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Species distribution models (SDMs) are useful tools for describing and predicting

the distribution of marine species in data-limited environments. Outputs from

SDMs have been used to identify areas for spatial management, analyzing trawl

closures, quantitatively measuring the risk of bottom trawling, and evaluating

protected areas for improving conservation andmanagement. Cold-water corals

are globally distributed habitat-forming organisms that are vulnerable to

anthropogenic impacts and climate change, but data deficiency remains an

ongoing issue for the effective spatial management of these important

ecosystem engineers. In this study, we constructed 11 environmental seabed

variables at 500m resolution based on the latest multi-depth global datasets and

high-resolution bathymetry. An ensemble species distribution modeling method

was used to predict the global habitat suitability for 10 widespread cold-water

coral species, namely, 6 Scleractinian framework-forming species and 4 large

gorgonian species. Temperature, depth, salinity, terrain ruggedness index,

carbonate saturation state, and chlorophyll were the most important factors in

determining the global distributions of these species. The Scleractinian

Madrepora oculata showed the widest niche breadth, while most other species

demonstrated somewhat limited niche breadth. The shallowest study species,

Oculina varicosa, had the most distinctive niche of the group. Themodel outputs

from this study represent the highest-resolution global predictions for these

species to date and are valuable in aiding the management, conservation, and

continued research into cold-water coral species.

KEYWORDS

habitat suitability model, cold-water corals, biogeography, ensemble modeling,
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1 Introduction

Cold-water corals are a diverse group of species from various

taxonomic groups including stony corals (Order Scleractinia),

octocorals (Order Alcyonacea), and hydrocorals (Order

Stylasteridae), among others. These species form complex three-

dimensional habitats in the deep sea, providing space, refugia,

feeding, and nursery grounds for many associated species

(Corbera et al., 2019; Price et al., 2021). For example, more than

1,300 species have been found among reefs formed by the

Scleractinian coral Desmophyllum pertusum [former and now

unaccepted synonym Lophelia pertusa (Addamo et al., 2016)] in

the NE Atlantic (Roberts et al., 2006). Solitary gorgonian octocorals,

such as Paragorgia arborea and Primnoa resedaeformis, also

enhance local habitat complexity through their structures and

biological interactions, creating three-dimensional biotic habitats

both within and between colonies that support invertebrate and fish

species (Buhl-Mortensen et al., 2010). These habitats also play a key

and emerging role in local nutrient cycling and carbon

sequestration processes (de Froe et al., 2019), reflecting their

importance as ecosystems that support a range of ecological

services in the deep ocean.

The habitats formed by cold-water corals are susceptible to

human influences due to their structural fragility and slow growth

rate, particularly from bottom trawling and oil drilling (Hall-

Spencer et al., 2002; Larsson and Purser, 2011). This sensitivity,

combined with their ecological importance, has led to many

countries exploring Marine Protected Areas (MPAs) as a means

to preserve these habitats (Yesson et al., 2017). However, protection

efforts for cold-water corals and many other deep-sea habitats

largely remain insufficient and incomplete throughout the world

due to a lack of awareness of the distribution of many species

(Stephenson et al., 2021b). Species distribution modeling (SDM),

also known as habitat suitability modeling or ecological niche

modeling, is an increasingly used tool to predict the potential

distributions of species based on the premise that environmental

factors influence species distributions (Elith et al., 2006; Valavi et al.,

2023). They have been used, for example, in determining locations

for spatial closure construction (Lagasse et al., 2015; Rowden et al.,

2017), the evaluation of trawl closure and the quantitative

assessment of bottom trawling (Penney and Guinotte, 2013), the

assessment of reserves and protected areas for better protection

(Rengstorf et al., 2013; Ross and Howell, 2013; Guinotte and Davies,

2014), the formulation of ecologically and biologically significant

areas (EBSAs) (Yesson et al., 2017), and the development of spatial

management options that balance the protection of VMEs with the

utilization of high value areas for fishing (Rowden et al., 2019), and

to estimate the potential effects of oil spills (Georgian et al., 2020).

SDMs have been developed for cold-water corals at a variety of

spatial scales, ranging from spatially limited local and regional

scales through to broad-scale global models. Local-scale models

have largely relied on terrain variables derived from high-resolution

locally obtained multibeam bathymetry to draw associations

between topography and species distributions (Rowden et al.,

2017; Bargain et al., 2018). Regional and basin-scale models have

been constructed from broad-scale environmental variables, such as
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depth, temperature, and salinity as they are more variable over

larger geographical ranges and have been shown to be important

drivers of species distribution (Burgos et al., 2020; Matos et al.,

2021). Models at the global scale have made use of whole ocean

bathymetric data and lower-resolution environmental datasets that

have been “upscaled” using approaches that match depth zones

with environmental data interpolated at those depths (Davies et al.,

2008; Davies and Guinotte, 2011; Yesson et al., 2012; Yesson et al.,

2017). However, there remains considerable potential for the

improvement of SDMs at large spatial scales, given the limited

spatial resolution of environmental variables and the limited

geographical range of some key environmental variables (e.g.,

omega aragonite) of earlier studies. Advancement in techniques

for pseudo-absence point selection, modeling approaches, statistics

and improvements in computing power will have substantial

impact on broad spatial-scale habitat suitability modeling of cold-

water corals (Roberts et al., 2017; Sillero and Barbosa, 2021).

Identifying the environmental conditions that shape the

distribution of species, exploring how these overlap between

related species, and developing understanding of underlying

physiological mechanisms are crucial for conservation and

resource management in the face of climate change (Aguirre-

Gutiérrez et al., 2015). SDM approaches and ordination methods

are frequently used to investigate the fundamental ecological niche

of species and derive understanding of specific responses to

environmental variation (Zhu et al., 2016). These tools can

identify the key factors driving species distributions and niche

similarities between species, assuming that appropriate

environmental variables that have ecological or physiological

relevance are incorporated in analyses (Broennimann et al., 2012;

Di Cola et al., 2017). However, SDM approaches may confuse niche

divergences with geographic distance due to the spatial

autocorrelation present in environmental variables (McCormack

et al., 2010; Barbosa et al., 2020). The ordination approach principal

component analysis (PCA-env) calibrated on the entire

environmental space of the study area has been increasingly used

to estimate niche overlap in environmental space. As opposed to

geographic space, it is independent of sampling effort, thereby

offering an important supplement to habitat suitability modeling

especially for data-poor species such as cold-water corals

(Broennimann et al., 2012; Barbosa et al., 2020).

The cold-water coral species D. pertusum, Madrepora oculata,

Enallopsammia rostrata, Goniocorella dumosa, Oculina varicosa,

Solenosmilia variabilis, P. arborea, P. resedaeformis, Acanella

arbuscula, and Paramuricea placomus are widely accepted as

indicators of the presence of Vulnerable Marine Ecosystems

(VMEs) (Burgos et al., 2020), due to their fragility, slow growth

rate, and susceptibility to anthropogenic impacts and climate

change. Scleractinian corals D. pertusum, M. oculata, E. rostrata,

G. dumosa, O. varicosa, and S. variabilis are all reef-framework

forming species with cosmopolitan distributions (Davies and

Guinotte, 2011). Desmophyllum pertusum often occurs as the

dominant framework-forming Scleractinian or as isolated thickets

mainly in the North Atlantic (Freiwald et al., 2004; Tong et al.,

2016), while M. oculata has mainly been found as a secondary

framework-forming species within D. pertusum or G. dumosa reefs
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(Freiwald et al., 2004; Roberts et al., 2006). Goniocorella dumosa has

been observed as the dominant reef-builder in New Zealand waters

(Tracey et al., 2011). Enallopsammia rostrata is also observed

associated with D. pertusum, M. oculata, and S. variabilis

(Freiwald et al., 2004). Oculina varicosa can inhabit both shallow

and deep waters (Reed, 2002). Paragorgia arborea and P.

resedaeformis are among the largest deep-sea gorgonians, which

build up tree-like colonies, providing habitats for numerous

associated species (Buhl-Mortensen et al., 2005; Tong et al.,

2012). The gorgonian species P. placomus has been observed

mainly within the North Atlantic (Buhl-Mortensen et al., 2015).

Acanella arbuscula is widespread across both the Atlantic and the

Pacific, and is often found in canyon and slope environments

(Saucier et al., 2017).

In this study, we aim to improve upon and extend earlier global

models of the VME indicator species D. pertusum, M. oculata, E.

rostrata, G. dumosa, O. varicosa, S. variabilis, P. arborea, P.

resedaeformis, A. arbuscula, and P. placomus in the global ocean

(Davies et al., 2008; Tittensor et al., 2009; Davies and Guinotte,

2011; Yesson et al., 2012; Yesson et al., 2017; Tong et al., 2022). We

follow recently established best practices in SDM (Araújo et al.,

2019; Winship et al., 2020) by using gridded bathymetry of the

highest resolution available and integrating environmental variables

from three data sources with trilinear interpolation to develop new

validated seafloor environmental datasets for the global ocean. We

use the best available species data within an ensemble modeling

framework that incorporates improved statistical techniques such as

kernel density estimation (KDE) and block cross-validation

approaches to enhance predictive models and subsequent

validation. We identify and quantify the environmental variables

that shape the ecological niches, estimate ecological niche overlap,

and produce high-resolution predictive distribution maps for cold-

water corals in the world oceans.
2 Methods

2.1 Species presences

Presence records of 10 cold-water coral species,D. pertusum, M.

oculata, E. rostrata, G. dumosa, O. varicosa, S. variabilis, P. arborea,

P. resedaeformis, A. arbuscula, and P. placomus, were collected from

peer-reviewed manuscripts and online public databases, including

OBIS, NOAA Deep-Sea Coral Research and Technology Program,

ICES Vulnerable Marine Ecosystems Database, PANGAEA, and the

Norwegian MAREANO project. Observations with a reported

positional accuracy of ≤500 m were retained for subsequent

predictions, as were the records with no position accuracy

information but with directly reported depths within 50 m of the

depth inferred from the spatial position following the bathymetric

grid used in the study (see below). Fossil-only records of these

species were removed. To reduce the impact of sampling bias (i.e.,

intensity of observations within individual grid cells) on

predictions, presence records were further filtered by retaining

only a single presence point in each cell of the underlying

environmental grid (Boria et al., 2014).
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2.2 Pseudo-absence points sampling using
kernel density estimation

Due to the fact that species location records are gathered more

frequently in areas with greater access such as closer to shore and at

shallower depths (Ramirez-Llodra et al., 2010), observed

distributions often largely reflect sampling effort over the true

distribution for the species (Sillero and Barbosa, 2021). For many

species in this study, occurrences were mostly obtained from the

North Atlantic or in waters around New Zealand due to decades of

intensive sampling in these regions (Figure 1). Such sampling bias

significantly influences the accuracy of presence–absence SDMs

(Winship et al., 2020) and remains largely unaccounted for in

global-scale distribution models. In this study, a kernel density

estimation (KDE) approach was used that integrates a form of

target-group background sampling (Phillips et al., 2009) with

random background sampling by selecting randomly placed

background points using KDE as probability grid. The KDE was

constructed from the filtered presences of all species (only single-

species presence retained within each grid cell; n = 6,373 records)

(Supplementary Figure 1) and represented the global sampling

intensity for the cold-water coral species in this study. A total of

3,069 target-group pseudo-absence points were placed (equal to the

largest amount of occurrence records retained of a single species)

for each species using the normalized (0–1) KDE as probability grid,

excluding any point within a 5-km buffer of any observation records

of corresponding species. This approach mirrored the spatial

structure of sampling intensity in presence records and has been

shown high model performance (Elith et al., 2010; Fitzpatrick et al.,

2013; Georgian et al., 2019; Burgos et al., 2020; Georgian

et al., 2021).
2.3 Environmental variables

The seabed environmental data used in this study were built

around a publicly available high-resolution global bathymetric data

product obtained from the General Bathymetric Chart of the Ocean.

The 2022 grid was assembled from multiple sources, such as

acoustic soundings, multibeam bathymetry, and satellite altimetry

(GEBCO Compilation Group, 2022). For subsequent variable

creation and analysis, the bathymetric grid, originally a 15 arc-

second grid, was projected into the NSIDC Equal-Area Scalable

Earth (EASE) Grid (EASE-Grid 2.0 Global, EPSG: 6933) with a cell

size of 500 m. The projected bathymetric grid was used to calculate

seven terrain variables, namely slope, curvature, terrain ruggedness

index (TRI), topographic position index (TPI) and roughness using

an analysis window size of 3 × 3 cells, and bathymetric position

index (BPI) with analysis window sizes of 3 × 3 and 9 × 9 cells

(Wilson et al., 2007). Slope, curvature, and BPI were calculated

using ArcGIS Pro v2.5. TRI, TPI, and roughness were calculated

using QGIS v3.28.2.

Seafloor conditions for 11 variables were obtained via a trilinear

interpolation approach whereby each cell of the bathymetric data

layer was used to calculate conditions from regularly structured

environmental data available at standard depth levels (Table 1).
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Two main inputs were used, World Ocean Atlas 2018 (102 depth

layers; mean of all available years for oxygen and nutrient variables,

and mean of data collected between 1955 and 2017 for temperature

and salinity) (Garcia et al., 2018a; Garcia et al., 2018b; Locarnini

et al., 2018; Zweng et al., 2018) and GLODAP V2. 2016b (Global

Ocean Data Analysis Project; 33 depth layers; mean of data

collected between 1972 and 2013) (Lauvset et al., 2016). Each

depth layer was first extracted to a horizontal depth layer of

points and resampled to a projected continuous global raster

using Natural Neighbor interpolation using the arcpy Python

package from ArcGIS Pro v3.1. Where depth cells fell below the
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maximum depth of the structured environmental grid, we

extrapolated the deepest environmental layer to exceed the

maximum depth by 1 m. These layers were then used to create an

array of eight points centered around each depth cell from which

the environmental condition was estimated using the regular grid

interpolator function (trilinear interpolation) from the Python

package scipy v1.6.2 (Virtanen et al., 2020). This approach

represents improvements over earlier global studies that utilized

alternative variable up-scaling approaches (e.g., Davies and

Guinotte, 2011), by providing a more accurate interpolation of

structured environmental data, and enables an increase in
A B
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C

FIGURE 1

Spatial distribution of the cleaned presence records for each of the 10 cold-water coral species in this study. (A) D pertusum, (B) M. oculata, (C) E
rostrata, (D) G dumosa, (E) O. varicosa, (F) S. variabilis, (G) P. arborea, (H) P. resedaeformis, (I) A arbuscula, and (J) P. placomus.
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resolution that is commensurate with the input bathymetric

grid (Table 1).

Each interpolated seafloor environmental layer was validated

where possible using biogeochemical data obtained from GLODAP,

an aggregated and quality controlled water bottle dataset of ocean

surface to bottom conditions (Lauvset et al., 2022). Records of

bottom values were extracted from GLODAP v2-2022 using Ocean

Data View v5.6.3 (Schlitzer, 2023). Estimates of omega aragonite

and omega calcite from the GLODAP v2-2022 dataset were

calculated from extracted parameter records using the Seacarb

algorithm (Gattuso et al., 2022). Linear least squares regression

was used to estimate the relationship between the extracted bottle

data from GLODAP v2-2022 and the trilinearly interpolated

bottom layer for each variable. In addition, a visual spatial

validation was conducted by creating a polygon grid with cells

sized 500 × 500 km that extended across the model domain

(Supplementary Figure 2). Differences between the observed

GLODAP data and the predicted trilinear value were expressed as

root mean square error (RMSE) on a cell-by-cell basis. For

visualization purposes, RMSE was scaled using the standard

deviation of all observed GLODAP points for that variable.

Three additional environmental variables of ocean floor

conditions were also obtained from two datasets, including the

Bio-ORACLE v2.0 dataset (Assis et al., 2018) and Wei (2022)

(Table 1), projected to EASE-Grid 2.0 Global and resampled to

500m resolution using bilinear interpolation using Python v3.8 and

GDAL v3.2.3. This validation showed significant correlation
Frontiers in Marine Science 05
between modeled environmental variables and field observations

(Pearson’s correlation coefficient r > 0.93), with the exception of

Chlorophyll a (r = 0.56) obtained from Bio-ORACLE, as reported

by Assis et al. (2018). Particulate organic carbon obtained fromWei

(2022) was found to be strongly correlated with field observations

from a previous study (Lutz et al., 2007) in the North Atlantic with

r = 0.91 (Morato et al., 2020).
2.4 Correlation analysis of
environmental variables

Strongly correlated environmental factors may impede model

performance and their ultimate interpretation in SDMs (Huang

et al., 2011). In this study, variance inflation factor (VIF) was used

to analyze the correlation among environmental variables, with a

high VIF value indicating a high degree of co-linearity between a

variable and all remaining variables (Yesson et al., 2015; Yesson

et al., 2017; Khosravifard et al., 2020). In this study, the VIF was

calculated iteratively with the highest VIF variable removed each

time, until the VIF value of each retained variable was less than 10,

indicating low correlation, using the R package HH v3.1-49

(Heiberger, 2022). Fully automating any procedure to remove

highly correlated variables can result in the removal of

ecologically relevant factors (Davies and Guinotte, 2011; Yesson

et al., 2017; Tong et al., 2022). Therefore, the variables slope, percent

oxygen saturation and one of omega aragonite or omega calcite
TABLE 1 Sources and original resolution for environmental variables created in this study.

Environmental variables Method used Sources Resolution

Depth, slope, curvature, BPI3, BPI9, roughness, terrain ruggedness
index, topographic position index

Calculated following Wilson
et al. (2007)

GEBCO 20221 15’’

Temperature, salinity Trilinear interpolation, this
study

World Ocean Atlas 20182, GEBCO
20221

0.25°
15’’

Apparent oxygen utilization, dissolved oxygen, percent oxygen
saturation, nitrate, phosphate, silicate

Trilinear interpolation, this
study

World Ocean Atlas 20182, GEBCO
20221

1°
15’’

Omega calcite, omega aragonite, pH Trilinear interpolation, this
study

GLODAPV2.2016b3, GEBCO 20221 1°
15’’

Chlorophyll at mean depth Described by Assis et al. (2018) Bio-ORACLEv2.04, GEBCO 20155,
PISCES6

5′, 30″, 0.25°

Current velocity at mean depth Described by Assis et al. (2018) Bio-ORACLEv2.04,GEBCO 20155,
ORAP7

5′, 30″, 0.25°

Particulate organic carbon Wei (2022), described in
Morato et al. (2020).

GFDL-ESM2G8, IPSL-CM5A-MR9,
MPI-ESM-MR10

0.5°11
1General Bathymetry Chart of the Oceans 2022 (https://www.gebco.net/).
2World Ocean Atlas 2018; 102 standard depth layers, temperature and salinity were calculated using 1955–2017 data; oxygen and nutrient variables were calculated using all available data
regardless of year of observation.
3Global Ocean Data Analysis Project, 33 standard depth layers, calculated using 1972–2013 data.
4Bio-ORACLE v2.0, marine data layers for ecological modeling (https://www.bio-oracle.org/).
5General Bathymetry Chart of the Oceans 2015 (https://www.gebco.net/).
6Global Ocean Biogeochemistry Non-assimilative Hindcast (resolution: 0.25°/75 vertical levels), monthly averages for the period 2000–2014.
7Global Ocean Physics Reanalysis ECMWF (resolution: 0.25°/75 vertical levels), monthly averages for the period 2000–2014.
8Geophysical Fluid Dynamics Laboratory’s ESM 2G model of CMIP5, yearly means of the period 1951–2000 (historical simulation).
9Institut Pierre-Simon Laplace’s CM5A-MR model of CMIP5, yearly means of the period 1951–2000 (historical simulation).
10Max Planck Institute’s ESM-MR model of CMIP5, yearly means of the period 1951–2000 (historical simulation).
11Resolution of Wei (2022) is 0.5°. Original resolution for each CMIP5 source was variable, with GFDL-ESM2G 210 rows/360 columns, IPSL-CM5A-MR 149 rows/182 columns and MPI-ESM-
MR 404 rows/802 columns.
BPI, bathymetric position index. BPI3 and BPI9 were BPI calculated using window sizes of 3×3 and 9×9, respectively.
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dependent upon the skeletal structure of each species were always

retained, along with other environmental variables that had VIF

<10 (excluding other oxygen parameters were all strongly correlated

with Spearman correlation coefficients ≥ 0.94) (Table 2) (Guinotte

et al., 2006a; Sundahl et al., 2020; Matos et al., 2021). Specifically,

omega aragonite and omega calcite were used for predictions of

Scleractinia and Octocorallia, respectively.
2.5 Ensemble species distribution models

Each species distribution modeling method has its own

strengths and weaknesses (Liu et al., 2016; Grimmett et al., 2020);

ensemble modeling integrates the outputs of multiple species

distribution models in a prediction to reduce reliance on a single

model or distribution assumption (Robert et al., 2016; Valavi et al.,

2022). In this study, we used two machine learning methods,

generalized boosting modeling (GBM, also described as boosted

regression trees; BRT) (Ridgeway, 1999) and random forests (RF)

(Breiman, 2001). GBM employs a boosting algorithm to iteratively

call a regression tree algorithm in order to construct a combination

of trees (Ridgeway, 1999). GBM iteratively modifies the modeled

regression trees to improve their fit to the data (Friedman, 2001)

and is often among the best-performing predictive modeling

approaches (Elith et al., 2006; Valavi et al., 2022). RF constructs a

number of regression trees and then averages them (Breiman,

2001), with the trees growing based on multiple training data

subsets that are established via a bagging technique to avoid tree

correlation (Rodriguez-Galiano et al., 2015). Both GBM and RF are

commonly used for predicting species habitat suitability and often

demonstrate high performances when used in ensemble modeling

approaches. The R package biomod2 v4.2-1 was used to build the

species distribution models (Thuiller et al., 2022).

To generate an individual model for each species, models were

run in a block cross-validation approach to reduce the influence of

spatial autocorrelation that arises due to geographically

concentrated sampling activity (Valavi et al., 2019; Winship et al.,
Frontiers in Marine Science 06
2020; Valavi et al., 2022). The presence records of each species were

evenly divided into five folds based on longitude, with each fold

containing one-fifth of the total amount of records, and the pseudo-

absence points divided accordingly. For each replicate, four of the

five folds were used for model training, with one fold being withheld

from model training and used for model validation. AUC [area

under the ROC (receiver operator characteristic) curve], TSS (true

skill statistic), sensitivity, specificity, and Continuous Boyce Index

(Hirzel et al., 2006) were calculated to evaluate the performances of

the models.

The ensemble model prediction that combined the GBM and

RFmodels for each species was calculated as the weighted average of

each individual model output, utilizing the model performance

statistic AUC for each run as weighting and only including

predicted models that had an AUC greater than 0.8. The standard

deviation of these predicted maps with AUC greater than 0.8 for

each species was calculated to provide the information of model

uncertainty to support the predictions. Binary habitat suitability

maps for each species were calculated using the threshold value

calculated from the maximum sensitivity and specificity for each

species, setting habitat suitability values below the threshold to zero

(unsuitable), and those above to one (suitable). The binary

projection for each species was further limited to depth shallower

than the maximum depth of the corresponding species’ presence.

These calculations were performed using ArcGIS Pro v2.5.
2.6 Comparison of species’ fundamental
ecological niches

The ordination method principal component analysis (PCA)

was used to investigate the fundamental ecological niches of cold-

water coral species. The PCA was calibrated on the entire

environmental space of the global ocean (PCA-env) by utilizing

values of environmental variables associated with 200,000 randomly

selected background points (representing the bottom

environmental condition of global ocean) to convert from
TABLE 2 Variable inflation factors (VIF) calculated for each environmental variable, with the variables utilized in predictions highlighted in bold.

Environmental variables VIF Environmental variables VIF

Depth 2.5 Omega aragonite 26.9

Slope 13.9 Omega calcite 5709.9

Curvature 1.9 Dissolved oxygen 3.3

BPI3 8.3×109 Apparent oxygen utilization 323.8

BPI9 1.9 Percent oxygen saturation 84.7

TRI 1.1 Nitrate 13.7

TPI 58.9 Phosphate 9.2

Roughness 57.1 Silicate 4.8

Temperature 2.9 Chlorophyll 1.9

Salinity 1.2 POC 1.7

pH 6.4 Current velocity 1.1
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geographic space to environmental space and create a grid

consisting of 100 × 100 pixels (Broennimann et al., 2012; Di Cola

et al., 2017). Kernel smoothers were used to quantify densities of

species occurrence in the gridded environmental space, delimited by

axes with the 100 × 100 pixels, to create an occurrence density grid

for each species (Broennimann et al., 2012). Schoener’s D metric

(Schoener, 1970) was used to estimate niche overlap of species pairs

and to test niche similarity and equivalency by determining whether

environmental niches of a species pair were more similar than

expected by chance, using occurrence density grids of the species

pair (Warren et al., 2008; Barbosa et al., 2020). Niche breadth was

calculated as the proportion of the available environmental

conditions delimited by the axes (100 × 100 cells) occupied by

species in the PCA-env, representing the percentage of available

conditions inhabited by the species. The contribution of the

environmental variables to the PCA was presented as eigen

vectors in the correlation circle plot (Di Cola et al., 2017). The R

package Ecospat v3.4 was utilized for the analyses (Broenniman

et al., 2022).
3 Results

In total, 7,496 presence records, namely, 3,069 for D. pertusum,

1,412 forM. oculata, 574 for E. rostrata, 563 for G. dumosa, 148 for

O. varicosa, 226 for S. variabilis, 767 for P. arborea, 362 for P.

resedaeformis, 203 for A. arbuscula, and 172 for P. placomus, were

retained for analyses (Figure 1).
3.1 Validation of environmental variables

Validation of each seafloor environmental variable developed

using the trilinear interpolation approach showed significant

correlations between the constructed environmental variables and

water bottle data (R2 between 0.786 and 0.987; Figure 2). Spatial

validation showed that most variables had low scaled RMSE

throughout the global ocean, with higher error values on

continental shelf margins where depths change rapidly

(Supplementary Figure 2). Temperature and salinity, with higher

native horizontal spatial resolutions (0.25°), performed better than

variables with native resolutions of 1°, although some areas of mid

to high RMSE were observed on continental shelves and margins,

particularly in the North Atlantic (Supplementary Figure 2).

Nevertheless, these variables demonstrated strong correlations

with GLODAP data, with R2 values of 0.930 and 0.877,

respectively (Figure 2). Silicate, nitrate, phosphate, apparent

oxygen utilization, and dissolved oxygen, with a native horizontal

resolution of 1°, showed greater variation in RMSE, but were among

the top-ranked variables with strong correlations with GLODAP

data (Figure 2 and Supplementary Figure 2). Carbonate variables,

omega aragonite and omega calcite, had a larger degree of error,

largely in the Atlantic Ocean (Supplementary Figure 2), and

performed less well in comparison with GLODAP data in the

regression analyses (Figure 2).
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3.2 Environmental conditions at
species locations

All 10 cold-water coral species were observed predominantly in

waters shallower than −2,000 m water depth that had higher mean

temperature, pH, and particulate organic carbon than the global

means for these variables (Figures 3, 4). In addition, these species

were found in areas that were mostly saturated in aragonite and

calcite but had a lower mean silicate concentration than the global

oceans. Oculina varicosa was found in areas that had the greatest

differences in environmental conditions compared to the other nine

species. On average, O. varicosa occured in much shallower (mean

water depth −85.2 m), warmer (23.9°C) and saltier (36.3) waters,

with higher means for omega aragonite (saturation state 3.6),

percent oxygen saturation (95.3%), pH (8.07), and chlorophyll

(0.25 mg/m3) compared to other species. Mean phosphate (0.19

mmol/kg) and mean silicate (2.2 mmol/kg), in contrast, were lower

than mean values for other species locations (Figure 4). Solenosmilia

variabilis was averagely found in deeper food limited waters that

had higher relief and current velocity than other species (mean

depth −1,190 m, mean terrain ruggedness index 230.8 m, mean

chlorophyll 0.009 mg/m3, and mean current velocity 0.14 m/s). In

contrast, M. oculata and E. rostrata exhibited a more dispersed

distribution across broad ranges of depth, temperature, omega

aragonite, oxygen saturation, pH, phosphate, and silicate.

Desmophyllum pertusum, G. dumosa, P. arborea, P. resedaeformis,

and P. placomus were found predominantly in a relatively narrow

range of environmental conditions, especially for depth and silicate

(Figures 3, 4). Acanella arbuscula was found across a wide depth

range (−24 m to −4,814 m, with mean depth −1,077 m) and at the

lowest mean temperature 4.3°C, compared to the other

species (Figure 3).
3.3 Variable importance

The strongest contributors, assessed by the mean variable

importance score from the fivefold block cross-validation

predictions for each species, were largely temperature and depth,

but salinity was also observed to be a strong contributor for several

species followed by variables such as TRI, chlorophyll, carbonate

saturation state, current velocity, and oxygen saturation (Table 3).

For 5 of the 10 species, the two modeling approaches agreed as to

the top contributing variables, but some differences in the top three

variables selected were present (Table 3). Temperature, salinity, and

TRI were most important in predictions for D. pertusum, while

depth, temperature, and percent oxygen saturation were most

important in predictions for M. oculata, as well as depth, salinity,

and TRI for E. rostrata, depth, chlorophyll, and temperature for P.

arborea and P. resedaeformis, and depth, TRI, and temperature for

P. placomus. TRI and temperature were most important in

predictions for S. variabilis, while salinity and temperature were

most important in predictions for G. dumosa, as well as salinity,

chlorophyll, and current velocity to O. varicosa, and omega calcite,

salinity, and temperature to A. arbuscula (Table 3).
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3.4 Model performance and predicted
habitat suitability

In this study, both the GBM and RF approaches performed well,

with mean AUC values for GBM predictions ranging from 0.871 to

0.984 (standard deviation: 0.015 to 0.115). Similarly, RF models

performed well with mean AUC values of 0.87 to 0.993 (standard

deviation: 0.007 to 0.115) for all species (Table 4). The mean TSS
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value for each species greater than 0.655 showed good agreement

between predicted habitat suitability and the known presence/

pseudo-absence of the validation dataset. The mean sensitivity

was greater than the corresponding mean specificity for most

species, including 7 out of 10 species in GBM predictions and 6

out of 10 species in RF predictions, indicating that the models had a

higher ability to correctly identify the presence of suitable habitat

compared to the pseudo-absence points. The Continuous Boyce
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FIGURE 2

Validation of environmental variables built in this study against field sampling data using least squares regression, using bottle data for
(A) temperature (N = 27,983), (B) salinity (N = 27,556), (C) pH (N = 9,559), (D) nitrate (N = 21,453), (E) silicate (N = 21,799), (F) phosphate (N =
20,158), (G) dissolved oxygen (N = 24,782), (H) apparent oxygen utilization (N = 24,123), and (I) omega aragonite and (J) omega calcite (N = 9,559).
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Index of these model runs was variable, but with the mean value

≥0.616 suggesting a positive correlation between the model’s

predictions and the observed presences (Table 4). Predicted

habitat suitability for each cold-water coral species varied

substantially by geographic region around the world (Figures 5–

8), with the most suitable habitat found on continental shelves and

margins in the North Atlantic, West and South Pacific, the Gulf of

Mexico, the Caribbean Sea, the Mediterranean Sea, the Red Sea, and

the seamounts and steep slopes of oceanic islands.

Several specific regional differences were observed for each species.

Desmophyllum pertusum, for example, was predicted predominantly in

the NE Atlantic, around the Mediterranean Sea, and on the continental

margin off the SE USA (Figure 5A and Supplementary Figure 3A). In

comparison, the predicted suitable habitat for M. oculata and

E. rostrata was less prevalent in the North Atlantic and more so in

theWest and South Pacific and the Red Sea, around theMediterranean

Sea, the Gulf of Mexico, and the Caribbean Sea (Figures 5B, C and
Frontiers in Marine Science 09
Supplementary Figures 3B, C). The predicted habitat suitability for

each species differed substantially in terms of areal extent, with M.

oculata having the greatest potential range and O. varicosa having the

smallest, being largely restricted to some areas off the SE USA and

regions off South America (Figures 5B, 6B and Supplementary

Figures 3B, 4B). Suitable habitat for G. dumosa was predicted in the

West and South Pacific, particularly in the waters surrounding New

Zealand, as well as along the continental margin off SW Africa

(Figure 6A and Supplementary Figure 4A). Solenosmilia variabilis

was predicted predominantly in the North Atlantic, around the

Caribbean Sea and the Gulf of Mexico, particularly along the Mid-

Atlantic Ridge, as well as in the South Pacific (Figure 6C and

Supplementary Figure 4C). The majority of suitable habitat for P.

arboreawas found on the continental shelves of the North Atlantic and

the North Pacific, off the southeastern coast of South America,

southeastern New Zealand, and on seamounts (Figure 7A and

Supplementary Figure 5A). In contrast to P. arborea, P.
A B
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FIGURE 3

The distribution profiles of eight environmental variables are shown for each of the 10 cold-water coral species (shown in dark gray) in contrast to
the global background (shown in light gray in the first column of each panel). The environmental variables examined include (A) depth, (B) TRI,
(C) temperature, (D) salinity, (E) omega aragonite, (F) omega calcite, (G) percent oxygen saturation, and (H) pH. Black lines represent mean values.
Species names were abbreviated for clarity: DP, D. pertusum; MO, M. oculata; ER, E. rostrata; GD, G. dumosa; OV, O. varicosa; SV, S. variabilis;
PA, P. arborea; PR, P. resedaeformis; AA, A. arbuscula; and PP, P. placomus.
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resedaeformis and P. placomuswere predicted to have a more restricted

suitable habitat, mainly in the North Atlantic (Figures 7B, 8B and

Supplementary Figures 5B, 6B). Acanella arbuscula was predicted to

occur predominantly on the continental shelf margin of the West

Atlantic (Figure 8A and Supplementary Figure 6A). The standard

deviation of predicted maps for each species showed more areas of

higher uncertainty for G. dumosa predictions than those for other

species (Supplementary Figure 7).
3.5 Ecological niche comparison

Among the environmental variables utilized in predictions, the

terrain variables slope, curvature, and BPI rarely were important in

predictions for the 10 species and, therefore, were excluded from

further ecological niche analysis. Twelve environmental variables

(depth, TRI, temperature, salinity, pH, omega aragonite, phosphate,

silicate, percent oxygen saturation, chlorophyll, particulate organic

carbon, and current velocity) were used in the ecological niche

analysis for each species (Figure 9).

The correlation circle of PCA-env describes the contribution of

each variable to the global environmental conditions captured by

the first two principal components, which can help to further

identify and understand the environmental variables that shape

ecological niches. It shows that omega aragonite, pH, and
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temperature mainly contribute to the first principal component

axis (PC1), and salinity and TRI mainly contribute to the second

principal component axis (PC2), while depth, percent oxygen

saturation, current velocity, chlorophyll, particulate organic

carbon, phosphate and silicate contribute to both PC1 and PC2

axes (Figure 9M). The two principal components explained 46.46%

and 11.94% of the information regarding the global environmental

conditions, respectively (Figure 9M). The ecological niche breadth

of each species significantly varied, with M. oculata having the

broadest niche, followed by E. rostrata (Figures 9B, C). The location

of niche density center of O. varicosa was quite different to niche

density centers of nine other species, with limited overlap

(Figure 9E; Table 5). The niche density centers of S. variabilis and

A. arbuscula were close, with their niches showing high level of

overlap (Figures 9F, I). The niche density centers of D. pertusum, G.

dumosa, P. arborea, P. resedaeformis, and P. placomus were close,

showing high level degree of niche overlap between each pair of

these species, particularly for P. resedaeformis and D. pertusum, and

P. resedaeformis and P. placomus (Figures 9A, D, G, H, J; Table 5).

The niche similarity for each pair of species was all rejected with p >

0.05, except between D. pertusum and P. resedaeformis, between D.

pertusum and P. placomus, and between P. resedaeformis and P.

placomus. There were certain degree of niche overlap between

Scleractinia and Octocorallia (Figures 9K, L; Table 5). No

evidence of niche equivalency was found (Table 5).
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FIGURE 4

The distribution profiles of five environmental variables are shown for each of the 10 cold-water coral species (shown in dark gray) in contrast to
the global background (shown in light gray in the first column of each panel). The environmental variables examined include (A) phosphate,
(B) silicate, (C) chlorophyll, (D) POC, and (E) current velocity. Black lines represent mean values. Species names were abbreviated for clarity:
DP, D. pertusum; MO, M. oculata; ER, E. rostrata; GD, G. dumosa; OV, O. varicosa; SV, S. variabilis; PA, P. arborea; PR, P. resedaeformis; AA, A.
arbuscula; PP, P. placomus.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1217851
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


TABLE 3 Mean variable importance of each environmental variable in models constructed using fivefold block cross-validation, with the top three highest scoring variables highlighted in bold for each model
and species combination.

. varicosa S. variabilis P. arborea P. resedaeformis A. arbuscula P. placomus

M RF GBM RF GBM RF GBM RF GBM RF GBM RF

.000 0.006 0.015 0.019 0.294 0.054 0.224 0.062 0.010 0.031 0.595 0.079

.002 0.013 0.163 0.028 0.101 0.043 0.080 0.025 0.073 0.052 0.113 0.018

.556 0.018 0.002 0.016 0.030 0.053 0.025 0.014 0.109 0.038 0.017 0.008

.002 0.006 0.507 0.092 0.031 0.024 0.078 0.028 0.004 0.011 0.091 0.057

0.040 0.035 0.056 0.030 0.204 0.073 0.036 0.027

.000 0.012 0.007 0.026

.431 0.014 0.002 0.010 0.202 0.093 0.176 0.053 0.033 0.020 0.020 0.027

.002 0.002 0.004 0.006 0.003 0.033 0.000 0.026 0.006 0.033 0.008 0.022

.067 0.063 0.017 0.014 0.002 0.009 0.001 0.013 0.043 0.056 0.009 0.027

.000 0.004 0.002 0.033 0.001 0.009 0.001 0.016 0.002 0.008 0.000 0.019

.000 0.004 0.022 0.017 0.004 0.016 0.052 0.011 0.044 0.040 0.008 0.012

.024 0.004 0.002 0.006 0.007 0.029 0.014 0.026 0.013 0.022 0.003 0.036

.000 0.001 0.000 0.019 0.000 0.004 0.000 0.011 0.001 0.002 0.000 0.008

.000 0.002 0.002 0.016 0.002 0.009 0.000 0.010 0.001 0.003 0.010 0.029

.001 0.004 0.003 0.006 0.004 0.014 0.007 0.011 0.003 0.051 0.023 0.017

.001 0.010 0.008 0.014 0.001 0.010 0.001 0.010 0.041 0.032 0.001 0.009
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D. pertusum M. oculata E. rostrata G. dumosa O

GBM RF GBM RF GBM RF GBM RF G

Depth 0.040 0.060 0.153 0.091 0.251 0.065 0.025 0.033 0

Temperature 0.164 0.076 0.177 0.103 0.017 0.030 0.508 0.088 0

Salinity 0.081 0.146 0.003 0.015 0.093 0.088 0.438 0.093 0

TRI 0.120 0.043 0.119 0.047 0.109 0.034 0.007 0.015 0

Omega calcite

Omega aragonite 0.019 0.063 0.002 0.017 0.001 0.015 0.005 0.047 0

Chlorophyll 0.001 0.010 0.007 0.030 0.006 0.017 0.001 0.015 0

POXS 0.001 0.012 0.135 0.063 0.102 0.027 0.007 0.015 0

Current velocity 0.004 0.013 0.001 0.006 0.001 0.005 0.000 0.004 0

Slope 0.000 0.013 0.001 0.018 0.003 0.018 0.001 0.007 0

Phosphate 0.005 0.014 0.001 0.009 0.003 0.023 0.006 0.034 0

POC 0.009 0.018 0.004 0.014 0.015 0.023 0.004 0.014 0

Curvature 0.000 0.002 0.000 0.004 0.000 0.004 0.000 0.002 0

BPI9 0.001 0.005 0.008 0.013 0.008 0.021 0.003 0.008 0

pH 0.001 0.013 0.000 0.015 0.000 0.010 0.002 0.011 0

Silicate 0.001 0.013 0.003 0.013 0.002 0.013 0.005 0.026 0

POXS, percent oxygen saturation; BPI, bathymetric position index; POC, particulate organic carbon.
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4 Discussion

In this study, using a high-resolution bathymetric grid, updated

environmental variables, and presence records, new predictions of

the global distribution of 10 cold-water coral species are developed

and have reached a high level of resolution, allowing for additional

analyses into the species niches of these enigmatic cold-water

coral habitats.
4.1 Improvements over earlier studies

The current study represents a substantial improvement in the

resolution and geographic extent of distribution predictions for

cold-water corals in the deep ocean (Davies and Guinotte, 2011;

Yesson et al., 2012; Yesson et al., 2017; Tong et al., 2022). The

resolution of the bathymetric dataset is now approximately 500 m

(compared with the previous ~1 km), while coverage of high-quality

acoustic measurements now covers 24.7% of the global seafloor

(calculated using the GEBCO Type Identifier Grid) (Supplementary

Figure 8) (GEBCO Compilation Group, 2022). These high-quality

measurements were predominantly located in the North Atlantic

and in areas of the East, West, and South Pacific, particularly

surrounding the continental margins and large oceanic islands,

generally consistent with currently known locations of cold-water

corals (Supplementary Figure 8; Figure 1). However, the majority of

the bathymetry layer was generated from indirect methods that are

characterized by low resolution, such as satellite-derived gravity
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measurements. These data are further interpolated and lead to the

generation of a relatively smooth surface that largely misses a

number of seafloor features such as seamounts and canyons

below a certain size (Kvile et al., 2014; Yesson et al., 2021). Given

that depth remains a critically important variable in assessing global

cold-water coral distribution, and that terrain variables such as TRI

have emerged as increasingly important in global-scale models,

ongoing efforts to improve global bathymetric data will continue to

enhance distribution models generated at regional to global scales.

GEBCO’s Seabed 2030 project is one such initiative, which aims for

complete global coverage by 2030, and will serve to improve our

ability to predict species distributions (Mayer et al., 2018; Wolfl

et al., 2019), particularly those in under-surveyed environments.

The quality of the underlying environment layers has also

improved since the earlier studies, as evidenced by the higher

regression R2 values for five out of six variables built in this study

compared to the validation results of the six variables in the widely

used Bio-ORACLE v2.0 dataset, including salinity, nitrate,

phosphate, silicate, and dissolved oxygen, only with the exception

of temperature (Assis et al., 2018). Previous studies used inverse

distance weighting interpolation and a resampling methodology

utilizing a bathymetric grid to downscale global environmental

variables obtained from NOAA’s World Ocean Atlas (Boyer et al.,

2005; Garcia et al., 2006a; Garcia et al., 2006b), which was available

at a source horizontal resolution of 0.25° for temperature and

salinity, and 1° for other variables (Davies and Guinotte, 2011;

Yesson et al., 2017). Vertical resolution has been significantly

extended, increasing from the 33 World Ocean Atlas depth layers
TABLE 4 Model evaluation results, including mean and standard deviation of AUC, TSS, sensitivity, specificity and Continuous Boyce Index values
from the fivefold block cross-validation of predictions for each individual species using the two modeling approaches, GBM and RF.

AUC TSS Sensitivity Specificity
Continuous Boyce

Index

GBM RF GBM RF GBM RF GBM RF GBM RF

D. pertusum
0.924 ±
0.015

0.93 ±
0.014

0.723 ±
0.065

0.737 ±
0.056

0.873 ±
0.049

0.922 ±
0.03

0.853 ±
0.028

0.816 ±
0.075

0.908 ±
0.05

0.976 ±
0.023

M. oculata
0.927 ±
0.023

0.928 ±
0.024

0.743 ±
0.054

0.751 ±
0.062

0.879 ±
0.039

0.896 ±
0.025

0.866 ±
0.038

0.856 ±
0.061

0.942 ±
0.019

0.948 ±
0.069

E. rostrata
0.941 ±
0.033

0.946 ±
0.033

0.796 ±
0.079

0.814 ±
0.073

0.915 ±
0.031

0.937 ±
0.03

0.883 ±
0.074

0.878 ±
0.057

0.843 ±
0.118

0.931 ±
0.062

G. dumosa
0.892 ±
0.071

0.89 ±
0.087

0.724 ±
0.164

0.708 ±
0.206

0.94 ±
0.043

0.851 ±
0.23

0.786 ±
0.127

0.857 ±
0.088

0.822 ±
0.038

0.798 ±
0.081

O. varicosa
0.984 ±
0.021

0.993 ±
0.007

0.928 ±
0.075

0.952 ±
0.052

0.96 ±
0.072

0.993 ±
0.015

0.969 ±
0.053

0.966 ±
0.053

0.863 ±
0.127

0.778 ±
0.213

S. variabilis
0.958 ±
0.039

0.956 ±
0.054

0.852 ±
0.103

0.833 ±
0.151

0.943 ±
0.059

0.908 ±
0.089

0.911 ±
0.064

0.928 ±
0.063

0.881 ±
0.097

0.864 ±
0.102

P. arborea
0.871 ±
0.055

0.892 ±
0.037

0.655 ±
0.141

0.692 ±
0.107

0.915 ±
0.111

0.874 ± 0.1
0.742 ±
0.116

0.821 ±
0.085

0.616 ±
0.397

0.696 ±
0.237

P.
resedaeformis

0.922 ±
0.057

0.938 ±
0.038

0.759 ±
0.155

0.774 ±
0.13

0.958 ±
0.041

0.942 ±
0.063

0.802 ±
0.121

0.833 ±
0.099

0.628 ±
0.242

0.886 ± 0.1

A. arbuscula
0.871 ±
0.115

0.87 ±
0.115

0.671 ±
0.196

0.682 ±
0.189

0.789 ±
0.238

0.785 ±
0.24

0.884 ±
0.087

0.899 ±
0.096

0.716 ±
0.234

0.693 ±
0.187

P. placomus
0.927 ±
0.037

0.932 ±
0.039

0.758 ±
0.066

0.763 ±
0.072

0.866 ±
0.106

0.883 ±
0.096

0.894 ±
0.058

0.884 ±
0.046

0.704 ±
0.23

0.753 ±
0.159
fr
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used in Davies and Guinotte (2011) to the 102 depth layers that are

used in this study (Garcia et al., 2018a; Garcia et al., 2018b;

Locarnini et al., 2018). The increase in vertical resolution and the

use of a new interpolation technique (trilinear interpolation)

provide a substantial improvement in the estimations of seafloor

condition, particularly in depths shallower than or equal to 2,000 m,

where the majority of coral species are found, and lead to finer and

more constrained predictions (Figure 10).

The species pool in this study was widened by adding four

common gorgonians, which have not been modeled in a consistent

fashion before in a global study, enabling global assessment of the

niche of cold-water coral species. The number of presence records

for most species used in this study was significantly larger than in

previous global modeling studies for cold-water corals (Davies and

Guinotte, 2011). Compared to earlier studies, these data represent

an increase in data density for most species, including a minimum
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of 356% (D. pertusum), 239% (M. oculata), 267% (E. rostrata), and

245% (G. dumosa), while S. variabilis has decreased to 59% of its

earlier quantity (Davies et al., 2008; Davies and Guinotte, 2011).

The improved grid cell size of 500 m also played a role in increasing

the total number of presence records used in predictions as it

allowed for the retention of a single record within a grid cell.

However, strict limitations of positional and depth accuracy (500 m

horizontal or 50 m vertical) were used to constrain to a subset of

high-quality presences that have additional metadata, excluding a

number of presence records that were utilized in earlier studies

(Davies and Guinotte, 2011). The significant increase of presences

can improve the model performances (Grimmett et al., 2020), but

particular attention should be focused on increasing the taxonomic

quality, accuracy, and delivery of metadata to further ensure that

modeling efforts in the deep ocean are valid and reach sufficient

standards as outlined by Araújo et al. (2019).
A

B

C

FIGURE 5

Predicted habitat suitability (0–1,000) at the global scale for cold-water corals (A) D pertusum, (B) M. oculata, and (C) E rostrata using ensemble
modeling. Warmer color shows areas of high habitat suitability.
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Comparing our models with large-scale predictions, it is evident

that our models have significantly improved compared to previous

efforts (e.g., Figure 10). This improvement can be attributed partly

to the inclusion of environmental variables of higher horizontal and

vertical resolution in our models than previous studies (Connor

et al., 2018). Nevertheless, it is important to note that despite these

advancements, our models still tend to over-predict when

compared to predictions at the local and sub-regional scale that

use additional high-resolution environmental variables. For

example, extensive suitable habitat for D. pertusum, P. arborea,

and P. resedaeformis predicted on the Norwegian margin was

broadly similar to previous high-resolution regional prediction,

but over-predicted compared to models incorporating seafloor

substratum and marine landscape metrics (Sundahl et al., 2020).

In the Mediterranean Sea, high suitable habitat for D. pertusum was

predicted predominantly along the upper slope and submarine

canyons of the Western and Central margins, which is consistent
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with the findings of Matos et al. (2021). However, there is still an

issue of over-prediction, particularly in the northeast section of the

Mediterranean Sea. Similarly, in New Zealand waters, the pattern of

significantly higher predicted habitat suitability on Chatham Rise

compared to Campbell Plateau for G. dumosa aligns with the

regional prediction that incorporates higher-resolution

environmental variables, such as tidal current speed at a

resolution of 1 km (Stephenson et al., 2021a). Nonetheless, over-

prediction remains a concern. Habitat suitability models built at

smaller spatial scales likely provide more accurate predictions than

those generated at the global scale, as they can integrate higher-

quality environmental data that may be available at finer

spatial scales.

Sampling bias can introduce spatial autocorrelation into species

distribution models (de Oliveira et al., 2014). Autocorrelation

between training observations and testing observations violates

the classical assumption of identically and independently
A

B

C

FIGURE 6

Predicted habitat suitability (0–1,000) at the global scale for cold-water corals (A) G dumosa, (B) O. varicosa, and (C) S. variabilis using ensemble
modeling. Warmer colors show areas of high habitat suitability.
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distributed data commonly used in machine learning (Beigaite et al.,

2022), which may induce autocorrelated model residuals,

introducing biases in model parameter estimates and over-

optimistic assessment of model predictive power, particularly in

the case of highly clustered sampling (Ploton et al., 2020). In this

study, sampling bias is evident, as cold-water coral presence records

are abundant in the North Atlantic and South Pacific, but scarce in

the North Pacific and Indian Ocean. Various spatial cross-

validation strategies have been developed aiming to create

independence between cross-validation folds (Roberts et al., 2017;

Beigaite et al., 2022; Valavi et al., 2023). However, Wadoux et al.

(2021) argue that spatial cross-validation leads to under-

representation of environmental conditions similar to those at

validation locations, and is likely to be over-pessimistic if there

are significant differences in environmental conditions between

validation and calibration folds (Wadoux et al., 2021). In this

study, the predictive performance for most of the species (8 out

of 10) was relatively stable, with all AUC > 0.8 and an SD ≤ 0.057.

However, one run in the RF prediction for G. dumosa yielded an

AUC of 0.748, while the others were >0.8. This pattern was also

observed in the models for A. arbuscula, with the most variable and

lowest mean Continuous Boyce Indexes of 0.616 for GBM

prediction and 0.693 for RF prediction, indicating positive

correlation between the models’ predictions and the observed

presences on average. Overall, the models demonstrated good

performance. However, the evaluation results of G. dumosa and

A. arbuscula predictions indicate an over-pessimistic trend in the
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predictive runs with low AUC values. This is likely attributed to

significant differences in environmental conditions between

corresponding validation and calibration folds. Increasing the

number of folds can play a role in reducing the disparity between

folds, thereby enhancing SDM and validation. It is important to

improve cross-validation strategies by creating independent

validation and calibration folds and minimize the differences

between them to help avoid over-optimistic and over-pessimistic

evaluations in SDM.
4.2 Important variables in predictions and
environmental niches

As in many regional and global-scale distribution studies of

cold-water corals, depth and temperature were identified as the

most important environmental variables in predictions (Davies and

Guinotte, 2011; Barbosa et al., 2020; Burgos et al., 2020; Tong et al.,

2022). Depth was most often found to strongly influence cold-water

coral distribution (Auscavitch et al., 2020), as well as other benthic

fauna (Friedlander et al., 2021; Saeedi et al., 2022). Temperature was

also found to be an important variable as it has a significant effect on

metabolic functions through an influence in respiration and

excretion rates, constraining distributions (Gomez et al., 2022).

The importance of salinity also remains consistent with previous

studies (Davies and Guinotte, 2011; Yesson et al., 2012), particularly

for Scleractinians (G. dumosa, D. pertusum, E. rostrata and O.
A

B

FIGURE 7

Predicted habitat suitability (0–1,000) at the global scale for cold-water corals (A) P. arborea and (B) P. resedaeformis using ensemble modeling.
Warmer colors show areas of high habitat suitability.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1217851
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Tong et al. 10.3389/fmars.2023.1217851
varicosa). Omega calcite was among the top three important

variables for two out of four Octocorallia species, again consistent

with previous studies (Yesson et al., 2012; Barbosa et al., 2020).

Although omega aragonite showed less importance than many

other variables for Scleractinians, these species predominantly

inhabit saturated and supersaturated waters, reflecting the

importance of saturation state for the formation of Scleractinian

skeletons (Figure 3E) (Guinotte et al., 2006b; Medina et al., 2006).

Terrain variables such as TRI and slope were among the top

contributors for many species, likely due to the enhanced

bathymetric resolution of the global-scale model. Seabed

topography is known to significantly influence the distributions

of cold-water corals by altering current velocity, food particle

supply, and sedimentation rates (Mortensen and Buhl-Mortensen,

2005; Davies et al., 2009). Many studies have highlighted

relationships between coral presence and terrain variables such

as bathymetric position index and slope, primarily at the local

scale (resolution of tens of meters) (Rowden et al., 2017; Bargain

et al., 2018) and regional scale (Burgos et al., 2020; Matos et al.,

2021). However, these relationships have been rarely found in

global-scale models for cold-water corals (Davies et al., 2008;

Davies and Guinotte, 2011; Yesson et al., 2012; Yesson et al.,

2017). Our findings suggest that with increased data resolution,

particularly with respect to bathymetry, these finer-scale

distributional controls can be captured in broad-scale
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distribution models and play an important role in driving the

distribution patterns of cold-water corals across oceans.

Cold-water corals are sessile filter feeders that rely on organic

matter and zooplankton brought to them by currents or food

particles transported from the surface (Soetaert et al., 2016; van

Oevelen et al., 2016). This food supply is largely controlled by

export production at the surface, lateral advection, and turbulent

hydrodynamics. In a recent study, such processes were found to

have exerted the strongest impact on coral vitality across the past

20,000 years in North Atlantic and the Mediterranean Sea

(Portilho-Ramos et al., 2022). In our models, chlorophyll

concentration was important for 3 out of 10 species, particularly

for the Octocorals, P. arborea, and P. resedaeformis (Table 3).

Additionally, these species exhibited a tendency towards areas

with higher mean chlorophyll, indicating potentially elevated food

supply requirements (Figure 4C). Current velocity, especially when

modeled at high resolution, has also been found to considerably

improve the performance of predictive models and play a crucial

role in predicting local-scale cold-water coral distribution

(Rengstorf et al., 2012; Bargain et al., 2018; Dolan et al., 2021).

However, previous global-scale studies did not detect such a

relationship (Davies et al., 2008; Tittensor et al., 2009; Yesson

et al., 2012). In this study, current velocity emerged as important

for two species, which again is likely linked to the inclusion of a

higher-resolution layer that better reflects local current variation.
A

B

FIGURE 8

Predicted habitat suitability (0–1,000) at the global scale for cold-water corals (A) A arbuscula and (B) P. placomus using ensemble modeling.
Warmer colors show areas of high habitat suitability.
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4.3 Predicted habitat suitability

This study extends global predictions for cold-water corals into

areas omitted from previous studies such as latitudes greater than

60°N, the Gulf of Mexico, the South China Sea, and the

Mediterranean Sea (Davies et al., 2008; Davies and Guinotte,

2011). The North Atlantic beyond 60°N was found to contain

suitable habitat for D. pertusum, P. arborea, P. resedaeformis, and P.

placomus, as was the Mediterranean Sea and Red Sea forM. oculata,

D. pertusum, and E. rostrata, and Gulf of Mexico and the Caribbean

Sea for S. variabilis, M. oculata, E. rostrata, D. pertusum, and A.

arbuscula, consistent with previous studies (Yesson et al., 2012;
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Burgos et al., 2020; Morato et al., 2020; Matos et al., 2021). In

addition, high habitat suitability for D. pertusum and M. oculata

was predicted in the Cabliers Coral Mounds areas in the West

Mediterranean Sea in this study, which agrees with current

knowledge that Cabliers is the only known coral mound province

in the Mediterranean Sea with currently growing reefs (Corbera

et al., 2019). The South China Sea to North Australia region was

predicted to contain expanses of suitable habitat for M. oculata, E.

rostrata, G. dumosa, and S. variabilis. These findings are also

supported by a previous study that revealed that the region

bordered to the north of the Philippines and to the SE by New

Caledonia, including New Guinea and the NE coast of Australia,
A B D
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FIGURE 9

Estimated ecological niches of the 10 cold-water coral species, Scleractina, and Octocorallia by principal component analysis, with the environmental space
determined by the axes of PC1 and PC2 (A–L). The gray to black shading represents the kernel density of species presence, with black showing the highest
density. The solid lines represent the 100% of available environmental conditions within the global ocean environmental data, while dashed lines represent
50% of available environmental conditions. (M) shows the contribution of each variable to the two principal components in ecological niche analysis using
principal component analysis, with omega aragonite used to express water carbonate conditions. POXS, percentage oxygen saturation; OA, omega
aragonite; POC, particulate organic carbon; T, temperature; TRI, terrain ruggedness index; CV, current velocity.
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may be the most diverse center of the global ocean for Scleractinian

cold-water corals, with the Caribbean Sea and Gulf of Mexico also

being highly diverse (Cairns, 2007). Our models also indicated a

high level of habitat suitability on certain regions of continental

shelf margins for all species (Cordeiro et al., 2020), again consistent

with previous studies (Davies and Guinotte, 2011; Yesson

et al., 2012).

Oculina varicosa had the smallest area of predicted habitat

suitability. Suitable habitat for M. oculata was most widely

distributed throughout the global ocean, followed by E. rostrata,

which showed an increase in potential distribution over previous

studies (Davies and Guinotte, 2011). These widespread distributions

indicate that the species may be found in a broad range of physical–

chemical environment conditions (Slatyer et al., 2013). Solenosmilia

variabilis was predicted to be globally distributed, with high habitat

suitability in the North Atlantic and around the Caribbean Sea and

Gulf of Mexico, particularly along the Mid-Ocean Ridge, and in the

South Pacific. The result is in line with several regional studies, which

predicted the high habitat suitability on large ridges and around the

Campbell Plateau (Anderson et al., 2016; Georgian et al., 2019;

Stephenson et al., 2021b; Anderson et al., 2022), and also on the

New Zealand margin (Georgian et al., 2019), as well as on the

Louisville Seamount Chain in New Zealand waters (Rowden et al.,

2017). However, in a previous study, the waters surrounding New

Zealand was predicted as the most suitable habitat (Davies and

Guinotte, 2011), in contrast to the present study that observed less

suitable habitat in this region. Such an increase in potential habitat

suitability outside of New Zeland is likely due to the increase in the

number and geographic extent of observation records used in this

study, resulting in a better representation of the environmental niche

by incorporating a broader range of environmental conditions than

previously recorded.

In this study, a greater number of seamounts and areas

surrounding oceanic islands were predicted to contain suitable
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habitat for cold-water corals (Supplementary Figures 3–6),

representing an increase in detectability over previous global

studies where only larger seamounts were identified (Davies et al.,

2008; Tittensor et al., 2009; Davies and Guinotte, 2011; Yesson et al.,

2012; Yesson et al., 2017). This was particularly evident for the

Scleractinian species M. oculata, E. rostrata, D. pertusum, and S.

variabilis, as well as the gorgonian P. arborea. Deep-sea canyons,

seamounts, and ridges are well known as biological hotspots,

including for cold-water corals, as they provide hard substrate

and accelerate current velocities that act to enhance food supply

and reduce sedimentation loading on reefs (Robert et al., 2019;

Auscavitch et al., 2020; Georgian et al., 2021). In addition, these

topographically complex features can interact with tidal currents

causing downwelling events of organic matter from surface water,

forming a “topographically enhanced carbon pump”, to increase

food supply to depth, which is essential for the persistence of cold-

water corals in the deep sea (Davies et al., 2009; Soetaert et al., 2016;

van Oevelen et al., 2016).

The predicted suitable habitat largely reflects a similar

distribution pattern to presence locations for each species

(Supplementary Figures 3–6, Figure 1). All of the predicted

suitable habitat areas are limited to depths shallower than the

maximum depth of the corresponding species’ presence.

However, there are predicted suitable habitat areas where there

are no currently known observations, for example, areas off the SW

Africa for G. dumosa, and off the NE South America for O. varicosa.

These areas often exhibit a relatively higher level of uncertainty

(Supplementary Figures 4, 7). Caution should be employed in

considering those areas as suitable habitat for those species, and

further field sampling is needed to validate predicted habitat

suitability in these regions. Only few areas of the predicted

suitable habitat were covered by MPAs throughout the global

ocean (Supplementary Figure 8) (IUCN U-Wa, 2023). Therefore,

large areas, mainly on the continental shelf should be further
TABLE 5 Niche comparison for each pair of the 10 species using Schoener’s D, with the upper triangle representing niche overlap (D) and the lower
triangle representing the p-value of niche similarity.

　
D.

pertusum
M.

oculata
E.

rostrata
G.

dumosa
O.

varicosa
S.

variabilis
P.

arborea
P.

resedaeformis
A.

arbuscula
P.

placomus

D. pertusum 0.43 0.29 0.32 0.01 0.19 0.64 0.70 0.25 0.67

M. oculata NS 0.51 0.31 0.02 0.26 0.47 0.34 0.34 0.29

E. rostrata NS NS 0.29 0.00 0.31 0.35 0.27 0.39 0.21

G. dumosa NS NS NS 0.00 0.15 0.43 0.33 0.30 0.30

O. varicosa NS NS NS NS 0.00 0.00 0.00 0.00 0.00

S. variabilis NS NS NS NS NS 0.20 0.22 0.64 0.11

P. arborea NS NS NS NS NS NS 0.66 0.33 0.61

P.
resedaeformis

0.0396 NS NS NS NS NS NS 0.32 0.75

A. arbuscula NS NS NS NS NS NS NS NS 0.20

P. placomus 0.0495 NS NS NS NS NS NS 0.0099 NS
fr
Schoener’s D ranges from 0 (none overlap) to 1 (complete overlap). p-values of niche similarity or niche equivalency ≤0.05 indicate falling outside the 95% confidence interval of the niche
similarity test or niche equivalency test. The p-value of niche similarity ≤0.05 was shown as number, and shown as NS (no significant similarity) otherwise. The niche overlap between Scleractinia
and Octocorallia cold-water corals is 0.30, also with no significant similarity. The p-value of niche equivalency of each pair tested is equal to 1, and not shown in the table. The gray section serves
no significant purpose; it is simply for improved readability.
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investigated and considered as priority regions for the conservation

and management of these vulnerable species.
4.4 Ecological niche analysis

None of the 10 species investigated in this study shared an

equivalent niche, as evidenced by the wide variation in

environmental conditions where these 10 species occur. However,
Frontiers in Marine Science 19
S. variabilis and A. arbuscula were found to share a high level niche

overlap (0.64) in this study. Both S. variabilis and A. arbuscula are

often observed in the North Atlantic and in waters surrounding

New Zealand. However, S. variabilis is a typical reef-forming

Scleractinian found on both mixed and hard seabed (Mortensen

et al., 2008), while A. arbuscula is a soft sediment specialist that is

seen on muddy and mixed seabed (Edinger et al., 2011). Although

these species overlap in their preference for mixed substrates, this

niche high level niche overlap is likely linked to some sampling bias
A

B

C

FIGURE 10

Comparisons between earlier studies of outputs for D pertusum, including (A) the global model created using ecological niche factor analysis in
Davies et al. (2008), (B) the model created using the Maxent modeling approach and 1,000-m-resolution bathymetry in Davies and Guinotte (2011),
and (C) the model generated using 500-m-resolution bathymetry and an ensemble modeling approach in this study. Note reduction in over-
prediction and increase in resolution of this study relative to earlier studies.
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away from areas where just one species is present, such as vertical

walls for S. variabilis (Davies et al., 2017) and deeper mud flats for

A. arbuscula (Long et al., 2021). Substrate is an important factor

determining coral distributions, but no global substrate maps are

available for the seabed, and this remains an ongoing limitation for

SDMs of benthic organisms constructed at regional scales

and larger.

There is a high level degree of overlap between the niches of D.

pertusum, P. arborea, P. resedaeformis, and P. placomus, indicating

potential shared adaptations to certain environmental conditions.

The highest overlap was observed between P. resedaeformis and P.

placomus, D. pertusum and P. lacomus, D. pertusum and P.

resedaeformis, which pairs share similar niches. Paragorgia

arborea, P. resedaeformis, and P. placomus are often observed

within D. pertusum reefs, particularly on the Norwegian margin

(Buhl-Mortensen et al., 2015), underscoring the necessity of

protecting cold-water coral reefs as a habitat. The species with the

most distinct niche was O. varicosa, which demonstrated the least

overlap with other species. The result is in line with known

knowledge that O. varicosa is predominantly found in shallower

waters and has zooxanthellae symbionts at depths shallower than

−60 m (Reed, 2002), whereas all other species lack algal symbionts.

This highlights the need for implementing targeted measures for the

conservation of specific species.

As reflected in the geographic extent of potential suitable

habitat for M. oculata, the niche breadth of M. oculata was

significantly larger than that of other species. This may indicate

thatM. oculata is possibly less sensitive to climatic change, whereas

the narrower niches of other species, such as P. resedaeformis, may

make them more susceptible to such change (Barbosa et al., 2020).

Furthermore, the high-latitude distribution of P. resedaeformis and

other northern species with relatively narrow niches places these

potentially less resilient species in an area of rapid environmental

change (Overland et al., 2019), further highlighting the need for

targeted conservation efforts in these areas.
5 Conclusion

Our results provide valuable and updated information for the

global habitat suitability for six cold-water reef-framework forming

Scleractinian species and four large cold-water gorgonian species.

Our models and analyses can contribute to ongoing efforts to map

vulnerable marine ecosystems, enable more informed decisions in

the development of marine protected areas, and support UN

Sustainable Development Goal 14: Conserve and sustainably use

the oceans, seas and marine resources (United Nations, 2015),

which aims to protect the aquatic organism from the challenges

such as ocean warming, ocean acidification, and anthropogenic

impacts by 2030. Our models provide a much-needed update on

earlier global distribution modeling efforts for cold-water corals,

which integrate the highest-resolution bathymetric grid available,

along with updated environmental variables for the global ocean,
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addition of new modeling approaches, and more species

observations. This study ultimately represents significant

improvement that has benefited from a decade of interest into

mapping and characterizing the ocean and communities within.
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Araújo, M. B., Anderson, R. P., Barbosa, A. M., Beale, C. M., Dormann, C. F., Early,
R., et al. (2019). Standards for distribution models in biodiversity assessments. Sci. Adv.
5. doi: 10.1126/sciadv.aat4858

Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrao, E. A., and De Clerck, O.
(2018). Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling.
Global Ecol. Biogeography 27, 277–284. doi: 10.1111/geb.12693

Auscavitch, S. R., Lunden, J. J., Barkman, A., Quattrini, A. M., Demopoulos, A. W. J.,
and Cordes, E. E. (2020). Distribution of deep-water Scleractinian and Stylasterid corals
across abiotic environmental gradients on three seamounts in the Anegada Passage.
PeerJ 8. doi: 10.7717/peerj.9523

Barbosa, R. V., Davies, A. J., and Sumida, P. Y. G. (2020). Habitat suitability and
environmental niche comparison of cold-water coral species along the Brazilian
continental margin. Deep-Sea Res. Part I: Oceanographic Res. Papers 155.
doi: 10.1016/j.dsr.2019.103147

Bargain, A., Foglini, F., Pairaud, I., Bonaldo, D., Carniel, S., Angeletti, L., et al. (2018).
Predictive habitat modeling in two Mediterranean canyons including hydrodynamic
variables. Prog. Oceanography 169, 151–168. doi: 10.1016/j.pocean.2018.02.015

Beigaite, R., Mechenich, M., and Zliobaite, I. (2022). “Spatial Cross-Validation for
Globally Distributed Data 25th International Conference on Discovery Science (DS),”
25th International Conference on Discovery Science 2022 (Cham, Montpellier:
Springer), 127–140.

Boria, R. A., Olson, L. E., Goodman, S. M., and Anderson, R. P. (2014). Spatial
filtering to reduce sampling bias can improve the performance of ecological niche
models. Ecol. Model. 275, 73–77. doi: 10.1016/j.ecolmodel.2013.12.012

Boyer, T., Levitus, S., Garcia, H., Locarnini, R. A., Stephens, C., and Antonov, J.
(2005). Objective analyses of annual, seasonal, and monthly temperature and salinity
for the World Ocean on a 0.25° grid. Int. J. Climatology 25, 931–945. doi: 10.1002/
joc.1173

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/
A:1010933404324

Broenniman, O., Di Cola, V., and Guisan, A. (2022). ecospat: Spatial Ecology
Miscellaneous Methods. R package version 34. Available at: https://CRANR-
projectorg/package=ecospat.

Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L.,
Yoccoz, N. G., et al. (2012). Measuring ecological niche overlap from occurrence and
spatial environmental data. Global Ecol. Biogeography 21, 481–497. doi: 10.1111/j.1466-
8238.2011.00698.x

Buhl-Mortensen, L., Mortensen, P. B., Freiwald, A., and Roberts, J. M. (2005).
“Distribution and diversity of species associated with deep-sea gorgonian corals off
Atlantic Canada,” in Cold-water corals and ecosystems. Eds. A. Freiwald and J. M.
Roberts (Berlin Heidelberg: Springer), 849–879.

Buhl-Mortensen, L., Olafsdottir, S. H., Buhl-Mortensen, P., Burgos, J. M., and
Ragnarsson, S. A. (2015). Distribution of nine cold-water coral species (Scleractinia
and Gorgonacea) in the cold temperate North Atlantic: effects of bathymetry and
hydrography. Hydrobiologia 759, 39–61. doi: 10.1007/s10750-014-2116-x

Buhl-Mortensen, L., Vanreusel, A., Gooday, A., Levin, L., Priede, I., Buhl-Mortensen,
P., et al. (2010). Biological structures as a source of habitat heterogeneity and
biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50. doi: 10.1111/j.1439-
0485.2010.00359.x

Burgos, J. M., Buhl-Mortensen, L., Buhl-Mortensen, P., Olafsdottir, S. H., Steingrund,
P., Ragnarsson, S. A., et al. (2020). Predicting the distribution of indicator taxa of
vulnerable marine ecosystems in the arctic and sub-arctic waters of the nordic seas.
Front. Mar. Sci. 7. doi: 10.3389/fmars.2020.00131

Cairns, S. D. (2007). Deep-sea corals: an overview with special reference to diversity
and distribution of deep-water Scleractinian corals. Bull. Mar. Sci. 81, 311–322.

Connor, T., Hull, V., Vina, A., Shortridge, A., Tang, Y., Zhang, J. D., et al. (2018).
Effects of grain size and niche breadth on species distribution modeling. Ecography 41,
1270–1282. doi: 10.1111/ecog.03416

Corbera, G., Iacono, C. L., Gracia, E., Grinyo, J., Pierdomenico, M., Huvenne, V.,
et al. (2019). Ecological characterisation of a Mediterranean cold-water coral reef:
Cabliers Coral Mound Province (Alboran Sea, western Mediterranean). Prog. In
Oceanography 175, 245–262. doi: 10.1016/j.pocean.2019.04.010

Cordeiro, R. T. S., Neves, B. M., Kitahara, M. V., Arantes, R. C. M., and Perez, C. D.
(2020). First assessment on Southwestern Atlantic equatorial deep-sea coral
communities. Deep-Sea Res. Part I: Oceanographic Res. Papers 163. doi: 10.1016/
j.dsr.2020.103344

Davies, A. J., Duineveld, G. C. A., Lavaleye, M. S. S., Bergman, M. J. N., van Haren,
H., and Roberts, J. M. (2009). Downwelling and deep-water bottom currents as food
supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the
Mingulay Reef Complex. Limnology Oceanography 54, 620–629. doi: 10.4319/
lo.2009.54.2.0620

Davies, A. J., and Guinotte, J. M. (2011). Global habitat suitability for framework-
forming cold-water corals. PloS One 6. doi: 10.1371/journal.pone.0018483

Davies, A., Wisshak, M., Orr, J., and Roberts, J. (2008). Predicting suitable habitat for
the cold-water coral Lophelia pertusa (Scleractinia). Deep-Sea Res. Part I:
Oceanographic Res. Papers 55, 1048–1062. doi: 10.1016/j.dsr.2008.04.010

Davies, J. S., Guillaumont, B., Tempera, F., Vertino, A., Beuck, L., Olafsdottir, S. H.,
et al. (2017). A new classification scheme of European cold-water coral habitats:
Implications for ecosystem-based management of the deep sea. Deep-Sea Res. Part II-
Topical Stud. Oceanography 145, 102–109. doi: 10.1016/j.dsr2.2017.04.014

de Froe, E., Rovelli, L., Glud, R. N., Maier, S. R., Duineveld, G., Mienis, F., et al.
(2019). Benthic oxygen and nitrogen exchange on a cold-water coral reef in the north-
east atlantic ocean. Front. Mar. Sci. 6. doi: 10.3389/fmars.2019.00665

de Oliveira, G., Rangel, T. F., Lima-Ribeiro, M. S., Terribile, L. C., and Felizola
Diniz-Filho, J. A. (2014). Evaluating, partitioning, and mapping the spatial
autocorrelation component in ecological niche modeling: a new approach based
on environmentally equidistant records. Ecography 37, 637–647. doi: 10.1111/j.1600-
0587.2013.00564.x

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C.,
et al. (2017). ecospat: an R package to support spatial analyses and modeling of species
niches and distributions. Ecography 40, 774–787. doi: 10.1111/ecog.02671

Dolan, M., Ross, R., Albretsen, J., Skardhamar, J., Gonzalez-Mirelis, G., Bellec, V.,
et al. (2021). Using spatial validity and uncertainty metrics to determine the relative
suitability of alternative suites of oceanographic data for seabed biotope prediction. A
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fmars.2023.1217851/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2023.1217851/full#supplementary-material
https://doi.org/10.1186/s12862-016-0654-8
https://doi.org/10.1111/ddi.12268
https://doi.org/10.1016/j.dsr.2016.07.006
https://doi.org/10.1111/gcb.16389
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1111/geb.12693
https://doi.org/10.7717/peerj.9523
https://doi.org/10.1016/j.dsr.2019.103147
https://doi.org/10.1016/j.pocean.2018.02.015
https://doi.org/10.1016/j.ecolmodel.2013.12.012
https://doi.org/10.1002/joc.1173
https://doi.org/10.1002/joc.1173
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://CRANR-projectorg/package=ecospat
https://CRANR-projectorg/package=ecospat
https://doi.org/10.1111/j.1466-8238.2011.00698.x
https://doi.org/10.1111/j.1466-8238.2011.00698.x
https://doi.org/10.1007/s10750-014-2116-x
https://doi.org/10.1111/j.1439-0485.2010.00359.x
https://doi.org/10.1111/j.1439-0485.2010.00359.x
https://doi.org/10.3389/fmars.2020.00131
https://doi.org/10.1111/ecog.03416
https://doi.org/10.1016/j.pocean.2019.04.010
https://doi.org/10.1016/j.dsr.2020.103344
https://doi.org/10.1016/j.dsr.2020.103344
https://doi.org/10.4319/lo.2009.54.2.0620
https://doi.org/10.4319/lo.2009.54.2.0620
https://doi.org/10.1371/journal.pone.0018483
https://doi.org/10.1016/j.dsr.2008.04.010
https://doi.org/10.1016/j.dsr2.2017.04.014
https://doi.org/10.3389/fmars.2019.00665
https://doi.org/10.1111/j.1600-0587.2013.00564.x
https://doi.org/10.1111/j.1600-0587.2013.00564.x
https://doi.org/10.1111/ecog.02671
https://doi.org/10.3389/fmars.2023.1217851
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Tong et al. 10.3389/fmars.2023.1217851
case study from the barents sea, Norway. Geosciences 11. doi: 10.3390/
geosciences11020048

Edinger, E. N., Sherwood, O. A., Piper, D. J. W., Wareham, V. E., Baker, K. D.,
Gilkinson, K. D., et al. (2011). Geological features supporting deep-sea coral habitat in
Atlantic Canada. Continental Shelf Res. 31, 69–84. doi: 10.1016/j.csr.2010.07.004

Elith, J., Graham, C. H., Anderson, R. P., Dudıḱ, M., Ferrier, S., Guisan, A., et al.
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