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DOA estimation of
underwater acoustic co-
frequency sources for the
coprime vector sensor array
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1Department of Electronic Engineering, Ocean University of China, Qingdao, China, 2Department of
Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
A coprime array with fewer sensors can achieve the same resolution as a uniform

linear array. However, when detecting co-frequency targets, there can be

prominent false alarms due to overlaps between the main and grating lobes of

subarrays. This study proposes a direction-of-arrival (DOA) estimationmethod to

obtain the co-frequency target directions from high grating lobes. The method

utilizes joint processing of sound pressure and vibration velocity data from vector

hydrophones of a coprime vector hydrophone array and designs joint-cross

terms (JCTs) using channel combinations. Based on JCTs, we establish a

characteristic data point identification algorithm. The method in this paper can

stably and accurately acquire co-frequency target directions from high grating

lobes without decoherence operation. Simulation results demonstrate that the

proposed algorithm achieves accurate DOA estimation even with reduced

signal-to-noise ratio (SNR) and fewer data points. Additionally, a sea

experiment confirms the rationality and efficiency of the proposed algorithm,

providing new ideas for co-frequency source detection using coprime vector

sensor arrays.

KEYWORDS

direction-of-arrival (DOA) estimation, co-frequency sources, coprime vector sensor
array, sound pressure and vibration velocity joint processing, vector hydrophone
1 Introduction

Direction-of-arrival (DOA) estimation is an essential aspect of array signal processing

that holds immense significance in multiple fields, including acoustics, radar, and wireless

communications (Zhang et al., 2022; Xie et al., 2023; Zhang et al., 2023). Classic techniques

for DOA estimation involve subspace theory and typically utilize methods such as multiple

signal classification (MUSIC) (Schmidt, 1986) and estimating signal parameters via

rotational invariance techniques (ESPRIT) (Roy and Kailath, 1989). In these algorithms,

uncorrelated incident signals are assumed, and coherent signals will fail due to the

covariance matrix’s rank deficit. To handle coherent signal situations, several techniques
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have been suggested, such as spatial smoothing (SS) (Pillai and

Kwon, 1989) and forward/backward SS (FBSS) (Shan et al., 1985).

The SS method achieves DOA estimation of coherent signals but at

the cost of decreasing array aperture. The FBSS method can

enhance estimation accuracy but does not fully address signal

decoherence. Furthermore, these techniques typically consider

ULAs, with sparse linear arrays being less commonly employed.

Coprime line arrays (CLAs) offer a systematic array setup beyond

Nyquist sampling while minimizing mutual coupling between array

elements (Vaidyanathan and Pal, 2010; Vaidyanathan and Pal, 2011;

Adhikari et al., 2013; Zhang et al., 2013; Tan et al., 2014; Adhikari and

Buck, 2015; Di Martino and Iodice, 2017; Qin et al., 2017; Zhou et al.,

2017; Alawsh and Muqaibel, 2018; Mei et al., 2018; Adhikari, 2019;

Moghadam and Shirazi, 2019; Alawsh and Muqaibel, 2020; Alawsh and

Muqaibel, 2021; Moghadam and Shirazi, 2022). The research on DOA

estimation of the coprime array is mainly carried out from two aspects.

On the one hand, it is implemented from the physical array domain. On

the other hand, it is achieved in the virtual array domain. For processing

the physical array elements, a DOA estimation method utilizes a

decomposed CLA and solves a joint covariance matrix optimization

problem. The method enables the reconstruction of the interference-

plus-noise covariance matrix and weight vector computation for the

minimum variance distortionless response (MVDR) beamformer that

minimizes variance distortion (Zhou et al., 2016; Zhou et al., 2017). The

DOA estimation in the physical array domain suffers from high grating

lobes caused by the intersensor spacing, which is greater than l
2 (where l

is the wavelength of the signal), and many methods have been

investigated in order to reduce the effect of grating lobes. For scalar

CLAs, Product andMin algorithms were proposed to calculate the signal

spatial power spectral density (PSD) and resolve the grating lobe

problems (Adhikari and Buck, 2017). The array factors can be

established based on a uniform linear array for single-target direction

estimation. The array factors should satisfy that the beam response of the

uniform linear array has the opposite amplitude with one subarray of the

CLA (Liu and Buck, 2015). Extending the coprime array is also a way to

settle the grating lobe matters. Some methods have been suggested to

extend CLAs by changing the positions of grating lobes and sidelobes of

the beam output for two coprime subarrays (Adhikari et al., 2013;

Adhikari et al., 2014; Chen et al., 2023). The methods above for

suppressing grating lobes are developed when the signals are

incoherent. In the virtual array domain, the investigation of the

coprime vector sensor array has received more attention. Nowadays,

DOA estimation for coprime vector sensor arrays has already been

developed in the radar field. A six-sensor coprime electromagnetic

vector-sensor (EMVS) array (Fu et al., 2021) was used in a new

method. The method involved a nuclear norm minimization (NNM)

problem to create an extended covariance matrix for DOA information.

Then, the issue of DOA estimating in a two-dimensional space was

examined for a multiple-input multiple-output (MIMO) radar with

coprime EMVS arrays operating in a bistatic configuration (Yang

et al., 2021). However, these methods are used to process uncorrelated

signals for the coprime vector sensor array, while coherent signals are less

considered in the application. Moreover, the main advantage of these

algorithms in the radar field is the high degree of freedom for DOA

estimation. For underwater array target detection, such a high degree of

freedom is not an urgent need to be achieved.
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In underwater signal detection, vector hydrophone linear arrays

are often used. Each vector hydrophone can be composed of

hydrophone and velocity sensors. Owing to the frequency-

independent dipole directivity of the vector hydrophone, a vector

hydrophone linear array has similar performance but with a smaller

array aperture compared with a sound pressure array. Moreover,

vector hydrophone arrays have attracted wide attention for their

left–right discrimination, which acoustic pressure arrays cannot

provide (Hawkes and Nehorai, 1998). Furthermore, when the

signals of vibration velocity and sound pressure are combined,

the combination holds strong anti-isotropic noise ability (Santos

et al., 2011; Felisberto et al., 2016; Felisberto et al., 2018). As for

practical applications, fulfilling coprime array configuration in

underwater vector sensor arrays is a recently new attempt (Chen

et al., 2023). Moreover, the issue about DOA estimation of co-

frequency signals for underwater coprime vector sensor array is still

expected to be addressed.

When the target is incoherent, the array will output high grating

sidelobes but not exceed the magnitude of the output in the direction

where the targets are located, and this issue has been studied. However,

when the targets are co-frequency, overlapping high grating sidelobes

can cause higher array output than the magnitudes of the target

directions. As a result, the actual targets may be obscured, and the

DOA estimation performance will deteriorate. In this paper, we

propose an algorithm that utilizes a coprime vector hydrophone

array to achieve DOA estimation of two co-frequency signals. We

aim to address the issue of concealed targets due to high grating lobes.

Thus, the target directions can be identified accurately from the high

grating lobes, thereby avoiding false alarms. To enhance robustness, we

employ the conventional beamformer (CBF) based on the entire

coprime array as the preprocessing method. Joint-cross terms (JCTs)

are constructed based on the vector hydrophone subarrays, and the

channel combinations of vector hydrophones are utilized in the

algorithm. Additionally, we design a characteristic data point

identification method based on JCTs. Unlike existing techniques, the

proposed method does not perform spatial smoothing, but it is highly

effective in processing coherent signals with the same frequency.

Simulation results and experimental data analysis validate the

effectiveness of the proposed algorithm. The paper’s contributions

can be summarized as follows.
1. Firstly, the paper analyzes the cause of the high grating lobes

in coprime vector sensor arrays when two co-frequency

signals are present. JCTs are constructed using the

characteristics of coprime arrays and vector hydrophones,

which imply the DOA information.

2. Secondly, a DOA estimation method based on

characteristic data point identification algorithm using

JCTs is designed, which achieves stable extraction of co-

frequency targets’ directions.
This paper is organized as follows. In Section 2, we establish the

mathematical signal model of the coprime vector sensor array and

attain the array beam output. Next, we advance the situation in

which strong grating lobes appear and present an example. In

Section 3, we present the DOA estimation method. The DOA
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estimation method based on characteristic data point identification

is introduced based on JCTs to achieve the direction extraction. We

validate the method through simulation in Section 4 and

experimental data processing in Section 5. Finally, we summarize

the article in Section 6.

Notations: The uppercase bold characters denote matrices,

while their lowercase counterparts denote vectors. ( · )*, ( · )H , and

( · )T represent the complex conjugate, conjugate transpose, and

transpose, respectively. bmI stands for the unit matrix. ⊗
represents the Kronecker product.
2 Co-frequency signals model

An underwater acoustic vector sensor linear array consists of

two sparse uniform vector sensor linear subarrays with M and N

physical sensors, respectively. The values of M and N are coprime.

The first subarray containing M sensors is spaced apart by Nd,

whereasMd spaces apart the second subarray containing N sensors.

Here, d = l=2 represents the intersensor unit spacing, where l
indicates the wavelength of the narrowband signal received by the

array. With two subarrays sharing the first sensor, the other sensors

of each subarray are arranged according to the original structure,

and the array configuration is represented in Figure 1 and Equation

(1).

S = Mnd, 0 ≤ n ≤ N − 1f g ∪ Nmd, 0 ≤ m ≤ M − 1f g (1)

Assuming that the far-field narrowband co-frequency coherent

signal impinges on the coprime vector hydrophone from the

direction q0, the received signal can be modeled as:

X(t)¼½x1(t), x2(t),⋯ x3(M+N−1)(t)�T
     = a(q0)⊗ u(q0)z(t) + N(t)

(2)

where. denotes the signal waveform vector and N(t) = ½nT1 (t),
nT2 (t),⋯ nT3(M+N−1)(t)�T ∼ CN (0,s 2

n I) d e n o t e s s t a t i s t i c a l l y

independent Gaussian noise component with s 2
n , where s 2

n is the

noise power. Here, ni(t) = ½np(t), nvx(t), nvy(t)�T , i = 1, 2,⋯M + N
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−1 and np(t), nvx(t), and nvy(t) denote the pressure component and

the horizontal velocity x and y direction components of the noise

vector at the ith element, and they are mutually independent. a(q) is
the steering vector connected with DOA ql given by:

a(q0) = ½1, e−j2pl d2sin(q0),…, e−j
2p
l dM+N−1 sin (q0)�T (3)

where ½d1, d2,…, dM+N−1� ∈ S. Here, d1 = 0 by taking the first

array element as a reference, which can be shown in Figure 1. The

velocity components of three-dimensional vector hydrophones are

displayed in Figure 2. For two-dimensional vector hydrophones in

practical application, the 3 × 1 steering vector can be obtained as:

u(q0) = ½1, cos(q0), sin(q0)�T (4)

Without regard to the noise component, the CBF is given by the

following equation (Yang and Ye, 2019):

BvCLA =
1

(M + N − 1)2
wH
vCLAzvCLA

�� ��2 (5)

wvCLA = wCLA ⊗u(q) (6)

wCLA = e−j
2p
l dCLAsin(q) (7)

where wCLA denotes the weight of the array beamformer and

dCLA ∈ S. When there is only one source, the beam output of the

array can achieve the maximum output in the source direction.

However, when two sources have the same frequency, the large

cross-term appears in Eq. (5). The large cross-term will result in

large beam outputs in other non-target directions, ultimately

leading to false alarms or incorrect bearing estimation results.

Figure 3 also explains the situation. The positions indicated by

the arrows in the figure represent the grating lobe locations for a

coprime vector sensor array. When two subarrays’ grating lobes

caused by co-frequency signals overlap, a high output will be

generated for the whole array. The directions with grating lobes

relation can be explained by the following formula (Adhikari et al.,

2014):
FIGURE 1

Coprime array configuration.
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cosa ±
2
M

k1 = cosb ±
2
N
k2 (8)

where k1 = 0, 1, 2,…, k2 = 0, 1, 2,…, and a and b are two angles

satisfying the overlapping relationship of grating lobes. For

instance, as shown in Figure 4, the directions of q1 = 57∘ and q1 =
87∘ marked by the black dotted lines are the true co-frequency

sources’ directions, whereas the directions of q1 = 32∘ and q1 = 105∘

marked by the red dotted boxes are the false-alarm directions. In

Figure 4A, the main lobe of one subarray and the grating lobe of the
Frontiers in Marine Science 04
other subarray coincide, or the grating lobe of one subarray and the

grating lobe of the other subarray coincide (as shown in red dotted

boxes). Consequently, ambiguity emerges in comparable amplitude

beam output to true sources, as shown in Figure 4B.
3 DOA estimation for two co-
frequency sources

3.1 Constructing joint-cross terms for
coprime vector hydrophone array

The correlation coefficient between sound pressure and

vibration velocity in the isotropic noise field is 0, which means

that the joint processing of sound pressure and vibration velocity

for the acoustic vector signal suppresses the noise. Therefore,

without regard to the noise component, the data channel of the

acoustic vector hydrophone is transformed by rotation and

combination, and Eq. (9) is obtained

vc(t) = vx(t)cos(j) + vy(t)sin(j)

   = s(t)cos(q − j)
(9)

vs(t) = −vx(t)sin(j) + vy(t)cos(j)

   = s(t)sin(q − j)
(10)

where vx(t) and vy(t) represent the velocity components of

a vector hydrophone, and they are mutually orthogonal. vc(t) and
FIGURE 3

The distribution characteristics of zero point, grating lobes, and sidelobes of a coprime vector sensor array output.
FIGURE 2

The view of a vector hydrophone geometry.
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vs(t) stand for the combined transformation of the velocity channel

of vector hydrophone, where j is the electron rotation angle and

s(t) is the sound pressure signal received by the hydrophone. In this

paper, the combination of sound pressure and vibration velocity is

used as

½p(t) + vc(t)�vs(t) = s2(t)Bs(q) (11)

where

Bs(q) = (1 + cos(q − j))sin(q − j) (12)

p(t) indicates the sound pressure of a vector hydrophone. We

can see that Bs(q) = 0 when q = j and the noise reduction process

is carried out by using the correlation characteristics between signal

and noise. Therefore, by rotating the acoustic vector hydrophone

data and selecting an appropriate rotation angle j, the noise can be

reduced, thereby reducing the SNR threshold and making it possible

to explore weak targets.

For a single uniform sparse vector hydrophone array, when

there is a target from a certain orientation (take the target with an
Frontiers in Marine Science 05
orientation of 40° as an example), the spatial spectrum output of the

sparse vector array using conventional beamforming obtained

based on Eq. (12) can be shown as Figure 5. It can be seen that

the spatial spectrum output based on vector hydrophone combined

channels shows a concave point at target orientation. However,

there is an unreliability in using concave points to determine target

orientations when the noise is considered. Moreover, for a single

sparse array, this unreliability will become more acute as the spacing

of array elements increases.

The CBF for a coprime vector hydrophone array produces two

spatial spectra but contains ambiguous orientation concave points

due to the spatial undersampling of the subarrays. Inspired by the

Product theorem (Adhikari et al., 2014; Adhikari and Buck, 2017),

which resolves the spatial frequency ambiguities by performing

complex conjugate multiplication between two coprime subarrays

(Vaidyanathan and Pal, 2010), we proposed a DOA estimation

method based on JCTs for coprime vector hydrophone array. Let

pM(t), vxM (t), and vyM (t) be the acoustic pressure and the x-axis and

y-axis velocity data of acoustic particles received by the vector

hydrophones from the subarray with M sensors, respectively.
BA

FIGURE 5

Comparison of treating each channel as normal and combining channels for a vector hydrophone. (A) Spatial spectrum output of a vector uniform
line array without considering noise. (B) Spatial spectrum output of a vector sparse line array without considering noise.
BA

FIGURE 4

The situation of the blurred orientation output caused by the overlapping of subarray grating lobes. (A) Beam output for two subarrays of the
coprime vector sensor array. (B) Beam output of the whole coprime vector sensor array.
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Meanwhile, let pN (t), vxN (t), and vyN (t) be the acoustic pressure and

the x-axis and y-axis velocity data of acoustic particles received by

the vector hydrophones from the subarray withN sensors. The JCTs

for coprime vector hydrophone array can be constructed as

J1(t) = (pM(t) + vcM(t))vsN (t)

J2(t) = (pN (t) + vcN (t))vsM(t)

(
(13)

where for the subarray with M sensors

vcM(t) = vxM(t) cos  (j) + vyM(y) sin  (j)

vsM(t) = −vxM(t) sin  (j) + vyM(t) cos  (j)

(
(14)

and for the subarray with N sensors

vcN (t) = vxN (t) cos  (j) + vyN (y) sin  (j)

vsN (t) = −vxN (t) sin  (j) + vyN (t) cos  (j)

(
(15)
3.2 Estimating DOA based on JCTs for
coprime vector hydrophone array

Based on CBF, we define the spatial spectrum output concave

point discriminant algorithm

F(q) = B�NM(q) · B* MN (q) (16)

where BNM(q) and BMN (q) are the subarray beam output

obtained by beamforming after vector coprime array channel

combination based on Eqs. (4) to (7), and Eqs. (13) to (15).

Compared with one single sparse array, the relation between two

sparse subarrays of the coprime vector hydrophone array is

established, thus improving the reliability of the concave points

judgment. Let Q be the search step and qs be the suspected target’s

orientation. The discriminating process can be expressed as

D1
p = IF(F(qs) − F(qs −Q) < 0)     

  ·IF(F(qs) − F(qs +Q) < 0),   

D2
p = IF(F(qs +Q) − F(qs) < 0)     

  · IF(F(qs +Q) − F(qs + 2Q) < 0),

D3
p = IF(F(qs −Q) − F(qs − 2Q) < 0) 

  ·IF(F(qs −Q) − F(qs) < 0) :   

(17)

where "IF()" indicates if conditional operation.
3.3 Major steps and practical application

The algorithm steps mainly focus on the data preprocessing, the

constructions of JCTs and characteristic data point identification

algorithm, and the source directions determination. The

preprocessing is conducted based on Eq. (5), and the result can

be robust because of the CBF, which can be validated in Section 4.

The suspected targets’ orientations are predetermined with the

beam output of the whole coprime vector sensor array. The JCTs
Frontiers in Marine Science 06
are established by taking advantage of the channel data

combination of the vector sensor array on Eq. (13). Based on

JCTs, the discriminant algorithm for identifying the concave

points can be achieved by Eq. (16). In either case, one single

target or two detected with a specified detection threshold, the

source direction can be determined. Since there is no possibility of

false-alarm lobes of array output in either case, only the true output

is presented. Furthermore, for more suspected directions, whether

there are false targets will be determined according to Eq. (8), and

coherent sources can be identified efficiently based on Eq. (17). The

pseudo-code of the proposed method is exhibited in Algorithm 1.
Require:
Input data: Array beam data St

2: Initialize parameters: Signal integral

length Ts, Angle search range Qs, Detection

threshold DT, the flag for grating lobes exist

or not Flag ¼ 0, Concave point set Qc, Target

direction set Qf.
Ensure:

while LengthðStÞ ¼ Ts do
4: for j ¼ 1 :Qs do

Beamforming Bj with Eq. (5)

6: end for

Output BQ

8: Update Qf with DT

Update Flag with Eq. (8)

10: if Flag ¼ 1 then

Update Qc with Eq (13) to Eq (17)

12: if ((Qf ∩ Qc) ≠ ∅) then

Update Qf

14: else

DT adjustment

16: end if

end if
18: end while

Output Qf
ALGORITHM 1
Pseudo code of the major steps for the overall algorithm.
4 Simulation analysis

4.1 Accuracy performance

Numerical simulations are conducted to assess the performance

of the proposed method. Furthermore, MUSIC based on the SS

(Pillai and Kwon, 1989) and FBSS methods (Shan et al., 1985) are

used as comparison methods. A coprime vector hydrophone array

with 10 sensors (M = 5 and N = 6) is adopted in all examples.

The first part of the simulations investigates the situation in

Figure 4. Two coherent sources with the same frequency, 500 Hz,

come from the directions q1 = 57:8∘ and q2 = 86:2∘, respectively,
frontiersin.org
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which are shown in red circles in Figure 4B. The grating lobe caused

by the same frequency and coherence of the signal leads to wrong

target directions of q3 = 32∘ and q4 = 105∘ , which are presented in

blue circles. The DOA estimation performance of different

algorithms is evaluated using the root-mean-square error

(RMSE), which is described as
Frontiers in Marine Science 07
RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
IKo

I
i=1oK

k=1(q̂ k(i) − qk)
2

r
(18)

where q̂ k(i) denotes the estimated DOA of qk for the i th

independent trial and I and K, respectively, denote the number of

Monte Carlo simulation experiments and the number of sources.

The suggested method, as shown in Figure 6, consistently produces
BA C

FIGURE 6

Estimation reliability comparison for two coherent sources with the same frequency when SNR = 10 dB and snapshot is 1000. (A) Results of the Pillai
and Kwon (1989) method. (B) Results of the Shan et al. (1985) method. (C) Result of the proposed method.
BA

FIGURE 7

RMSE of DOA estimation. Each simulated point is averaged based on 500 trials. (A) RMSE versus SNR for two coherent sources with the same
frequency. The snapshot is 1,000. (B) RMSE versus snapshot for two coherent sources with the same frequency. The SNR is 10 dB.
BA

FIGURE 8

Method performance comparison. (A) Method performance comparison when the SNR = 10 dB and the signal snapshot is 1,000. (B) Method
performance comparison when the SNR = −10 dB and the signal snapshot is 1,000.
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reliable estimates of true DOAs. When the SNR varies from −15 dB

to 15 dB, the quantity of snapshots is set to a constant value of 1,000.

As shown in Figure 7, the RMSE is reduced with the increase of

SNR. Furthermore, when the SNR is fixed at 10 dB, it can be

observed that three estimation results become more stable, and the

proposed method demonstrates enhanced accuracy as the number

of snapshots increases.
Frontiers in Marine Science 08
The technique of spatial smoothing processing is a widely

employed method for decorrelation in practical applications,

serving as a foundation for numerous studies. Next, we implement

and compare the approaches based on signal covariance matrix

recovery (CMR) (Pan et al., 2022) and sparse signal reconstruction

using compressive sensing (CS) (Das et al., 2016) with our method.

The directions of co-frequency signals are 47.9° and 78.5°, with an
B

A

C

FIGURE 9

Sensitivity of the algorithm to array element position errors. (A) Array setup with and without element position errors. (B) DOA results based on
different methods with element position errors, SNR = 0 dB, q1 = 47.9°C and q2 = 78.5°C. (C) The magnified details for DOA results.
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SNR of 10 dB and a signal snapshot of 1000. From Figure 8A, it can

be observed that the proposed and the CS methods can obtain the

target direction information. The CMR method also achieves high-

amplitude output in target directions but suffers from ambiguity. In

Figure 8B, when the SNR decreases, both the method in this paper

and the CMR method show ambiguous orientation, and the CS

method shows direction misjudgment.
4.2 Sensitivity to position errors

In array signal processing, the signal mismatch is a critical issue.

In this part, the element position errors are considered to assess the

impact of signal mismatch on the proposed method (Yang, 2017).

The spacings between array elements were assumed to hold the

random error with a mean of 15% of the unit spacing between two

sensors, which can be shown as Figure 9A. Receiver positions are

represented by symbols, with the desired locations denoted by "☆"

and the actual locations denoted by " ∘". In Figure 9B, one can find

that in the presence of array element errors, the SS method has a

DOA estimation bias. In comparison, the FBSS method performs a

better DOA estimation accuracy. Compared with the two methods,

the method of this work can obtain more accurate DOA estimation

results. In addition, it can be seen from Figure 9C that the DOA

estimation results of the method depend on the beam output

obtained by the conventional beamforming (shown in the legend

of "Array output" in the figure). Therefore, the DOA estimation

error of the method will be affected by the array beamforming

output. However, the algorithm still inherits the robustness of CBFs.
4.3 Bearing time record performance

This part simulates the bearing time record (BTR) under low

SNR. As shown in Figure 10, the red "*" represents the detection

result of the algorithm. Figure 10A conducts the simulation for two

targets with directions changing. Furthermore, the simulation

design ensures high grating lobe interference in the direction

change interval (SNR = 0 dB). It can be seen from the figure that

many high grating lobe interferences have a severe impact on the

target detection results. However, this paper’s method can detect

targets’ actual orientations more stably and accurately. Figure 10B

depicts the scenario where two co-frequency targets generate the

high grating lobes, with the SNR of both targets being −5 dB, while

the targets move in a constant azimuth. It can be seen that there is

substantial interference in the direction of the end fire of the array,

which will seriously deteriorate the performance of DOA detection.

The red "*" shows that the proposed algorithm in this paper

demonstrates a stable estimation of true DOAs.
4.4 Attempts in the case of multiple targets

Multiple co-frequency target detection can be divided into

three main cases: (1) All targets fall into the relation of
Frontiers in Marine Science 09
overlapping grating lobes. (2) None of the targets fall into the

relationship of overlapping grating lobes. (3) Some of the targets

hold overlapping grating lobe relation. We set M = 5, N = 6, SNR

= −7 dB, and f = 500 Hz. For the first case, there are targets from

the directions of 47.9°, 57.8°, 78.5°, and 86.2° respectively, and all

of them satisfy the grating lobe overlapping relation. In

Figure 11A, one can find that due to the grating lobes, the real

directions are submerged within the false alarms, affecting the

accurate detection of targets. For the second case, the source

directions are set as 30°, 38°, 50°, and 63°. These directions are

not in the relationship of grating lobes overlapping. In

Figure 11B, without the grating lobes overlapping, array grating

lobes will not mask the true direction, and the algorithm can

directly obtain the correct target directions’ information.

However, when some of the targets fall into the relation of

overlapping grating lobes, they are from the directions of 20°,

30°, 47.9°, and 78.5°, respectively. As shown in Figure 11C, the

method proposed in this article cannot accurately determine the

target’s true direction from the overlapped lobes of partial targets.

Because of the complex grating lobe relationships caused by

multiple targets, the feature relationships of the JCTs are

affected. Future research will focus on studying and attempting

array interference suppression techniques to address this issue.
B

A

FIGURE 10

BTR for bearing-changing targets. (A) SNR = 0 dB. (B) SNR = −5 dB.
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5 Experiment data analysis

The experiment data analysis has been presented in this part. As

shown in Figure 12, the experiment data were collected on an

extended coprime vector hydrophone array with 12 sensors on the

ocean bottom at a (water) depth of 35 m. The shipborne sound

source emits signals to simulate the sound source. The vector

hydrophone picks up the underwater sound signal, then transmits

the data to the base station through the hydrophone array’s data
Frontiers in Marine Science 10
acquisition and transmission system. The base station performs

signal processing and realizes the display and reporting of the target

detection results. M = 2 and N = 3 for the extended coprime vector

hydrophone and the array expansion factor e =3 (Chen et al., 2023).

A moving sound source transmitting at the frequency of 375 Hz

moves in a straight line along the direction of 57°. In order to

validate the proposed algorithm, the signal data from the direction

of 86° have been added to the received signals of the coprime array.

The added signal will produce grating lobes in the array output that
B

A

C

FIGURE 11

Simulation results of algorithm performance in multiple targets case. (A) All targets satisfy the grating lobes overlapping relation. (B) None of the
targets satisfy the grating lobes overlapping relation. (C) Some of the targets satisfy the grating lobes overlapping relation.
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overlap with the source array output. In Figure 13A, one can find

that many strong grating lobe interferences show up after the signal

was added, deteriorating the performance of source detection and

DOA estimation. The proposed method can obtain the DOA

information of targets more accurately. Because the signal data

from the direction of 86° are artificially added, the DOA estimation

method shows more stable results, which are shown in Figure 13B.

In the second experiment, the sound source transmits the signal at

the frequency of 315 Hz and moves in the direction of 43°, as shown
Frontiers in Marine Science 11
in Figure 14A. In order to increase the grating lobe interferences,

the signal from 67° has been included in the original received array

signal. Owing to the additional signal, the grating lobes from two

sources coincide, resulting in many grating lobe interferences in the

array output. The real targets have been buried in strong grating

lobe interferences and wide array beams. It can be observed that the

proposed method achieves the extraction of real targets from the

strong grating lobe interferences and then realizes the targets’ DOA

estimation, as shown in Figure 14B.
FIGURE 12

The experimental layout.
B

A

FIGURE 13

BTR in experiment. (A) q1 = 57°C and q2 = 86°C. (B) Results of the proposed method.
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6 Conclusion

This paper investigates the problem of false alarms that can

deteriorate the performance of DOA estimation for two co-

frequency sources in a coprime vector hydrophone array. These

false alarms are caused by the overlap of main lobes and grating

lobes from subarrays. To address this issue, we propose a DOA

estimation method that involves JCTs connected with subarrays

from a coprime vector hydrophone array. Based on JCTs, we design

a method to identify characteristic data points. The proposed

method eliminates false-alarm directions without smoothing and

detects true DOAs without ambiguity. Simulation and BTR results

from the sea experiment data demonstrate that the algorithm

performs well and provides a new approach for DOA estimation

of coprime vector sensor arrays. Applying large aperture arrays will

be a major trend in ocean observation and maritime combat, like

marine life detection, UUV (unmanned underwater vehicle), and

USV (unmanned surface vehicle) operations. Coprime arrays and

their related signal-processing methods will play an important role

in the marine domain. The method proposed in this article can also

be applied to combined active and passive sonar detection and

multi-base sonar cooperative detection. Furthermore, with the

application of deep learning in ocean observation, combining

deep learning concepts with the method presented in this article

may achieve more efficient results in ocean observation, such as

target recognition and tracking.
Frontiers in Marine Science 12
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

XC: Conceptualization, methodology, and writing—original draft.

HZ: Validation, supervision, funding acquisition, and project

administration. YG and ZW: Graphical abstract preparation. All

authors contributed to the article and approved the submitted version.
Funding

This work was financially supported by Marine S and T fund of

Shandong Province for Pilot National Laboratory for Marine Science

and Technology (Qingdao) (No. 2018SDKJ0210).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
B

A

FIGURE 14

BTR in experiment. (A) q1 = 43°C and q2 = 67°C. (B) Results of the proposed method.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1211234
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2023.1211234
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Marine Science 13
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Adhikari, K. (2019). Beamforming with semi-coprime arrays. J. Acoustical Soc.
America 145, 2841–2850. doi: 10.1121/1.5100281

Adhikari, K., and Buck, J. R. (2015). “Gaussian signal detection by coprime sensor
arrays,” in South Brisbane, QLD: 2015 IEEE International Conference on acoustics,
speech and signal processing (ICASSP) (South Brisbane, QLD: IEEE). 2379–2383.

Adhikari, K., and Buck, J. R. (2017). Spatial spectral estimation with product
processing of a pair of colinear arrays. IEEE Trans. Signal Process. 65, 2389–2401.
doi: 10.1109/TSP.2017.2659642

Adhikari, K., Buck, J. R., and Wage, K. E. (2013). “Beamforming with extended co-
prime sensor arrays,” in 2013 IEEE international conference on acoustics, speech and
signal processing (Vancouver, BC: IEEE), 4183–4186.

Adhikari, K., Buck, J. R., and Wage, K. E. (2014). Extending coprime sensor arrays to
achieve the peak side lobe height of a full uniform linear array. EURASIP J. Adv. Signal
Process. 2014, 1–17. doi: 10.1186/1687-6180-2014-148

Alawsh, S. A., and Muqaibel, A. H. (2018). Multi-level prime array for sparse
sampling. IET Signal Process. 12, 688–699. doi: 10.1049/iet-spr.2017.0252

Alawsh, S. A., and Muqaibel, A. H. (2020). Achievable degree-of-freedom for three-
level prime arrays. Signal Process. 171, 107523. doi: 10.1016/j.sigpro.2020.107523

Alawsh, S. A., and Muqaibel, A. H. (2021). “Optimized multi-level prime array
configurations,” in 2021 International Symposium on Networks, Computers and
Communications (ISNCC) (Dubai, United Arab Emirates: IEEE), 1–4.

Chen, X., Zhang, H., and Lv, Y. (2023). Improving the beamforming performance of
a vector sensor line array with a coprime array configuration. Appl. Acoustics 207,
109329. doi: 10.1016/j.apacoust.2023.109329

Das, A., Hodgkiss, W. S., and Gerstoft, P. (2016). Coherent multipath direction-of-
arrival resolution using compressed sensing. IEEE J. Oceanic Eng. 42, 494–505.
doi: 10.1109/JOE.2016.2576198

Di Martino, G., and Iodice, A. (2017). Passive beamforming with coprime arrays.
IET Radar Sonar Navigation 11, 964–971. doi: 10.1049/iet-rsn.2016.0517

Felisberto, P., Santos, P., and Jesus, S. M. (2018). Acoustic pressure and particle
velocity for spatial filtering of bottom arrivals. IEEE J. Oceanic Eng. 44, 179–192.
doi: 10.1109/JOE.2018.2807898

Felisberto, P., Santos, P., Maslov, D., and Jesus, S. (2016). “Combining pressure and
particle velocity sensors for seismic processing,” in OCEANS 2016 MTS/IEEE Monterey
(Monterey, CA: IEEE), 1–6.

Fu, M., Zheng, Z., Wang, W.-Q., and So, H. C. (2021). Coarray interpolation for doa
estimation using coprime emvs array. IEEE Signal Process. Lett. 28, 548–552.
doi: 10.1109/LSP.2021.3061272

Hawkes, M., and Nehorai, A. (1998). Acoustic vector-sensor beamforming and
capon direction estimation. IEEE Trans. Signal Process. 46, 2291–2304. doi: 10.1109/
78.709509

Liu, Y., and Buck, J. R. (2015). “Detecting gaussian signals in the presence of
interferers using the coprime sensor arrays with the min processor,” in 2015 49th
Asilomar conference on signals, systems and computers (Pacific Grove, CA: IEEE), 370–
374.

Mei, J., Sun, D., Zhou, Y., and Shi, J. (2018). Study on the problem of coherent source
resolution with same frequency for the coprime array. J. Acoustical Soc. America 144,
1971–1971. doi: 10.1121/1.5068615

Moghadam, G. S., and Shirazi, A. A. B. (2019). “Doa estimation with extended
optimum co-prime sensor array (eocsa),” in 2019 Sixth Iranian Conference on Radar
and Surveillance Systems (Isfahan, Iran: IEEE), 1–6.

Moghadam, G. S., and Shirazi, A. B. (2022). Direction of arrival (doa) estimation
with extended optimum co-prime sensor array (eocsa). Multidimensional Syst. Signal
Process. 33, 17–37. doi: 10.1109/ICRSS48293.2019.9026546

Pan, H., Pan, J., and Zhang, X. (2022). “Time-delay estimation of coherent gpr signal
by using sparse frequency sampling and imusic method,” in 2022 International
Symposium on Wireless Communication Systems (ISWCS), (Hangzhou, China: IEEE).
1–6.

Pillai, S. U., and Kwon, B. H. (1989). Forward/backward spatial smoothing
techniques for coherent signal identification. IEEE Trans. Acoustics Speech Signal
Process. 37, 8–15. doi: 10.1109/29.17496

Qin, S., Zhang, Y. D., Amin, M. G., and Himed, B. (2017). Doa estimation exploiting
a uniform linear array with multiple co-prime frequencies. Signal Process. 130, 37–46.
doi: 10.1016/j.sigpro.2016.06.008

Roy, R., and Kailath, T. (1989). Esprit-estimation of signal parameters via rotational
invariance techniques. IEEE Trans. acoustics speech Signal Process. 37, 984–995.
doi: 10.1109/29.32276
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