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Species distribution modeling is a widely used technique for estimating the

potential habitats of target organisms based on their environmental preferences.

These methods serve as valuable tools for resource managers and

conservationists, and their utilization is increasing, particularly in marine

environments where data limitations persist as a challenge. In this study, we

employed the global distribution predictions of six cold-water coral species as a

case study to investigate various factors influencing predictions, including

modeling algorithms, background points sampling strategies and sizes, and the

collinearity of environmental datasets, using both discriminative and functional

performance metrics. The choice of background sampling method exhibits a

stronger influence on model performance compared to the effects of modeling

algorithms, background point sampling size, and the collinearity of the

environmental dataset. Predictions that utilize kernel density backgrounds,

maintain an equal number of presences and background points for algorithms

of BRT, RF, andMARS, and employ a substantial number of background points for

MAXENT, coupled with a collinearity-filtered environmental dataset in species

distribution modeling, yield higher levels of discriminative and functional

performance. Overall, BRT and RF outperformed MAXENT, a conclusion that is

further substantiated by the analysis of smoothed residuals and the uncertainty

associated with the predicted habitat suitability of Madrepora oculata. This study

offers valuable insights for enhancing species distribution modeling in marine

benthic environments, thereby benefiting resource management and

conservation strategies for benthic species.
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1 Introduction

Species distribution modeling (SDM) is a well-established

method in biogeography, ecology, evolution, and conservation. It

is used to provide continuous predictions of distribution in areas

that are difficult to observe, such as the deep sea, to aid our

understanding of the relationship between species and their

environment (Di Cola et al., 2017; Barbosa et al., 2020).

Moreover, SDM is employed to assess the habitat suitability of

species (Sundahl et al., 2020; Gonzalez-Mirelis et al., 2021), model

potential risks of invasive species (Khosravifard et al., 2020), predict

the impact of climate change on species spatial distributions

(Morato et al., 2020; Lee et al., 2021), and make valuable

contributions to planning decisions in resource management and

conservation (Yesson et al., 2017; Rowden et al., 2019).

The benthic marine environment, covering 70% of the planet’s

surface, holds fundamental importance within the marine

ecosystem. It serves as a source of sustenance, refuge, and

breeding grounds for numerous species (Roberts et al., 2006;

Buhl-Mortensen et al., 2010), delivering a range of ecosystem

services that also benefit humanity (de Froe et al., 2019).

However, our knowledge of the seabed is limited by the logistical

constraints of marine surveys. This often results in spatially and

environmentally biased species occurrence datasets that are skewed

toward accessible, shallow, and near-shore regions near resource-

rich countries (Ramirez-Llodra et al., 2010).

The benthic marine environment is data-restricted, with the

latest bathymetry grid only mapping 24.7% of the seabed in detail

(GEBCO Compilation Group, 2022; Tong et al., 2023). Bathymetry

represents the most detailed global benthic marine dataset available.

Other environmental layers are often constructed using limited

observations and ocean circulation models constrained by the

underlying bathymetry (Locarnini et al., 2018). Seabed

environmental layers, such as Bio-oracle v2.0 (Assis et al., 2018)

and GMED v2.0 (Basher et al., 2018), are derived from these 3-

dimensional models by extracting or interpolating values at the

seabed to create 2-dimensional benthic grids (e.g., Davies &

Guinotte cookie cutter upscaling) (Davies and Guinotte, 2011).

These layers are directly related to the underlying bathymetry and

are typically highly correlated with depth and each other.

All these factors make species distribution modeling in the

benthic marine environment a valuable yet challenging practice.

Exploring the methodological issues associated with these models is

a valuable endeavor to enhance the quality of our distribution

estimates and contribute to conservation and management efforts.

Presence and absence data are frequently crucial for model

calibration and evaluation in machine learning species distribution

modeling (Valavi et al., 2021). However, obtaining such data from

online databases and museums can present challenges, particularly

due to the lack of reported absences or the uncertainty surrounding

absence data (Lobo et al., 2010; Grimmett et al., 2020). As a

substitute, background points are often utilized, but the method

of selecting them can significantly impact predictive performance

(Iturbide et al., 2015).
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Since species presence records are often spatially biased toward

easily accessed areas, such as coastal and shallow habitats with

researchers and equipment available, predicted distributions may

reflect sampling effort instead of actual habitat suitability.

Therefore, dealing with sampling bias is of key importance in

species distribution modeling. A series of methods have been

developed to reduce the influence of sampling bias, such as using

the model-based approach for bias correction (Warton et al., 2013),

integrating spatially explicit information in modeling (Merow et al.,

2016), using environmental filtering or geographic filtering of

presence data (Inman et al., 2021), incorporating environmental

profiling into background point selection (Iturbide et al., 2015), and

employing target-group sampling method (Phillips et al., 2009). The

target-group sampling method utilizes all occurrences within a

target group as biased background data, thereby selecting the

background points with the same bias as the sampling effort to

reduce the impact of sampling bias in presence-background

modeling (Phillips et al., 2009; Merow et al., 2013). Target-group

sampling has been found to improve the average performances of

tested modeling techniques compared to using randomly selected

background data (Phillips et al., 2009; Iturbide et al., 2015), which

has been widely used in species distribution predictions in recent

years (Cerasoli et al., 2017; Stephenson et al., 2020; Robinson et al.,

2021; Stephenson et al., 2021; Anderson et al., 2022).

An alternative offset approach to background selection is kernel

density estimate sampling, which combines the concepts of random

selection and target-group background sampling to select

background points with the same bias as presences by choosing

points based on a kernel density surrounding the presence data,

resulting in good performance in recent species distribution

predictions (Georgian et al., 2019; Burgos et al., 2020; Georgian

et al., 2021). Inman et al. (2021) found that using kernel density

background points as a sample bias correction method improved

habitat suitability modeling to a greater extent than using simple

geographic or environmental filtering of presence data (Inman

et al., 2021). However, no study has compared target-group

backgrounds and kernel density backgrounds for species

distribution modeling to our knowledge.

The number of background points to select for species

distribution modeling has been a topic of debate. Lobo & Tognelli

(2011) recommended selecting a large number of background

points, such as 100 times more background points than presences

for rare species (e.g., 10 presences) (Lobo and Tognelli, 2011).

Warton and Shepherd (2010) suggested utilizing Poisson point

process modeling of the intensity of presences and presented a case

with a large number of background points (> 80K) to achieve

convergence of maximized log-likelihood (Warton and Shepherd,

2010). Barbet-Massin et al. (2012) recommended selecting an equal

number of presences and background points for classification

techniques, whilst Liu et al. (2019) suggested selecting

background points as a small multiple of presences (Barbet-

Massin et al., 2012; Liu et al., 2019). Barbet-Massin et al. (2012)

recommended fewer background points (e.g., 100) with equal

weighting for presences and background points using MARS for
frontiersin.org

https://doi.org/10.3389/fmars.2023.1222382
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Tong et al. 10.3389/fmars.2023.1222382
species presences 30, 100, 300, or 1000 (Barbet-Massin et al., 2012).

Phillips and Dudıḱ (2008) found that the highest performance was

achieved with around 10K background points using MAXENT for

predictions with tens to thousands of presences (Phillips and Dudıḱ,

2008). Liu et al. (2019) concluded that the number of background

points to use depends on the number of presences, species

prevalence, and modeling algorithm employed.

The issue of high levels of correlation between environmental

variables in species distribution modeling can lead to incorrect

variable contributions and distort model estimation and subsequent

prediction (Dormann et al., 2013). This is particularly relevant for

benthic marine studies, where depth is often highly correlated with

many other factors. To address this issue, the variance inflation

factor (VIF) or Pearson’s correlation is often calculated to

investigate correlations among environmental variables (Davies

and Guinotte, 2011; Yesson et al., 2012; Yesson et al., 2017;

Khosravifard et al., 2020; Principe et al., 2021; Santini et al., 2021)

in order to decrease the impact of collinearity in predictions.

However, it is unclear to what extent the collinearity of

environmental variables influences benthic species modeling

performance and whether filtering environmental variables is

necessary for benthic species distribution prediction.

A number of species distribution models have been used in

predictions, with MAXENT (maximum entropy modeling) (Jaynes,

1957) being the most widely used in the past 15 years to model the

species geographic distributions based on presence-only data (Phillips

et al., 2006; Tong et al., 2013; Hu et al., 2022). Other algorithms like

MARS (multivariate adaptive regression spline) (Friedman, 1991),

GBM/BRT (generalized boosting model or boosted regression trees)

(Ridgeway, 1999), and RF (random forest for classification and

regression) (Breiman, 2001) have received more attention recently

and have performed well in various studies (Jorcin et al., 2019; Morato

et al., 2020; Matos et al., 2021; Tong et al., 2022). MAXENT was found

to perform better and more consistently than RF in terms of

performance and spatial prediction stability (Grimmett et al., 2020).

BRT was also found to be one of the top-performing techniques (Elith

et al., 2006; Valavi et al., 2021). However, it remains unclear how these

models perform comparatively in modeling benthic species, and

further research is needed.

In this study, the specific data conditions of the benthic

environment were taken into account to investigate the individual

and collective effects of key factors on predictive performance,

including background point sampling methods and size,

collinearity of environmental variables, and species distribution

models, utilizing global distribution modeling of six widely

distributed cold-water coral species (Desmophyllum pertusum,

Enallopsammia rostrata, Goniocorella dumosa, Madrepora oculata,

Paragorgia arborea, and Solenosmilia variabilis) as a case study.
2 Methods

2.1 Species data

This study compiled a database of cold-water corals, focusing

on both Hexocorallia and Octocorellia at predominantly the species
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level, with the data obtained from public databases, including the

ICES Vulnerable Marine Ecosystems data portal, the NOAA Deep

Sea Coral Data Portal, and the Ocean Biogeographic Information

System portal (OBIS), as well as peer-reviewed scientific outputs. To

ensure the accuracy of the presence records used for subsequent

modeling, the data underwent three steps of filtering. Firstly,

records with position accuracy > 5 km were removed. Secondly,

records without position accuracy or depth information were

removed. Thirdly, records with directly reported depths that

differed by more than 200 m from the inferred depth based on

the spatial position were removed. Finally, geographic filtering was

applied to keep only one occurrence record in a single grid cell (25

km2) to reduce the influence of sampling bias.
2.2 Background points

The selection of background data for modeling in this study used

commonly employed prevalence ratios of 1:1, 1:5, and 1:10, as well as

a fixed number of 10,000 points (Phillips et al., 2006; Barbet-Massin

et al., 2012; Hysen et al., 2022). Two methods were used to select

background points: the target-group background sampling method

and kernel density sampling method (Elith et al., 2010; Fitzpatrick

et al., 2013; Cerasoli et al., 2017; Georgian et al., 2019; Burgos et al.,

2020; Finucci et al., 2021; Georgian et al., 2021; Robinson et al., 2021;

Stephenson et al., 2021; Anderson et al., 2022). To select target-group

backgrounds for each species, random points were selected from the

remaining cold-water coral presences with the selected points within

5 km of occurrences excluded. For kernel density backgrounds,

sampling effort was modeled by fitting a kernel density estimate to

presence locations of the six species studied (3001 locations remained

with only one presence in each cell). The created two-dimensional

estimated kernel density was used as a probability grid to select

background points for each species, with points within 5 km of

occurrences of the species excluded from selection using

ArcGIS software.
2.3 Environmental variables

The SRTM15+ V2.0 bathymetric grid with a resolution of 15

arc-sec (Tozer et a l . , 2019) was projected into the

WGS_1984_EASE_Grid_2.0_Global coordinate system with a cell

size of 5 km. The projected SRTM15+ V2.0 was further utilized to

calculate terrain variables, including slope, curvature, and BPI9

(bathymetry position index with an analysis window size of 9×9)

using ArcGIS software (Wilson et al., 2007) (Table 1).

In this study, nine global environmental variables of the bottom

layer, such as temperature and salinity, were chosen from the Bio-

ORACLE v2.0 dataset with a grid size of 5′ (Assis et al., 2018)

(Table 1). These variables were calculated by utilizing pre-processed

global ocean re-analyses, which combined satellite and in situ

observations at regular two- and three-dimensional spatial grids

with monthly averages over the period of 2000-2014 (Assis et al.,

2018). Additionally, particulate organic carbon (POC) of the

bottom layer was adopted as a candidate predictor with a spatial
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range (-75°31’30″S, 83°58″N) (after Davies and Guinotte, 2011).

Furthermore, the variables aragonite saturation state (omega

aragonite), calcite saturation state (omega calcite), and alkalinity,

with a geographic range of approximately (-78.5°S, 68°N), were

interpolated into seabed grids using three-dimensional gridded

datasets GLODAP and WOA09, utilizing the cookie-cutter

upscaling method first described by Davies and Guinotte (2011)

and implemented by Yesson et al. (2017). All 13 environmental

variables were resampled using the bilinear algorithm and projected

into WGS_1984_EASE_Grid_2.0_Global with a cell size of 5 km

and a global range of (-90S, 90N, -180W, 180E).
2.4 Correlation of environmental variables

To investigate the potential influence of the collinearity of the

environmental variables on predictive performance, the variance

inflation factor (VIF) and Pearson’s correlation coefficient were

utilized in this study. The VIF was used to estimate the correlation

between each variable and all the other variables iteratively. Each

time, the variable with the highest VIF was excluded until no VIF

was larger than a set threshold (Yesson et al., 2015; Yesson et al.,

2017; Khosravifard et al., 2020). The thresholds of VIF and

Pearson’s r for this study were set as 5 and 0.8, respectively, with

all VIFs <5 and Pearson’s r <0.8 indicating a low collinearity of the

variables (Heiberger and Holland, 2004; Yesson et al., 2017). The R

package HH was utilized for VIF calculation (Heiberger, 2022).
2.5 Modeling algorithms

Four modeling algorithms, including MAXENT, MARS, BRT,

and RF, were tested in this study. MAXENT predicts species’

potential distribution based on the maximum entropy principle,

constrained by the features that the expected value of each

environmental variable matches its empirical average (Phillips

et al., 2006; Elith et al., 2011). BRT uses an iterative boosting
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algorithm to call the regression tree algorithm and build a

combination of trees (Ridgeway, 1999) while stepwise adding

modifications to the modeled regression trees to fit the data better

(Friedman, 2001). RF uses the bagging method (bootstrap

aggregation) to randomly select a number of bootstrap samples

from the training data to fit the trees, then average all the fitted trees

for a prediction (Breiman, 2001). RF is less sensitive to the tuning of

model parameters than other classification and regression tree

methods, such as BRT (Freeman et al., 2016). MARS is a flexible

regression method that is used for fitting non-linear relationships or

interactions, applying a piecewise linear function instead of

smoothing (Friedman, 2001; Elith et al., 2006).

In this study, predictions were made using the R package

Biomod2 4.1-2 (Thuiller, 2003; Thuiller et al., 2009; Thuiller

et al., 2022). To achieve better model performance, an equal

weight between presences and background points was set in this

study, with the weighted sum of presences equaling the weighted

sum of background points, as recommended by previous studies

(Barbet-Massin et al., 2012; Liu et al., 2019). The default settings of

Biomod2 4.1-2 were implemented for the additional arguments in

all four models used in the study.
2.6 Model evaluation method
and algorithms

In this study, model evaluation was conducted by segmenting

the data based on spatial blocks rather than resorting to random

subsampling of presence and background data. The latter approach

tends to lead to an overestimation of model performance, whereas

the former is considered to yield a more robust estimate of accuracy

(Santini et al., 2021). To achieve this, the presence records of each

species were divided longitudinally into eight numerically equal

folds, with the corresponding background points divided

accordingly. For each replicate, one of the eight folds was

withheld from the model calibration and reserved for evaluation

(Valavi et al., 2019; Winship et al., 2020).
TABLE 1 Environmental variables used in this study.

Environmental variables Datasets Sources Resolution

Depth, slope, curvature, BPI9 SRTM15+ V2.0 SRTM15+ V2.01 15’’

Temperature, salinity Bio-ORACLE v2.0 ARMOR2 0.25°

Current velocity Bio-ORACLE v2.0 ORAP3 0.25°

Dissolved oxygen, nitrate, phosphate, silicate, chlorophyll, primary productivity Bio-ORACLE v2.0 PISCES4 0.25°

Omega calcite, Omega aragonite Yesson et al. (2017) GLODAP5

WOA096
1°
1°

Alkalinity Yesson et al. (2017) GLODAP 1°

Particulate organic carbon Davies & Guinotte
(2011)

Lutz, et al.
(2007)

0.08°
1Shuttle Radar Topography Mission SRTM15+V2.0.
2Global Observed Ocean Physics Reprocessing (resolution: 0.258/33 vertical levels), monthly averages for the period 2000–2014.
3Global Ocean Physics Reanalysis ECMWF (resolution: 0.258/75 vertical levels), monthly averages for the period 2000–2014.
4Global Ocean Biogeochemistry Non-assimilative Hindcast (resolution: 0.258/75 vertical levels), monthly averages for the period 2000–2014.
5Global Ocean Data Analysis Project.
6World Ocean Atlas 2009.
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The accuracy of model predictions was evaluated using four

metrics: sensitivity, specificity, AUC, and TSS. Sensitivity and

specificity were computed as the proportion of correctly predicted

as presences and absences, respectively (Barbet-Massin et al., 2012).

Maximizing the sum of sensitivity and specificity has demonstrated

promise as a method for selecting thresholds in presence-only

predictions (Liu et al., 2013; Liu et al., 2015). In this study, the

sensitivity and specificity yielding the highest combined value were

utilized for assessing model performance.

The AUC statistic, a widely employed nonparametric method

for evaluating species distribution predictions, was employed. AUC

is insensitive to prevalence and is calculated as the area under the

receiver operating characteristic curve (DeLong et al., 1988). It

measures the model’s true positive rate (sensitivity) against the false

positive rate (1 - specificity), with values ranging from 0.5

(indicating performance no better than random) to 1 (indicating

perfect discriminatory capacity) (Jiménez-Valverde, 2012). Another

commonly used metric, the TSS (true skill statistic) was used to

gauge the agreement between predicted habitat suitability and the

known presences/backgrounds of the validation dataset. TSS is

calculated as the sum of sensitivity and specificity minus 1 (or

true negative rate minus false negative rate) and ranges from -1

(indicating very poor performance) to 1 (indicating perfect

agreement) (Allouche et al., 2006).

Pearson’s correlation was employed to assess the consistency of

predicted habitat suitability across each run of algorithm pairs for

each species (Grimmett et al., 2020). The Fleiss’ kappa statistic

(Fleiss, 1971) was used to measure the agreement among

predictions from 8 runs of each algorithm for each species,

providing insights into the stability of predictions for each

algorithm. This statistic measures agreement among multiple

raters, whereas Cohen’s kappa estimates agreement between two

raters (Grimmett et al., 2020).
2.7 Spatial residuals and uncertainty

Using M. oculata as a case study, further investigations were

conducted into the smoothed spatial residuals (Renner et al., 2015)

and the uncertainty of predicted habitat suitability. Spatial residuals

were calculated using the following formula: observed species

presence/backgrounds (1/0) - normalized predicted habitat

suitability. The results were then interpolated into a grid using

Ordinary Kriging. To assess the uncertainty of predicted habitat

suitability, the standard deviation of predictions from eight runs

was computed. This measure offers insights into the spatial

sensitivity of the model to the sampling of occurrences and

backgrounds in block cross-validation modeling.
3 Results

A total of 24,810 presence locations of cold-water corals

(Hexocorallia and Octocorellia) were retained and used as

candidates for target-group backgrounds. Among the species,

1223 D. pertusum, 736 M. oculata, 453 E. rostrata, 316 G.
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dumosa, 345 P. arborea, and 560 S. variabilis were retained and

included as species presences (Figure 1). A total of 3001 presence

locations of the six species were retained to estimate kernel density

by excluding duplicated presences within a single cell.

Madrepora oculata and E. rostrata have the most widespread

distributions, followed by S. varibilis, D. pertusum, and P. arborea,

with G. dumosa mostly limited to the SW Pacific (Figures 1C–F).

The estimated high kernel density of the six species is

predominantly found in the North Atlantic and SW Pacific

(Figure 1G). These global cold-water corals were particularly

found on the continental shelf margin, seamounts, and deep-slope

of oceanic islands (Figure 1H).

The VIFs and Pearson’s correlation of 17 environmental

variables were calculated to test their correlation. A total of 12

variables were retained with VIFs < 5 and Pearson’s r < 0.8,

indicating lower collinearity of the variables (Tables 2, 3). The

dataset of the 12 retained environmental variables was used in

predictions, and the model performances were tested and compared

with the predictions using the whole dataset of environmental

variables (17 variables).

3.1 Model accuracy assessment

The response patterns of TSS are generally consistent with AUC

(Figures 2A, B). All predictions performed well, with mean AUC

values > 0.75. Models using kernel density backgrounds have

relatively stable higher mean values of AUC and TSS statistics than

corresponding models using target-group backgrounds, for all

algorithms, all presence prevalence (the ratio of presences to

backgrounds), and both environmental datasets (Figures 2, 3). BRT

and RF have better discriminative performance than the other two

algorithms, with relatively stable highmean AUC values for almost all

presence prevalence and both environmental datasets (Figures 2, 3).

The predictive performances of BRT, MARS, and RF using kernel

density backgrounds fluctuate, with mean AUC values decreasing

slightly as background prevalence decreases, whereas the mean AUC

values of MAXENT increase as the prevalence decreases (Figures 2A,

3A). Models based on target-group backgrounds performed poorly

compared to kernel density backgrounds, with more variability in

mean AUC values (Figure 3), and lower mean discriminative

performance of MAXENT than BRT, MARS, and RF, particularly

for higher prevalence (Figures 2, 3).

Runs of all four algorithms are more stable using kernel density

backgrounds than target-group backgrounds (Figure 3). Prediction

outputs of all four algorithms are most stable for the geographically

widespread M. oculata, followed by E. rostrata and D. pertusum,

using kernel density backgrounds, with narrow ranges of AUC values;

meanwhile, the predictions of G. dumosa consistently show the worst

performance across all algorithms and backgrounds (Figure 4).

The mean sensitivity and specificity of predictions using kernel

density backgrounds are both higher than predictions using target-

group backgrounds. The mean sensitivity and specificity of RF,

BRT, and MARS are mostly higher than that of MAXENT,

regardless of species prevalence and environmental datasets used.

Additionally, the mean sensitivity of each algorithm is higher than

the corresponding specificity (Figures 2C, D).
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3.2 Consistency assessment between
modeling algorithms

Greater agreement is shown between predictions of each pair of

algorithms using kernel density backgrounds than using target-
Frontiers in Marine Science 06
group backgrounds with both environmental datasets among all

four cases of species prevalence (Figure 5). Similar characteristics

were found among the predictions for the six species (Figure 6). The

highest agreement is evident between BRT and RF predictions using

kernel density backgrounds, exhibiting a mean Pearson’s
TABLE 2 VIFs of environmental variables, with variables and VIFs in bold in case VIF <5.

Environmental variables VIF Environmental variables VIF

Depth 2.4 Phosphate 73.9

Slope 1.1 Silicate 4.4

Curvature 2.0 Chlorophyll 3.8

BPI9 2.2 POC 2.5

Temperature 3.4 Primary productivity 2.6

Salinity 1.5 Omega aragonite 23.3

Dissolved Oxygen 3.0 Omega calcite 5039.0

Current velocity 1.1 Alkalinity 6.5

Nitrate 24.0
frontie
B

C D

E F

G H

A

FIGURE 1

Global distribution of six species of cold-water corals (A–F), kernel density estimate of the six cold-water coral species (G), and the candidates of
target-group background points (H).
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correlation coefficient ranging from 0.834 to 0.938. This is followed

by BRT and MARS, with Pearson’s correlation coefficient ranging

from 0.816 to 0.872, and then MARS and RF (Figure 5). In contrast,

MAXENT predictions exhibit the lowest level of agreement with

predictions using the other modeling techniques (Figure 5).

The greatest mean agreement between BRT and RF was

observed in predictions using a prevalence ratio of 1:1 and the

filtered environmental dataset (12 environmental variables),

yielding a Pearson’s correlation coefficient of 0.938. This is

followed by predictions using a prevalence ratio of 1:1 and the

whole environmental dataset (17 variables), resulting in a Pearson’s

correlation coefficient of 0.925. The level of agreement decreases as

prevalence decreases (Figure 5).

When using kernel density backgrounds, the mean agreement

between BRT and RF predictions ranks among the top for five out of

six species, except for G. dumosa.Madrepora oculata and E. rostrata

show the highest mean agreement in predictions for each pair of

algorithms, while the least agreement is found in G. dumosa

predictions for each pair of algorithms (Figure 6).
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3.3 Consistency assessment of each
modeling algorithm

Fleiss’ kappa statistics highlight a stronger mean agreement of

predictions for each algorithm when using kernel density

backgrounds compared to target-group backgrounds. The mean

Fleiss’ kappa ranges between 0.46 and 0.641 in predictions using

kernel density backgrounds (Figure 7).

The strongest agreement of predictions for each algorithm is

achieved in cases where the filtered environmental dataset is used,

and an equal number of background points to presences is used

(prevalence 1:1) for BRT, MARS, and RF predictions. For

MAXENT predictions, a prevalence ratio of 1:10 is employed.

The highest mean Fliess’ kappa values are recorded for RF (0.641,

12KD1), followed by BRT (0.613, 12KD1), MARS (0.596, 12KD1),

and MAXENT (0.606, 12KD10) (Figure 7).

The lowest agreement for each algorithm is observed in

predictions of G. dumosa, using both kernel density backgrounds

and target-group backgrounds, as well as both environmental
B

C

D

A

FIGURE 2

Discriminative performances of the predictions of the four modeling algorithms using (A) AUC, (B) TSS, (C) Sensitivity, and (D) Specificity.
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datasets. For M. oculata, high Fleiss’ kappa values are noted in BRT,

MARS, and RF predictions, particularly when using the filtered

environmental dataset (12KDMO), with corresponding values of

0.729, 0.756, and 0.689, respectively. Conversely, the Fleiss’ kappa

value for E. rostrata is high in MAXENT prediction, particularly

when using the filtered environmental dataset (12KDER) at 0.685.

Notably, high agreement for each algorithm is also observed in

predictions for S. varibilis using target-group backgrounds (Figure 8).
Frontiers in Marine Science 08
3.4 Spatial residuals and uncertainty of
predicted habitat suitability for M. oculata

Figure 9; Supplementary Figure 1 illustrate that the spatial

residuals of RF predictions are lower compared to predictions of

BRT, MARS, and MAXENT. When using a 1:1 ratio of presence to

backgrounds, BRT predictions exhibit fewer areas of high residuals

compared to using backgrounds of 1:5, 1:10, and 10K. A similar
FIGURE 4

Boxplots of AUC values of predictions by species and background selection method. The x-axis label consists of the abbreviation of the species
name and the background points sampling method. DP, D. pertusum; ER, E. rostrata; GD, G. dumosa; MO, M. oculata; PA, P. arborea; SV, S. variabilis.
For example, DPKD represents predictions for D. pertusum using kernel density backgrounds, whilst SVTG represents predictions for S. variabilis
using target-group backgrounds.
B

A

FIGURE 3

Boxplots of AUC values of predictions (A) using kernel density backgrounds (KD), and (B) using target-group backgrounds (TG). The x-axis label xKDy
indicates predictions using x number of environmental variables, kernel density backgrounds, and a prevalence ratio or background points number y.
Similarly, xTGy indicates predictions using x number of environmental variables, target-group backgrounds, and a prevalence ratio or background
points number y. Here, x can be either 17 or 12, and y can be 1:1, 1:5, 1:10, or 10K. For example, 17KD1 represents predictions using 17 environmental
variables, kernel density backgrounds, and a prevalence ratio 1:1, whilst 12TG10K represents predictions using 12 environmental variables, target-
group backgrounds, and 10K background points.
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B C

D E F

A

FIGURE 5

Pearson’s correlation coefficient was calculated between each pair of algorithms based on species prevalence. (A) GBM/BRT & MARS, (B) GBM/BRT
& MAXENT, (C) GBM/BRT & RF, (D) MARS & MAXENT, (E) MARS & RF, (F) MAXENT & RF. The x-axis is labeled by prevalence ratio or background
points number. Specifically, the values 1, 5, 10, and 10K represent prevalence ratios of 1:1, 1:5, and 1:10, as well as background points number of 10K.
The y-axis is labeled with the number of environmental variables and the background points sampling method used. For example, 12TG represents
predictions using 12 environmental variables and target-group background points, whilst 17KD represents predictions using 17 environmental
variables and kernel density background points.
B C

D E F

A

FIGURE 6

Pearson’s correlation coefficient was calculated between each pair of algorithms by species. (A) GBM/BRT & MARS, (B) GBM/BRT & MAXENT, (C)
GBM/BRT & RF, (D) MARS & MAXENT, (E) MARS & RF and (F) MAXENT & RF. The x-axis is labeled by species name. DP, D. pertusum; ER, E. rostrata;
GD, G. dumosa; MO, M. oculata; PA, P. arborea; SV, S. variabilis. The y-axis is labeled with the number of environmental variables and the
background points sampling method. For example, 12TG represents predictions using 12 environmental variables and target-group background
points, whilst 17KD represents predictions using 17 environmental variables and kernel density background points.
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trend is observed in MARS predictions. However, in the case of

MAXENT predictions, using a 1:1 ratio of presence to pseudo-

absence leads to more areas of high residuals compared to

backgrounds of 1:5, 1:10, and 10K.

Figure 10; Supplementary Figure 2 illustrate that the uncertainty

of BRT and RF predictions is lower compared to MARS and

MAXENT predictions. Among them, MAXENT predictions

display the highest level of uncertainty, with the 1:10 ratio

prediction showing fewer areas of high uncertainty compared to

other ratio cases.

Supplementary Figure 3 provides visual assessments of the

predicted habitat suitability maps for M. oculata. It reveals a

similar spatial pattern among the predicted habitat suitability of
Frontiers in Marine Science 10
the four modeling algorithms, with high habitat suitability generally

aligning with the spatial locations of M. oculata presences.
4 Discussion

In this study, alongside discriminative accuracy measuring metrics

(AUC, TSS, sensitivity, and specificity), functional performance

measuring metrics (Fleiss’ kappa, Pearson’s correlation coefficient

smoothed spatial residuals and standard deviation) were employed to

explore the influence of four key factors on species distribution

modeling, including sampling strategies and number of background

points, collinearity of environmental variables, and modeling
B

C D

A

FIGURE 7

Fleiss’ kappa statistic of each algorithm by species prevalence. (A) GBM/BRT, (B) MARS, (C) MAXENT, and (D) RF. The x-axis is labeled by prevalence
ratio or background points number. Specifically, the values 1, 5, 10, and 10K represent prevalence ratios of 1:1, 1:5, and 1:10, as well as background
points number of 10K. The y-axis is labeled with the number of environmental variables and the background points sampling method used. For
example, 12TG represents predictions using 12 environmental variables and target-group background points, whilst 17KD represents predictions
using 17 environmental variables and kernel density background points.
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algorithms. This investigation was carried out using the global

distribution predictions of six real cold-water coral species as a

case study.
4.1 Impact of sampling strategy
of background points on
predictive performance

The study revealed a pronounced spatial bias in species

presence records, with the highest sampling intensity

concentrated in the North Atlantic and SW Pacific regions

(Figure 1). Spatial sampling biases in biodiversity data emerge

from intricate interactions among geography, species traits, and

human behavior (e.g., preferences or avoidance of certain species or

habitats) (Baker et al., 2022). Addressing this sampling bias poses a

significant challenge for presence-only and presence-background

species distribution models. Biased data can obscure the actual

correlation between occurrences and environmental predictors,

irrespective of the model used, leading to predictive distributions

that predominantly reflect sampling effort rather than actual habitat

suitability (Baker et al., 2022; Barber et al., 2022). In this study, the

sampling strategy of background points was identified as the most

influential factor on predictive performance, surpassing the effects

of modeling algorithms, species prevalence (the ratio of species
Frontiers in Marine Science 11
presences to background points), or collinearity of environmental

datasets (Figure 2).

Kernel density background data demonstrated significantly

superior performance compared to target-group backgrounds in

achieving higher discriminative accuracy and functional

performance across all four algorithms, all species prevalence cases,

both environmental datasets, and different niche breadths (Figures 2,

7, 8). Although direct performance accuracy comparisons between

predictions using kernel density backgrounds and target-group

backgrounds have been sparse in previous studies, these methods

have been favorably compared to other techniques aimed at reducing

sampling bias. Target-group backgrounds outperformed radius-

restricted backgrounds and covariates of sampling effort (e.g., maps

of human population density and road networks) used as alternative

means to estimate sampling effort, effectively mitigating the impact of

sampling bias (Barber et al., 2022). Moreover, modeling with target-

group backgrounds exhibited superior performance compared to

random backgrounds (Phillips et al., 2009) and environmental-

filtering backgrounds (Iturbide et al., 2015). Modeling using kernel

density backgrounds exhibited a greater improvement in recreating

known distributions compared to presences-filtering methods, which

encompass spatially thinning presences to a fixed sampling density

using geographic filtering or maintaining equal sampling intensity

across environmental space using environmental filtering (Inman

et al., 2021).
B

C D

A

FIGURE 8

Fleiss’ kappa statistic of each algorithm by species. (A) GBM/BRT, (B) MARS, (C) MAXENT, and (D) RF. The x-axis is labeled by species name. DP, D.
pertusum; ER, E. rostrata; GD, G. dumosa; MO, M. oculata; PA, P. arborea; SV, S. variabilis. The y-axis is labeled with the number of environmental
variables and the background points sampling method used. For example, 12TG represents predictions using 12 environmental variables and target-
group background points, whilst 17KD represents predictions using 17 environmental variables and kernel density background points.
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We speculate that the comparable distribution pattern of the six

species with target-group backgrounds, often found on the

continental shelf margin, seamounts, and steep slopes of sea

islands (Figure 1), could heighten the probability that background

points (cells) indeed contain species occurrences. This increased

likelihood could lead to greater difficulty in distinguishing between

presences and backgrounds, ultimately diminishing the predictive

performance of models using target-group backgrounds.
4.2 Impact of number of background
points on predictive performance

The study revealed that different algorithms performed

optimally with distinct background sampling sizes, a relationship

also observed in previous studies (Barbet-Massin et al., 2012; Liu

et al., 2019). The findings regarding machine learning methods BRT

and RF are consistent with previous research. Grimmett et al.

(2020); Barbet-Massin et al. (2012); Jimenex-Valverde (2021);
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Hysen et al. (2022), and Barker & MacIsaac (2022) all support an

equal prevalence of presences and absences. Liu et al. suggested a

small multiplier in background points relative to the number of

presences (Barbet-Massin et al., 2012; Liu et al., 2019; Grimmett

et al., 2020; Jimenez-Valverde, 2021; Barker and MacIsaac, 2022;

Hysen et al., 2022).

The conclusions regarding the optimal size of background

samples for the MARS algorithm have been conflicting in

previous studies. Hysen et al. (2022) found that MARS performed

optimally with 10,000 background points for a sample size of 248

(Hysen et al., 2022), while Barbet-Massin et al. (2012) suggested

fewer pseudo-absences (e.g., 100) for sample sizes of 30, 100, 300, or

1000 presences. However, our findings align with Barker and

MacIsaac (2022), who recommended equal random pseudo-

absences to centroids (presences). The reduced areas of high

residuals in the predicted habitat suitability of MARS using a 1:1

ratio of presence to backgrounds, compared to other background

ratios (Supplementary Figures 1, 2), also signify the higher accuracy

of predictions using a 1:1 ratio.
B

C D

E F

G H

A

FIGURE 9

Smoothed residuals of predicted habitat suitability for M. oculata, utilizing GBM/BRT and RF models. Prevalence ratios of 1:1, 1:5, and 1:10, as well as
background points number of 10K, and 12 environmental variables selected using VIF were employed. (A) GBM, 1:1; (B) GBM, 1:5; (C) GBM, 1:10; (D)
GBM, 10K; (E) RF, 1:1; (F) RF, 1:5; (G) RF, 1:10; (H) RF, 10K.
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Likewise, conclusions regarding the optimal size of background

samples for the MAXENT algorithm have been conflicting in

previous studies. Liu et al. (2019) found that MAXENT

performed optimally using background points as a small multiple

of presences, and Barker and MacIsaac (2022) suggested equal

random pseudo-absences to centroids (presences). However, our

findings align with Grimmett et al. (2020) (e.g., 1900 background

points for 100 presences), Phillips and Dudıḱ (2008) (e.g., 10,000 for

a few to thousands of presences) (Phillips and Dudıḱ, 2008), and

Hysen et al. (2022) (prevalence 1:10 is better than prevalence 1:1

and 10,000 sample size). The reduced areas of high residuals and

lower uncertainty in the predicted habitat suitability of MAXENT

using a 1:10 ratio of presence to backgrounds, compared to other

background ratios, also indicate the higher accuracy of predictions

using a 1:10 ratio.

Concerning prediction consistency, our results correspond with

Grimmett et al. (2020), who identified the strongest agreement (Fleiss’

kappa statistic) between RF predictions using equal presence

backgrounds and between MAXENT predictions using a large
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number of background points. Moreover, our results align with other

studies that advocate equal presence-backgrounds in BRT, RF, and

MARS predictions, while recommending the use of a substantial

number of background points for MAXENT predictions.
4.3 Impact of modeling algorithms on
predictive performance

No single modeling algorithm outperformed all others under all

circumstances. Nonetheless, in this study, BRT & RF performed

best overall using equal prevalence. However, MAXENT and BRT

exhibited better performance than RF in predictions involving 225

species with dozens to thousands of presences (Elith et al., 2006;

Valavi et al., 2021). Similarly, MAXENT outperformed other

algorithms, such as a variant of RF, BRT, and MARS, in

predictions involving 171 species in both random and spatial

partitioning (Valavi et al., 2023). However, a number of previous

studies have reported different outcomes, which are consistent with
B
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A

FIGURE 10

Uncertainty of predicted habitat suitability for M. oculata, utilizing GBM/BRT and RF models. Prevalence ratios of 1:1, 1:5, and 1:10, as well as
background points number of 10K, and 12 environmental variables selected using VIF were employed.(A) GBM, 1:1; (B) GBM, 1:5; (C) GBM, 1:10; (D)
GBM, 10K; (E) RF, 1:1; (F) RF, 1:5; (G) RF, 1:10; (H) RF, 10K.
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TABLE 3 Pearson’s correlation matrix of 17 environmental variables, with absolute values >0.8 highlighted in bold.

V Oxygen Nitrate Phosphate Silicate Chlorophyll Primary P OA OC Alkalinity POC

6 –

0 -0.61 –

0 -0.68 0.98 –

8 -0.59 0.91 0.91 –

3 0.15 -0.47 -0.44 -0.33 –

2 0.05 -0.28 -0.31 -0.19 0.76 –

7 0.15 -0.77 -0.71 -0.64 0.63 0.47 –

7 0.15 -0.77 -0.71 -0.65 0.63 0.47 1.00 –

7 -0.67 0.77 0.76 0.84 -0.32 -0.17 -0.53 -0.53 –

5 0.06 -0.51 -0.43 -0.43 0.65 0.43 0.68 0.69 -0.42 –

POC, Particulate organic carbon; OA, Omega aragonite; OC, Omega calcite.
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Depth Slope Curvature BPI9 Temper Salinity Current

Depth –

Slope 0.12 –

Curvature 0.12 0.03 –

BPI9 0.21 0.19 0.70 –

Temper 0.60 -0.03 0.02 0.07 –

Salinity -0.12 0.04 0.00 0.01 0.09 –

Current V 0.12 -0.04 0.02 0.08 0.27 0.09 –

Oxygen -0.09 -0.09 -0.02 -0.04 -0.07 0.00 0.1

Nitrate -0.43 0.07 0.00 -0.03 -0.67 -0.09 -0.3

Phosphate -0.35 0.07 0.00 -0.02 -0.61 -0.13 -0.3

Silicate -0.49 0.00 -0.01 -0.05 -0.54 -0.12 -0.2

Chlorophyll 0.39 -0.08 0.00 0.01 0.53 -0.33 0.1

Primary P 0.23 -0.05 0.00 0.00 0.49 -0.23 0.1

OA 0.73 -0.03 0.05 0.11 0.91 -0.03 0.2

OC 0.74 -0.02 0.05 0.11 0.91 -0.04 0.2

Alkalinity -0.45 0.02 -0.02 -0.06 -0.38 0.18 -0.2

POC 0.55 -0.08 0.00 0.02 0.58 -0.30 0.1

Temper, Temperature; Current V, Current velocity; Oxygen, Dissolved oxygen; Primary P, Primary productivity;
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our results. For instance, Barker and MacIsaac (2022) found BRT to

outperform RF, MARS, and MAXENT in predictions involving

virtual species; Romero-Sanchez et al. (2022) found RF to achieve

better performance than MAXENT in predictions for plus trees;

and Hysen et al. (2022) found RF to perform better than MARS and

MAXENT in nest predictions (Barker and MacIsaac, 2022; Hysen

et al., 2022; Romero-Sanchez et al., 2022). Additionally, the smaller

number of areas with high residuals and lower uncertainty in the

predicted habitat suitability of RF and BRT, compared to those of

MARS and MAXENT in M. oculata prediction, also indicates the

higher accuracy of predictions using RF and BRT.

Our finding that the greatest agreement of MAXENT showed

lower than BRT or RF is in conflict with the result of Grimmett

et al. (2020), which found that MAXENT performed more

consistently in terms of discriminative accuracy and spatial

prediction stability than RF using 20 to 100 presences, and a

background sample size determined by presences/(presences +

background points) = 0.5, 0.1, 0.05, 0.01, and 0.005 (Grimmett

et al., 2020). Additionally, Grimmett et al. (2020) found that

Pearson’s correlation coefficient between RF and MAXENT

increased with prevalence (~0.3-0.9). The inconsistent result

from our study could be related to different sample sizes (20-

100 presences in their study, 316-1223 presences in this study)

and validation metrics between studies (random cross-validation

in their study and spatial block cross-validation in this study). In

general, increasing sample size has a positive effect on

performance (measured by AUC and Schoener´s D), with

model accuracy decreasing with a sample size below 300

presences (Gábor et al., 2020). Both Fleiss’ kappa of MAXENT

and RF predictions increased with increasing sample size in

Grimmett et al. (2020), which may indicate that the conflicting

results may be related to differences in sample size.
4.4 Impact of collinearity of environmental
variables on predictive performance

The AUC values were found to be similar between predictions

using the 12 filtered (uncorrelated) environmental variables and the

full set of 17 correlated variables for each of the four modeling

techniques, particularly when using kernel density backgrounds,

indicating that the collinearity of the environmental dataset did not

influence the discriminative accuracy of the four modeling methods

significantly. Dormann et al. (2013) also found that the modeling

methods significantly, GAM, MARS, BRT, and RF, worked

reasonably well under moderate collinearity (Dormann et al.,

2013). de Marco Junior and Nobrega (2018) found that the

intensity of the effect of collinearity varied according to the

algorithm characteristics, with more complex models, such as

MAXENT, performing better than simple envelope ones based on

PCA-derived variables (de Marco Junior and Nobrega, 2018).

However, the collinearity of the environmental dataset did

influence the functional performance of algorithms, with stronger

agreement of each algorithm found in predictions using the VIF-

filtered environmental dataset compared to when using the whole
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dataset. Furthermore, spatial autocorrelation in the predictors can

inflate the variable importance estimates when the response of species

to the environmental gradients is linear (Harisena et al., 2021).

Therefore, it is recommended to address the collinearity between

environmental variables before modeling.

It is worth noting that the methodologies employed in our

study, namely, the use of different modeling algorithms,

background sampling strategies, number of background points,

and collinearity of environmental variables, are not exclusive to

the study of cold-water corals, although specific cold-water coral

species within the Hexocorallia and Octocorellia groups were used

as a case study. These approaches can be widely applicable in species

distribution modeling across various marine benthic taxa.

Therefore, the insights gained from our investigation into the

impact of these factors on predictive performance could

potentially extend to other benthic groups and marine species.

However, different species with different habitat preferences,

ecological requirements, and dispersal abilities may exhibit

unique responses to these factors. Therefore, while the specific

results of our study pertain to cold-water corals, the underlying

principles and considerations can serve as a foundation for

researchers working with other marine species.

5 Conclusion

We found that all four algorithms tested performed well for

both kernel density backgrounds and target-group backgrounds, all

presence prevalence, and both environmental datasets, particularly

BRT and RF. However, the choice of background sampling method

was found to have a stronger influence on model performance than

modeling algorithms, presence prevalence, or collinearity of

environmental datasets. We recommend using kernel density

backgrounds; an equal number of presences and background

points for algorithms of BRT, RF, and MARS; and a large

number of background points for MAXENT, such as 10 times the

presences or 10K, using a collinearity filtered environmental dataset

in species distribution modeling for higher discriminative and

functional performance.
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