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(Penaeus vannamei)
under farming conditions
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1Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China,
2Institute of Marine Sciences, Shantou University, Shantou, China, 3Department of Technical Service,
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Introduction: The fungus Aspergillus niger is found to be predominant in the

body of Pacific white shrimp (Penaeus vannamei); however, its role in shrimp’s

health has not been explored. This study aimed to evaluate the influences of A.

niger on growth, antioxidative activity, immune response, and gut microbiota of

juvenile Pacific white shrimps under farming conditions.

Methods: Shrimps (2.30±1.05 g) were fed diets supplemented with 0 (control),

1.5 (A1.5), or 3.0 g/kg diet of A. niger (A3.0) for onemonth. At the end of the study,

the growth, antioxidant enzyme activity and immune parameters, and gut

microbiota in shrimps fed with different experimental diets were analyzed.

Results: The results showed a significant increase in weight gain, specific growth

rate, and length gain of shrimps in A1.5, compared with other groups (P<0.05).

With the exception of lysozyme in both A1.5 and A3.0, which were lower than in

the control, the activity of superoxide dismutase (SOD), catalase, acid

phosphatase, alkaline phosphatase, and phenol oxidase was higher than those

in the control. Gene expressions of SOD, anti-lipopolysaccharide factor-ALF1,

and ALF2 (in A1.5 and A3.0) and nitric oxide synthase, penaeidin-PEN2 (in A1.5)

and PEN3 and PEN4 (in A3.0) were significantly up-regulated compared to the

control (P<0.05). The addition of A. niger increased diversity and separated the

microbial community in the gut of shrimps. At the phylum level, Firmicutes and

Bacteroidota were dominant, and Proteobacteria was less abundant in the A1.5

and A3.0, as compared to the control. At the genus level, the relative abundance

of Vibrio, Marivita, and Roseobacterwas increased but Ruegeriawas decreased in

A1.5 and A3.0 when compared to the control. The genera Edwardsiella,

Clostridium sensu stricto 1, and Shimia in the A1.5 were higher than in the control.
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Discussion: These findings demonstrated the beneficial effects of A. niger on

growth, health, and changes in the gut microbiota in shrimps under farming

conditions. The recommended concentration of A. niger in the diet for shrimps is

1.5 g/kg diet.
KEYWORDS

Aspergillus niger, Penaeus vannamei, growth, antioxidant activity, immune response,
gut microbiota
1 Introduction

Aquaculture is one of the fastest-growing and largest food

production sectors that play an important role in providing

sustainable livelihood opportunities and food security for the

world population (Dawood et al., 2019; Stentiford et al., 2020).

The development of practice models that contributes to the

outstanding growth of the aquaculture industry and promotes the

increase in terms of production has been considered. Pacific white

shrimp (Penaeus vannamei) is one of the most important marine

aquaculture species globally, accounting for approximately 80% of

the total annual production (Zheng et al., 2021b). Similar to the

general situation of large-scale intensive aquaculture systems, the

shrimp aquaculture industry faces to deteriorating farming

environment and frequent disease outbreaks, which cause great

economic loss (Deng et al., 2013; Zheng et al., 2021a). The

developed methods of treatment that overcome growth

performance and increase disease resistance of shrimps are

needed (Deng et al., 2013). Several reports suggested that aquatic

animals fed with a diet supplemented with prebiotics, probiotics,

synbiotics, or postbiotics revealed an enhancement in growth

performance, immune response, and disease resistance when

compared to their non-added counterparts (Hai, 2015; Hoseinifar

et al., 2016; Ringø, 2020; Tran et al., 2020; Tran and Li, 2022). In

crustaceans, probiotics bacteria, such as the members of Bacillus,

Enterococcus, Lactobacillus, and Pediococcus, that showed

improving growth and digestive enzyme activity, modulating gut

microbiota, and enhancing immune response and hematological

parameters have been widely investigated (Ringø, 2020; Tran and

Li, 2022). In Pacific white shrimp, for example, the mixed-species

probiotics (Bacillus subtilis, Bacillus licheniformis, and Lactobacillus

sp.) have shown benefits to their hosts, including enhancing growth

and non-specific immunity, changing intestinal morphology, and

modulating gut microbiota (Xie et al., 2019). Furthermore, the

application of yeasts, yeast extract, and other fungal-origin

compounds (such as b-glucan) showed beneficial effects on

growth, antioxidant ability, immunity, disease resistance, and

intestinal microbiota of Pacific white shrimp (Murthy et al., 2009;

Deng et al., 2013; Boonanuntanasarn et al., 2016; Li et al., 2019; Ma

et al., 2019; Ayiku et al., 2020; Zheng et al., 2021a).

The fungus Aspergillus niger has been reported as one of the

predominant species of the genus Aspergillus harboring the body of
02
Pacific white shrimp (Cruz da Silva et al., 2011). Previous studies

have shown that A. niger used for the fermentation of groundnut oil

cake, soybean meal, sunflower oil cake, and plant protein mix can

enhance growth, feed efficiency, and hemolymph indices in Pacific

white shrimp (Jannathulla et al., 2018a; Jannathulla et al., 2018b;

Dayal et al., 2020; Jannathulla and Dayal, 2022). Recently, in

common carp (Cyprinus carpio), supplementing A. niger in the

diet increased survival rate, growth performance, feed utilization,

immune responses, hematological indexes, digestive enzyme

activity, and the load of the fungi in the intestine (Jasim et al.,

2022). Therefore, results of previous studies have proven the

potential use of A. niger as a probiotic organism conferring health

benefits to aquatic animals. However, the influence of A. niger as the

dietary probiotic supplementation in Pacific white shrimps has not

been investigated. This study aimed to evaluate the influences of A.

niger (Insighter Co. Ltd., Guangzhou, Guangdong, China) on

growth, oxidative activity, immune response, and gut microbiota

of juvenile Pacific white shrimps under farming conditions. The

results of this study provided basic information on the potential use

of A. niger as a probiotic organism in shrimp aquaculture.
2 Materials and methods

2.1 Shrimps, bacterial sources,
and feeding trial

The study was conducted in a commercial shrimp farm in

Lufeng, Shanwei, Guangdong Province, China (Latitude: 22°

50’42.1” N; Longitude: 116°08’11.0” E). Healthy juvenile Pacific

white shrimp (initial body weight: 2.30 ± 1.05 g; initial body length:

7.11 ± 1.31 cm) were cultured in earth ponds fulfilled with filtered

aerated seawater (salinity 30‰, pH~8.0). The shrimps were reared

in three ponds (pond area: 660 m2/pond; water depth: 1.8-2.0 m;

stocking density: 350,000 post-larvae/pond) with aerators operated

24/24. All shrimps were fed with a commercial pelleted feed (≥43%

crude protein, ≤15% crude ash, ≥5.0% crude lipid, ≤5.0% crude

fiber, ≥2.6% lysine, ≤11% moisture, and 0.9-2.0% total phosphorus)

(Fuzhou Haima Feed Co., Ltd., Fujian, China) four times per day.

The culture water was exchanged twice daily.

The fungus A. niger (5×108 CFU/g) was made by Insighter Co.

Ltd. (Guangzhou, Guangdong, China). The commercial pelleted feed
frontiersin.org
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mentioned above was used as a basal diet. Three diets, including

control (basal diet supplemented with PBS), A1.5 (basal diet

supplemented with A. niger at 1.5 g/kg diet), and A3.0 (basal diet

supplemented with A. niger at 3.0 g/kg diet), were used for the feeding.

The concentrations of A. niger used in this study were followed by

recommendations from the manufacturer. The fungal powder was

first mixed into PBS, and the suspension was sprayed uniformly onto

the feed and dried at room temperature for 30 minutes before use.

Shrimps in each pond were fed four times daily with corresponding

diets, and the diets supplemented with A. niger were applied twice a

day (at 10:00 and 14:00). During the experimental period, the

temperature was about 30°C, pH was 7.5 to 8.5, salinity was about

30‰, and dissolved oxygen was higher than 5.5 mg/L. The water in

culture ponds was exchanged eight times daily (water exchange rate

about 5% each time). The feeding was conducted for one month.
2.2 Growth parameter analyses

At the beginning and end of the feeding trial (one month), 30

shrimps from each pond were collected and weighed to assess

weight gain, specific growth rate, and length gain. The growth

parameters were calculated as follows:

Weight gain rate (%) = [(Final body weight-Initial body

weight)/Initial body weight]×100%

Specific growth rate (%/day) = [(ln Final body weight – ln Initial

body weight)/t]×100%

Length gain (%) = [(Final body length - Initial body length)/

Initial body length]×100%
2.3 Antioxidant enzyme activity and
immune parameter analyses

At the end of the feeding trial, 30 shrimps from each pond were

collected. Shrimps were chilled on ice and then used for collecting

hepatopancreas and intestine samples. The 10 pooled samples were

immediately frozen in liquid nitrogen and stored at −80°C until

further analysis. The hepatopancreas samples (n=3) were

homogenized with 10-fold ice-cold phosphate buffer separately.

The homogenate was centrifuged at 4°C at 4000 ×g for 10 min to

collect the supernatant, which was then used for analyzing of

enzyme activities. The activities of superoxide dismutase (SOD),

catalase, phenol oxidase (PO), lysozyme, acid phosphatase (ACP),

and alkaline phosphatase (AKP) were measured using kits of

Nanjing Jiancheng Bioengineering Institute (Nanjing, China)

according to the manufacturer’s instructions.
2.4 RNA extraction, cDNA library synthesis,
and gene expression quantification

Total RNA was extracted from the intestine of shrimps using

TRIzol® Reagent (Ambion, USA), which was followed by synthesis of

the first-strand cDNA with PrimeScript™ RT Reagent Kit (TaKaRa,
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Dalian, China) according to the manufacturer’s instructions. RT-

qPCR was performed with Premix Ex Taq (Probe qPCR) (TaKaRa,

Dalian, China) to investigate the expression of SOD, nitric oxide

synthase (NOS), prophenoloxidase (proPO), and antimicrobial

peptides (AMPs, including crustin, anti-lipopolysaccharide factor-

ALF1, ALF2, penaeidin-PEN2, PEN3, and PEN4) in the shrimp’s

intestine. Primers used for the amplification of mRNA transcripts

was listed in Table 1. The b-actin was used as the internal control.

The RT-qPCR conditions were conducted at 95°C for 30 s, followed

by 40 cycles at 95°C for 5 s and 60°C for 20 s, and 72°C for 15 s. The

relative expression of genes was normalized to the b-actin gene

expression, and calculated by the 2−DDCt method (Livak and

Schmittgen, 2001).
2.5 Intestinal microbiota analysis

The gut contents collected from 30 individuals in each

experimental group were used for analyzing changes in the gut

microbiota of shrimps fed with A. niger-containing diets as

compared to the control. Gut contents from 10 shrimps were

pooled for each biological replicate, and the pooled samples were

used for DNA extraction using TIANamp Genomic DNA Kit

(Tiangen Biotech Co., Ltd., Beijing, China) according to the

manufacturer’s instructions. The extracted DNA was used as the

template for amplifying the V3-V4 hypervariable region of 16S

rRNA using universal primers 341F/806R with the barcode. PCR

reactions (30 µL) contained 10 ng of DNA, 15 µL of Phusion R

High-Fidelity PCR Master Mix with GC buffer (New England

Biolabs, Ipswich, MA, USA), 0.2 µM of forward and reverse

primers, and 2 µL of distilled water. The PCR program included

an initial denaturation (at 98°C) for 1 min, 30 cycles of 98°C for 10

s, 56°C for 30 s, and 72°C for 30 s, and a final elongation step (at 72°

C) for 5 min. PCR products were purified using DNA Gel

Extraction Kit (Axygen, Hangzhou, China). Purified PCR

products were used for synthesizing sequencing libraries and the

libraries were sequenced using Illumina-based high-throughput

sequencing (Illumina NovaSeq6000).

The unique barcode was used for assigning single-end reads to

each sample. Reads were analyzed with the UCHIME algorithm

(Edgar et al., 2011) and the reads were assigned to operational

taxonomic units (OTUs) based on a similarity cutoff of 97% using

UPARSE software (Version 7.0.1001) (Edgar, 2013). Representative

sequences from each OTU were classified using the SILVA

reference database (confidence threshold of 80%). The alpha and

beta diversity parameters were analyzed using QIIME (Version

1.7.0) (Caporaso et al., 2010). Principal coordinates analysis (PCoA)

used to visualize the Jaccard distances among samples was analyzed

using VEGAN (Dixon, 2003). Raw sequencing reads have been

deposited in GenBank under BioProject code PRJNA900677.
2.6 Data analyses

All data are shown as mean ± Std. Differences between groups

were analyzed using an Independent-sample t-test on SPSS 16.0
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(IBM Corporation, Armonk, NY, USA). Statistically significant

differences were considered at P<0.05.
3 Results

3.1 Growth parameters

The growth performance of shrimps fed diets supplemented

with or without A. niger is shown in Figure 1. Results showed that

the weight gain, specific growth rate, and length gain of shrimps in

the A1.5 were significantly higher than those in the A3.0 and

control (P<0.05). The obtained data indicated that the

supplementation of A. niger (at 1.5 g/kg diet) can improve the

growth of shrimps under culture conditions.
3.2 Antioxidant enzyme activity and
immune response

The activity of antioxidant enzymes and immune responses of

shrimps fed with different experimental diets are shown in Figure 2.

The activities of SOD and catalase in shrimps in A1.5 and A3.0 were
Frontiers in Marine Science 04
significantly higher than those of the control (P<0.05), with the

highest activity in the A3.0. The lysozyme activity was significantly

decreased in A1.5 and A3.0 as compared to the control (P<0.05). The

activities of ACP and AKP in A. niger-fed shrimps were significantly

higher than that in controls (P<0.05), with the exception of ACP in

the A3.0, which was not significantly different from the control

(P>0.05). The activity of PO of shrimps in A1.5 and A3.0 was

significantly higher than in the control (P<0.05).

The expressions of NOS, SOD, crustin, ALF1, ALF2, PEN2,

PEN3, PEN4, and proPO genes in the intestine of shrimps fed

different diets were assessed using the RT-qPCR (Figure 3). Results

revealed that the expression of SOD was significantly increased in

A1.5 and A3.0; whereas those of NOS was significantly increased in

the A3.0 only as compared to the control (P<0.05). Crustin gene

expression in shrimps in A1.5 and A3.0 was significantly lower than

in the control (P<0.05). Shrimps in A1.5 and A3.0 had significantly

higher ALF1 and ALF2 gene expression when compared to their

counterparts in the control (P<0.05). The significantly increased

expression of PEN2 was only found in shrimps in the A1.5 and

PEN3 and PEN4 were only in the A3.0 as compared to the control

(P<0.05). There was an increase in the expression of proPO in the

intestine of shrimps fed A. niger-containing diets but did not

significantly differ from that of the controls (P>0.05).
TABLE 1 Sequences of primers used in this study.

Gene Primer Sequence (5’-3’) Reference/GenBank

Nitric oxide synthase NOS-F GAGCAAGTTATTCGGCAAGGC Zheng (2021)

NOS-R TCTCTCCCAGTTTCTTGGCGT

Prophenoloxidase proPO-F CGGTGACAAAGTTCCTCTTC AY723396.1

proPO-R GCAGGTCGCCGTAGTAAG

Superoxide dismutase SOD-F TCATGCTTTGCCACCTCTC DQ029053.1

SOD-R CCGCTTCAACCAACTTCTTC

Crustin Crustin-F GGAGGGTCAAGCCTACTGC Zhang et al. (2019b)

Crustin-R ACGTGGGCATGTGGGAC

Anti-lipopolysaccharide factor-1 ALF1-F GGATGTGGTGTCCTGGATGG Zhang et al. (2019b)

ALF1-R GCGTCGTCCTCCGTGATG

Anti-lipopolysaccharide factor-2 ALF2-F GCGAACAAACTCACTGGACTG Zhang et al. (2019b)

ALF2-R ACATGCGACCCTGGAATACAG

Penaeidin-2 PEN2-F GCATCAAGTTCGGAAGCTGT Wang et al. (2013)

PEN2-R ACCCACATCCTTTCCACAAG

Penaeidin-3 PEN3-F CTCTGGCTTGTGGAATGGAT Wang et al. (2013)

PEN3-R GCATGGATTCACTTCCTCGT

Penaeidin-4 PEN4-F ATGCTACGGAATTCCCTCCT Wang et al. (2013)

PEN4-R ATCCTTGCAACGCATAGACC

b-actin b-actin-F GAAGTAGCCGCCCTGGTTGT Zhang et al. (2019b)

b-actin-R GGATACCTCGCTTGCTCTGG
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3.3 Gut microbiota analysis

Microbial alpha diversity in samples was evaluated based on the

Shannon and Simpson indexes, and results showed a significant

increase in the microbial diversity (as calculated by Shannon and
Frontiers in Marine Science 05
Simpson indexes) in both A1.5 and A3.0 over the control (P<0.05)

(Figures 4A, B). The PCoA analysis revealed a distinct separation in

the microbial community among the experimental groups

(Figure 4C). The findings suggest changes in gut microbiota of

shrimps after feeding with A. niger-containing diets.
A B

D E F

C

FIGURE 2

Activity of the enzymes (superoxide dismutase (SOD) (A), catalase (B), lysozyme (C), acid phosphatase (ACP) (D), alkaline phosphatase (AKP) (E), and
phenol oxidase (PO) (F)) in the hepatopancreas of Pacific white shrimp fed diets supplemented with different Aspergillus niger concentrations for
one month. Values are expressed as means ± Std from three samples. Different superscript letters indicate significant differences among
experimental groups (P<0.05).
A B

C

FIGURE 1

Growth parameters (as shown by weight grain (A), specific growth rate (B) and length gain (C)) of Pacific white shrimp fed diets supplemented with
different Aspergillus niger concentrations for one month. Values are expressed as means ± Std from 30 shrimps in each group. Different superscript
letters indicate significant differences among experimental groups (P<0.05).
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Differences in the major taxonomical profiles of the gut

microbiota in the shrimps fed with A. niger-containing diets and

the controls were analyzed. The top 10 phyla are illustrated in

Figure 4D. Relative abundance of the phylum Proteobacteria in the

A1.5 (87.45 ± 4.46%, t=2.41, P=0.13), A3.0 (89.43 ± 1.86%, t=3.59,

P=0.02) were lower than that in the control (93.8 ± 0.99%). In

contrast, the abundance of Firmicutes was enriched in the A1.5 (7.4

± 1.84%, t=-4.48, P=0.01) and A3.0 (7.4 ± 1.25%, t=-6.46, P=0.00) as

compared to the control (2.55 ± 0.37%). A higher relative

abundance of Bacteroidota was observed in the A1.5 (t=-1.24,

P=0.34) and A3.0 (t=2.01, P=0.12) in comparison to the control

group. At the genus level, results showed that several bacterial

genera shifted their relative abundance in the gut of shrimps after

feeding with A. niger-containing diets. The most abundant genera

are shown in Figure 4E. There was a significant increase in the

relative abundance of the genera Vibrio (t=-30.0, P=0.00, and t=-

3.64, P=0.07), Marivita (t=-6.03, P=0.00, and t=-7.49, P=0.02), and

Roseobacter (t=-5.49, P=0.03, and t=-2.36, P=0.08) in A1.5 and

A3.0, respectively, when compared to the control. However, the

relative abundance of Ruegeria was decreased in the A1.5 (t=5.99,

P=0.03) and A3.0 (t=17.26, P=0.00) as compared to the control. The

genera Edwardsiella (t=-5.93, P=0.00), Clostridium sensu stricto 1

(t=-5.87, P=0.03), and Shimia (t=-25.63, P=0.00) were significantly

increased in the A1.5 as compared with such in the control.
Frontiers in Marine Science 06
The LEfSe analysis (LDA>4.0, P<0.05) identified the bacterial taxa

related to the experimental groups (Figure 4F). The results revealed

that the taxa Clostridia, Lachnospiraceae, Lachnospirales, andMarivita

were enriched in the A3.0 group, whereas, Erysipelotrichales,

Erysipelotrichaceae, Enterobacterales, Hafniaceae, Roseobacter,

ZOR0006, Spongiimonas, and Edwardsiella were predominant in the

A1.5, as well as, Cellvibrionales, Halieaceae, Psychromonadaceae,

Ruegeria, Motilimonas, were in the control.
4 Discussion

Sharma et al. (2022) indicated that A. niger is a potential

probiotic, which can increase egg production and quality, and

decrease the cecal microbial load of pathogenic bacteria (such as

Clostridium perfringens, Salmonella spp., and Escherichia coli) in

laying hens. In aquaculture, A. niger has been demonstrated to be a

potential probiotic that confers health benefits on common carp

(including the enhancement of growth performance, immunity,

hematology, the load of the gut fungi, and digestive enzymes) (Jasim

et al., 2022). However, the probiotic potential of A. niger on shrimp

has not been evaluated yet. In this study, the effects of A. niger on

growth performance, antioxidative activity, immune response, and

changes in the gut microbiota of juvenile Pacific white shrimp
A B

D E F

G IH

C

FIGURE 3

Relative mRNA expressions of genes (superoxide dismutase (SOD) (A), nitric oxide synthase (NOS) (B), crustin (C), anti-lipopolysaccharide factor
(ALF)-1 (D), ALF-2 (E), Penaeidin(PEN)-2 (F), PEN3 (G), PEN4 (H), and prophenoloxidase (proPO) (I)) (as analyzed by RT-qPCR) in the intestine of
Pacific white shrimp fed diets supplemented with different Aspergillus niger concentrations for one month. The values are expressed as means ± Std
from three samples. Different superscript letters indicate significant differences among experimental groups (P<0.05).
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under farming conditions were investigated for the first time.

Results showed that the inclusion of A. niger can enhance the

weight gain, specific growth rate, and length gain of shrimps,

especially in the A1.5, indicating the growth promotion of A.

niger (at 1.5 g/kg diet) shrimps under culture conditions. This

similar to the previous findings in common carp fed a diet

supplemented with A. niger (at 1×103 or 1×106 CFU/g diet)

(Jasim et al., 2022). Jasim et al. (2022) showed an improvement

in the final length and weight, weight gain, thermal growth

coefficient, protein efficiency ratio, lipid efficiency ratio, feed

conversion ratio, immune response, and activity of digestive

enzymes of fish fed with diets supplemented with A. niger. Also,

in another study, supplementation of Aspergillus oryzae singly or in

combination with b-glucan can increase the growth, feed efficiency,

antioxidant status, and immunomodulation of Nile tilapia (Dawood

et al., 2020). The improvement in the growth of fish by A. niger

supplementation has been discussed to relate to the positive benefits

on feed digestibility, activity of digestive enzymes (protease,

amylase, lipase, alkaline phosphatase, and trypsin), and feed

absorbance efficiency with an increase in the absorptive area,

microvilli density and height (Dawood et al., 2020; Jasim et al.,

2022). Our study observed that A. niger added to the diet of shrimps

(at 1.5 g/kg diet, A1.5) showed the best effectiveness in the growth
Frontiers in Marine Science 07
performance of shrimps; however, the mechanisms of action were

lacking, which merits further investigations. Collectively, the

outcomes of this current study indicate that the low dose of A.

niger (1.5 g/kg diet) is more suitable for use in shrimp aquaculture.

The antioxidant system plays an important role in the

physiological response of hosts in responding to effects of

noninfectious or infectious agents. SOD and catalase are the main

components in the antioxidant system that protects hosts against

oxidative stress, specific to the overproduction and residuals of

reactive oxygen species during inflammatory responses (Parrilla-

Taylor et al., 2013). Our results revealed that the activities of SOD

and catalase of shrimps were increased in A1.5 and A3.0 as

compared to the control, indicating that A. niger-containing diets

can enhance the antioxidant capacity in juvenile Pacific white

shrimp. Moreover, NOS, which is one of the oxidation-derived

compounds, has been proven to have antimicrobial effects on the

innate immunity of crustaceans (Li et al., 2012b). The result herein

showed the increased expression of the NOS gene in shrimps fed the

A. niger-containing diet (A3.0), suggesting the stimulation of the

probiotic to the induction of NOS. A similar observation was found

in mouse macrophagocytes that showed the expression of inducible

NOS after being treated with b-glucan derived from Aureobasidum

pullans SM-2001 (Choi et al., 2016). Thus, it is speculated that A.
A B

D

E

F

C

FIGURE 4

Modulation of gut microbiota of Pacific white shrimp fed diets supplemented with different Aspergillus niger concentrations for one month. (A) and
(B) Alpha diversity indices. (C) Principal coordinates analysis (PCoA) (PCoA1: 62.02% and PCoA2: 26.46% of the explained variance). (D) Predominant
phyla and (E) genera of microbiota in the intestine. (F) Linear discriminant analysis effect size (LEfSe) (LDA>4, P<0.05). Values are expressed as means
± Std from three samples. Different superscript letters indicate significant differences among experimental groups (P<0.05).
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niger can activate the non-specific defense of shrimps by stimulating

NOS production.

Lysozyme activity is important in innate immunity, which is

responsible for attacking and causing damage to the cell structures

of invading bacteria (Saurabh and Sahoo, 2008). The lysozyme

activity was found to increase in Nile tilapia (Oreochromis niloticus)

fed with probiotic-or synbiotic-supplemented diets (Sır̂bu et al.,

2022), Chinese drum (Miichthys miiuy) fed with live or dead cells of

Clostridium butyrium CB2-supplemented diets (Pan et al., 2008),

and red sea bream (Pagrus major) fed with b-glucan-supplemented

diets (Dawood et al., 2017) but to remain unchanged in grouper

(Epinephelus coioides) fed with Bacillus pumilus or B. clausii (Sun

et al., 2010). However, our findings found that dietary A. niger

supplement significantly decreased the lysozyme activity in

shrimps, referring to that the probiotic showed negative effects on

the activity of lysozyme in the innate immunity of shrimps.

Differences in results among studies may be due to differences in

probiotic organisms, dosage, host species, experimental designs,

and nutritional and environmental factors. Furthermore, acid

phosphatase (ACP) and alkaline phosphatase (AKP) are

important in the immune system of crustaceans, where the

former is responsible for digesting invading pathogens and the

latter is for detoxifying during the normal living and phagolysis and

digesting and absorbing nutrients (Xie et al., 2019). The findings

herein showed an increase in activities of ACP and AKP in the

shrimps fed A. niger-containing diets. Similar results were observed

in the Pacific white shrimp fed with a probiotic mixture (Xie et al.,

2019) and ridgetail white prawn (Exopalaemon carinicauda) fed

with Psychrobacter sp. B6 (Lai et al., 2022).

Antimicrobial peptides (AMPs) contribute to the innate immune

system as the first line of defense against invading pathogens. The

current study found that crustin, which showed antibacterial activity

against Gram-positive and Gram-negative bacteria, and virus (Du

et al., 2019), was down-regulated in the shrimps fed with A. niger.

This is consistent with findings of the giant tiger shrimp crustin-like,

which was down-regulated in the Candida haemulonii S27-fed

shrimps, and then up-regulated in these animals after challenge

with WSSV (Antony et al., 2011). Furthermore, ALFs and PENs

are important in the immune defense of shrimps, showing broad-

spectrum antimicrobial activities against bacteria, fungi, parasites,

and viruses (Gu et al., 2018; Wu et al., 2019). The increase of gene

expression of ALF1, ALF2, PEN2, PEN3, and PEN4 in shrimps fed

with A. niger-containing diets suggested that the probiotic can

promote the production of these AMPs and confer health benefits

on shrimps. Therefore, our results indicated the role of A. niger in

improving the immune response of shrimps.

In crustaceans, the proPO system, which is activated by the

pattern recognition receptor family (e.g., b-1, 3-glucanase related

protein), is vital in the humoral immune response. The binding of

b-1, 3-glucan to these proteins activates the immune signaling

pathway and enhances the PO activity (Li et al., 2019). Herein,

the increase of proPO mRNA expression and PO activity in shrimp

fed with A. niger-containing diets suggests interactions between A.

niger and the proPO system regulation in promoting shrimp

humoral immune response. A similar finding was previously
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reported in black tiger shrimp where b-glucan participates in the

activation of the proPO system and increase of PO activity, resulting

in the protection of hosts against WSSV (Chang et al., 2003;

Thitamadee et al., 2014). Collectively, dietary A. niger supplement

shows an effectiveness in stimulating immune responses in shrimps,

which may help hosts in resisting invading pathogens during the

culture period.

Gut microbiota is important in dietary polysaccharide digestion,

nutrient absorption, physiological homeostasis, and immune

stimulation in their hosts. The gut microbiota in aquatic animals

has been known to be affected by several factors, such as host species,

nutrient supplementation, aquatic environment, and geolocation

(Tran et al., 2017). In this study, the supplementation of A. niger

significantly increased the alpha diversity and distinctly separated the

microbial community structure in shrimps, referring to the great

contribution of probiotics in shaping the gut microbiota of shrimps.

This is in agreement with the previous findings in Pacific white

shrimps fed with the probiotic mixture of B. subtilis, B. licheniformis,

and Lactobacillus sp. (Xie et al., 2019). However, different results were

observed in another study which found a decrease in the richness and

diversity, but unchanged relative abundance (at the phylum level) of

gut microbiota in Pacific white shrimps fed with b-glucan (Li et al.,

2019). The difference herein may be explained by the difference in

water salinity used for the culture of experimental animals between

the studies. Our results found that the bacterial phyla Proteobacteria,

Firmicutes, Bacteroidota, Verrucomicrobiota, Actinobacteriota, and

Cyanobacteria are the core bacteria in the gut of shrimp, which is

similar to the previous findings (Duan et al., 2018; Li et al., 2019).

Bacteroidetes and Firmicutes are responsible for the metabolism of

undigested food remnants (Tran et al., 2018a). The members of

Bacteroidetes are known as producers of short-chain fatty acids

(especially propionate) during the anaerobic fermentation, which

has been demonstrated to confer health benefits on their hosts (Rios-

Covian et al., 2017; Tran et al., 2020). The abundance of Firmicutes

gives a good parameter concerning the health status of the gut, of

which many members, such as Lachnospiraceae, Clostridium,

Bacillus, Lachmoclostridium, and Lactobacillus, are beneficial

bacteria (Duan et al., 2018). Among them, the members of the

family Lachnospiraceae are capable of producing butyrate via the

butyryl-CoA or acetate CoA transferase pathways or the butyrate

kinase pathway by using lactate and acetate (Zhang et al., 2019a). Our

findings showed that the abundance of members of Lachnospiraceae

was increased in both A1.5 and A3.0 as compared to that in the

control (data not shown), indicating the positive effects of the A. niger

supplementation on the gut health of shrimps. Proteobacteria is

related to energy disequilibrium and unstable gut microbiota (Shin

et al., 2015), which was enriched in grass carp (Ctenopharyngodon

idellus) with intestinal disease (Tran et al., 2018b) and humans with

Crohn’s disease and inflammatory bowel disease (Li et al., 2012a; Zhu

et al., 2014). Our results showed that the relative abundance of

Firmicutes and Bacteroidota was increased, but such of

Proteobacteria was decreased in the shrimps fed A. niger-

supplemented diets. Several bacterial genera, such as Vibrio,

Marivita, ZOR0006, Roseobacter, Ruegeria, Psychromonadaceae,

Edwardsiella, Clostridium sensu stricto 1, Halioglobus, and Shimia,
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were predominated in the gut of shrimps. Of these genera, Vibrio,

Marivita, and Roseobacter were found to be increased in the A. niger-

fed shrimps, which is almost consistent with the previous findings (Li

et al., 2019; Liao et al., 2022). Roseobacter 27-4 is a probiotic

bacterium for protecting turbot (Scophthalmus maximus) larvae

against Vibrio anguillarum (Planas et al., 2006). Vibrio and

Edwardsiella are known as opportunistic pathogens causing

diseases in both cultured and wild aquatic animals (Park et al.,

2012; Li et al., 2018). Vibrio spp. may cause an outbreak of

vibriosis in cultured shrimps under the deterioration of the

environment, but the pathogenic effect of Vibrio spp. is species-

specific (Intaraprasong et al., 2009; Li et al., 2019). Intaraprasong et al.

(2009) found that the extracellular products of Vibrio harveyi cause

high toxicity to black tiger shrimp (P. monodon) but not Pacific white

shrimp. Also, the previous study has demonstrated that the

susceptibility of Pacific white shrimp is depended on the Vibrio

species and doses (Aguirre-Guzmán et al., 2001). The study showed

that V. alginolyticus showed a high survival of shrimp larvae, while V.

harveyi and V. parahaemolyticus induced high mortality only at high

doses (105 and 107 cfu/mL), and V. penaeicida caused high mortality

and only at low dose (103 cfu/mL) in postlarvae 1 (Aguirre-Guzmán

et al., 2001). An increase in the abundance of Vibrio in shrimps fed A.

niger (in the A1.5 and A3.0) may speculate that these microorganisms

are non-pathogenic species causing infections in shrimps. Also, the

overgrowth of Vibrio spp. in A. niger-fed shrimps may indicate their

beneficial role to the host. This is supported by the findings that

Vibrio alginolyticus UTM 102 can enhance feed utilization and

disease resistance against V. parahaemolyticus in Pacific white

shrimp (Balcázar et al., 2007). Similarly, Edwardsiella sp. 34HN

showed an effectiveness in promoting growth, immunity, and

expression of myostatin and pituitary adenylate cyclase-activating

polypeptide in African catfish (Clarias gariepinus) (Selim et al., 2019).

Thus, A. niger can promote beneficial bacteria and inhibit

opportunistic pathogens colonizing the gut of shrimps. Similar

findings were observed in Pacific white shrimps fed with beer yeast

and yeast extract (Zheng et al., 2021a).
5 Conclusions

This study proved the beneficial effects of A. niger in promoting

weight gain, specific growth rate, and length gain, as well as,

improving antioxidant activity and immune response of juvenile

Pacific white shrimps. Also, the addition of A. niger can promote the

selective growth of gut microbiota (with an increase in the

abundance of beneficial bacteria and a decrease in that of

opportunistic pathogens). Therefore, A. niger can be used as a

probiotic in shrimp aquaculture. Based on growth promotion, the

recommended supplementation of A. niger is a 1.5 g/kg diet.

However, the limitation of this study is lacking an evaluation of

the germination ability of fungal conidia in the gut of shrimps. Also,

whether the positive impact of A. niger on shrimp health status is

through the composition of fungal conidia or through the mycelium

after germination and colonization of shrimp gut need to be further

evaluated in the future.
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