th October 2020) and spring tides (20th-21st October 2020).

Tidal types Water types DSi
(mmol L-1)

DSi : DIN DSi : DIP

Neap tides SW-M 151 ± 13 2.04 59

GW-M 266 ± 124 2.88 1505

SW-S 149 ± 16 2.12 167

GW-S 217 ± 48 4.98 1829

Spring tides SW-M 135 ± 19 1.77 64

GW-M 436 ± 94 2.07 1009

SW-S 126 ± 10 1.77 62

GW-S 147 ± 14 2.09 89
F
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seawater during the submerged periods via the transport by roots

and stem, and then stored them as the biogenic silica (BSi) (Raven,

2003; Yang and Zhang, 2018). A substantial reactive BSi can return

to wetland sediments with litterfall, increasing DSi concentrations

via mineralization and weathering (Cornelis et al., 2011; Elizondo

et al., 2021). The monocots are recognized as the typical Si-

accumulators due to the strong uptake of Si (Ma and Takahashi,

2002). Previous studies showed wetlands dominated by grasses

accumulate large amounts of Si compared to other plants,

including the mangroves (Epstein, 2001; Hodson et al., 2005).

The salt marshes, one type of monocots, likely had a higher Si

uptake than mangrove plants, which resulted in lower DSi

concentrations in salt marsh groundwater than in mangrove

groundwater (Figure 4 and Table 2). The BSi pool in the

sediments includes the phytoliths and micro-organism remnants

(Sauer et al., 2006; Aoki et al., 2007). The organic matter contents in

salt marsh sediments were smaller than in native mangrove

sediments, and the labile compound in the salt marshes was

richer than in the mangroves in this study area (Gao et al., 2018;

Wang et al., 2022a), which likely resulted in less accumulation of

phytoliths, and further led to lower DSi in salt marsh groundwater

via weathering (Figure 4 and Table 2).

The dissolution of Si was also determined by environmental

factors of sediments or porewater. The pH affect the dissolution of

carbonate phase and the liberation of loosely bound silicon

(Kellermeier et al. , 2012). Previous studies found DSi

concentrations increase with pH decrease in the pH range of 4-9

(Qin andWeng, 2006). The significant negative correlation between

pH and DSi in the groundwater (p<0.01) demonstrated the strong

effects of pH on Si dissolution (Figure S4). Mangroves absorb sulfate

ion from sediments during growth and accumulate it in the body as

sulfide (Gong and Zhang, 1994). The sulfur accumulated in the

sediments with the litter fall degradation can be transferred into

hydrogen sulfide (H2S), leading to the decrease of pH in mangrove

sediments. The oxidation of pyrite (one of the important products
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of mangrove residue decompositions) also increased hydrogen ion

concentrations of in mangrove groundwater (Ferreira et al., 2007).

Furthermore, the mangroves (especially species from the

Rhizophoraceae), are characterized by large amounts of tannins

(Zhang and Laanbroek, 2020), which was also a key source of

acidity substances in mangrove sediments. These explained more

acidic environments of mangrove groundwater than salt marsh

groundwater, which supported larger DSi concentrations in

mangrove groundwater (Figure 4 and Table 2).

The effect of temperature on weathering and dissolution

processes is significant (Rickert et al., 2002). The study in the

marine system showed that bacterial activities could accelerate

BSi dissolution, and this process was closely related to the water

temperature (Bidle and Azam, 1999; Bidle et al., 2002). The DSi

concentrations were positively correlated to temperature in this

study (p<0.01) (Figure S5). Our previous study showed that the

inundation time of the mangroves was shorter than salt marshes

without obvious difference between neap and spring tides (Wang

et al., 2022b). Longer duration of sun exposure of mangrove

sediments due to higher elevation and shorter flooding time

explained higher temperature in mangrove groundwater

(Figure 4), which was conducive to promoting Si dissolution.

Moreover, higher temperature promotes microbial activities and

respirations in mangrove sediments, which also resulted in lower

pH values and larger DSi concentrations than salt marshes (Jin

et al., 2013; Liu et al., 2018).

The DSi fluxes were determined by DSi concentrations and PEX

across SWI. The mangroves had a net export of DSi during both

neap and spring tides (Figure 5) due to larger DSi concentrations in

groundwater and larger groundwater outflow than surface water

inflow rates (Figure S2). Though a larger hydraulic gradient caused

by the low water level resulted in a larger groundwater discharge

during neap tides (Figure S2), a 69% larger concentration in

groundwater than surface water resulted in a larger net DSi efflux

in spring tides than neap tides (Figure 5). In the salt marshes, the
A B

FIGURE 5

Hourly DSi fluxes (A) and net DSi fluxes (B) across the SWI in the mangroves (orange bars) and salt marshes (green bars) during neap tides (11th-12th

October 2020) and spring tides (20th-21st October 2020). The positive and negative values indicate the export of groundwater and the import of
surface water, respectively.
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minimal difference in DSi concentrations and water flow rates

between surface water and groundwater during spring tides

caused DSi efflux and influx to be almost in balance. Though DSi

concentration in groundwater was greater than in surface water, the

surface water inflow was 42% larger than groundwater outflow

during neap tides, resulting in a net DSi influx. This suggested that

hydrodynamics played a more important role than the biological

and chemical processes in salt marshes. The net fluxes suggested

that the mangroves acted as a source of DSi while the salt marshes

served as a sink in our study area. The positive DSi offset of

mangrove creek from the mixing line was another strong

evidence for the view that the mangroves mostly served as the

source of DSi relative to estuary (Figures 2, 3).
4.3 Uncertainty analysis

The DSi concentrations showed seasonal variations in

mangrove and salt marsh creek (Figure 2) due to the seasonal

differences in temperature, rainfall and plant periodicity growth.

Our previous study in the same area showed that the nutrient

(especially nitrogen) concentrations in tidal creek were affected

seriously by the porewater discharged from mangroves in the ebb

tides (Wang et al., 2019). The DSi concentrations in mangrove

tidal creek showed a similar pattern to nitrogen in this study

(Figures 2, 3) in ebb tides, and thus we regarded the creek water in

ebb tides as the groundwater, and the creek water in flood tides as

the surface water to analyze seasonal DSi fluxes across SWI in the

mangroves and salt marshes. The results showed that mangroves

always had net DSi effluxes during both neap and spring tides

(Figures 6A, B). Salt marshes almost had net DSi influxes with the

exception in January, April 2017 and August 2020, and the

influxes were one or two orders of magnitude lower than the

effluxes in the mangroves. The seasonal export-import pattern was
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(Figures 5, 6). Though the uncertainty analysis supported the

result that the mangroves were a source while the salt marshes

were a sink of DSi, more seasonal field observations are needed in

future work to gain more insights into the seasonal DSi source-

sink patterns in the wetland-estuarine system.

Horizontal advection in the coastal area is recognized as an

important contributor to groundwater discharge (Lara et al., 2012;

Coluccio et al., 2021). Previous studies found the ratios of the

vertical hydraulic conductivity (Kv) to the horizontal hydraulic

conductivity (Kh) of the sediments ranged from 2/3 to 4 in

coastal areas (Hughes et al., 1998; Xiao et al., 2017). We

estimated the horizontal fluxes of DSi using the average ± SD (2

± 1) of Kv : Kh mentioned above in the mangroves and salt marshes.

Horizontal flux contributed less to the total flux and did not

change DSi source-sink pattern of the mangroves (Table S3). DSi

was exported to tidal creek from mangrove and salt marsh

sediments via the horizontal advection during both neap and

spring tides (Table 3). The horizontal flux in the mangroves with

a larger slope was greater than in the salt marshes with a smaller

slope, which was consistent with a study showing the sloping

peatland had a stronger lateral groundwater gradient than the

basin peatland (Millar et al., 2018). In the mangroves, the

horizontal efflux was much smaller than the vertical efflux,

contributing to 23-26% of the total efflux. Nevertheless, the

horizontal efflux was almost the same as the vertical influx during

neap tides, while 50% greater than the vertical influx during spring

tides in the salt marshes (Table 3). As a result, the salt marshes

shifted from net import (sink) to net export (source) of DSi. Both

the net fluxes with or without horizontal flux in the salt marshes

were one or two orders of magnitude smaller than the net efflux of

the mangroves, indicating the effects of salt marsh invasion on DSi

export from mangrove wetlands to Zhangjiang Estuary is

very limited.
A B

FIGURE 6

Estimated vertical fluxes of DSi during neap tides (A) and spring tides (B) based on the seasonal observations in mangrove and salt marsh creek
during 2017-2020.
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4.4 Environmental implications

Not only the nutrient concentration but the nutrient

stoichiometry often changes algal cell growth, phytoplankton

diversity and abundance, affecting the health of marine

ecosystems (Humborg et al., 1997; Garnier et al., 2010; Lin and

Lin, 2022). The ratios of DSi : DIN and DSi : DRP observed in this

study fell well within the range observed in other estuarine systems

(Table 4). However, the observed ratios in the groundwater were

larger than in most other studies except for DSi : DIN in Pearl River

Estuary, Laizhou Bay and Yeongil Bay. The ratios are much higher

than the theoretical Redfield ratio (Si:N:P=16:16:1) (Painter et al.,

2017; Wang et al., 2003), suggesting Si is not limiting relative to

nitrogen and phosphorus in the study area.

The discharge of aquaculture and domestic wastewater with

high nutrients has been a crucial disturbance to the wetland-

estuarine system. Excess nitrogen and phosphorus inputs over

DSi will decrease the ratios of DSi : DIN and DSi : DRP, leading

to a brief frenzy of undesirable algal growth and eutrophication

(Billen and Garnier, 1997; Conley, 1999). The groundwater with

high DSi concentrations, large DSi : DIN and DSi : DRP ratios was

exported from the wetlands to the estuary (Table 2), increasing the

contribution to preventing eutrophication in coastal water.

Damming alters the hydrodynamic conditions of the channel,

extends the hydraulic retention time, and increases the diatom

biomass, thus reducing DSi concentration in downstream (Beusen

et al., 2009). The observed results in the Zhangjiang river showed

that DSi concentrations in the upper reach of the dam were 9-34%

larger than that in the lower reach (Table S2), which suggested the

retention of DSi and the decrease in DSi flux from land to ocean.

Though nitrogen and phosphorus also can be trapped by dams, the

discharge of them caused by the human activities in downstream

could compensate for or even exceed the amount of retention

(Ittekkot et al., 2000). Nevertheless, there was no compensation to
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DSi. As a result, the diatoms are increasingly outcompeted by the

harmful algaes that do not require silicon to grow. Large export of

DSi from the wetlands has the potential to mitigate the negative

effects (e.g. eutrophication) on marine ecosystem health caused by

dams. Given the large number of dams in operation (Grill et al.,

2015; Mailhot et al., 2018), the assessments of the resulting DSi

retention and the role of wetlands in alleviating the retention have a

great significance in the management and restoration of wetlands at

global scales.

The alterations in vegetation habitats had a significant impact

on nutrient cycling and transport across the coastal area to the

ocean (Carey and Fulweiler, 2014). Nevertheless, DSi fluxes in the

salt marshes were one or two orders of magnitude lower than in the

mangroves, indicating the salt marshes played a minor role in

regulating DSi exchange between wetlands and coastal water in our

study. Additional observations in other regional or global scales are

needed to evaluate the effects of salt marsh invasion or mangrove

expansion on DSi export from the coastal wetlands, which were

scarcely studied.
5 Conclusions

A combination of spatial comparative study, time-series

observations, and hydrological identification was used to explore

DSi export-import pattern in a mangrove-salt marsh creek‐estuary

continuum in southeast China. The DSi spatial (mangrove-salt

marsh creek-estuary) and temporal (flood-ebb tides) distributions,

and the fluxes across the SWI revealed the mangroves had a net DSi

export due to large DSi concentrations in groundwater and larger

groundwater outflow than surface water inflow. The salt marshes

had a net DSi import due to low DSi concentrations in groundwater

and low groundwater outflow rates, half that of surface water inflow

rates. Lower pH caused by high contents of sulfur and tannin,
TABLE 3 The horizontal, vertical and total fluxes of DSi across the mangroves, salt marshes and tidal creek interface. The positive and negative values
indicate the efflux of groundwater and influx of surface water, respectively.

Tidal types Habitats Flux types F (mmol m-2 h-1)

Neap tides Mangrove Horizontal 0.64

Vertical 2.11

Total 2.75

Salt marsh Horizontal 0.39

Vertical -0.38

Total 0.01

Spring tides Mangrove Horizontal 0.83

Vertical 2.40

Total 3.23

Salt marsh Horizontal 0.11

Vertical -0.06

Total 0.05
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higher temperature caused by shorter inundation time, lower

absorption capacity of plants, and larger hydraulic gradient in the

mangroves explained larger DSi export than the salt marshes. The

DSi export-import pattern suggested the mangroves served as the

source of DSi while the salt marshes served as the sink. Two orders

of magnitude lower influxes in the salt marshes than the effluxes in

the mangroves indicated the salt marsh invasion would not change

the source function of the native wetlands. The study provides new

insights into the potential ecological implications of the ongoing salt

marsh invasion on mangrove DSi outwelling. Future work on other

mangrove-salt marsh transition wetlands is suggested to explore the

global effects of salt marsh invasions on Si cycles.

The mangrove-salt marsh ecotone had a large DSi : DIN and

DSi : DRP ratio up to 3.0 ± 1.4 and 1108 ± 758 in groundwater,

respectively. Porewater exchange driving the net export of DSi from
Frontiers in Marine Science 11
mangroves would modify the nutrient stoichiometry, reduce the

eutrophication potential and mitigate the negative effects of reduced

river DSi transport caused by damming on the coastal ecosystem.
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