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Climate change and intensive anthropogenic activities have severely challenged the

water quality of China’s Pearl River Estuary (PRE). Further investigations into long-

term water quality variation and associated driving mechanisms are therefore

necessary to support the sustainable development of the PRE’s Greater Bay Area

(GBA). This study used remote sensing retrieval to address long-term spatiotemporal

chlorophyll-a (Chl-a) variation characteristics in the PRE and the relationship

between Chl-a concentrations and socioeconomic/environmental indicators.

Three decades of Landsat satellite images and measured data were collected, and

a two-band global algorithm was used to retrieve Chl-a concentration data. Results

reveal significant spatiotemporal variability in Chl-a concentrations. The space-

averaged Chl-a concentration exhibited a slight downward trend during the past

three decades, and the multi-year mean value was 5.20 mg/L. Changes to

environmental protection policies in recent years have improved overall PRE

water quality. The western section of the PRE had the highest Chl-a

concentration (i.e., 5.92 mg/L average) while the eastern section had the lowest

(i.e., 3.98 mg/L average). This discrepancy was likely caused by the western section’s

more intensive industrial activities, resulting in a higher overall wastewater discharge

volume. Affected by climatic conditions, winter Chl-a concentrations were evenly

distributedwhile summer concentrationswere significantly higher. Additionally, Chl-

a concentrations significantly and positively correlated with total phosphorus (TP),

total nitrogen (TN), ammonia nitrogen (NH3-N), and the biotic oxygen demand

(BOD5). Chl-a concentrations also correlated with external factors (i.e., climate and

anthropogenic activities). Among these factors, industrial wastewater discharge and

the proportion of primary industries in coastal cities significantly and positively

correlated with water quality. This study is intended to help direct water quality

improvement management and urban sustainable development in the GBA.

KEYWORDS

estuary water quality, remote sensing, retrieval algorithm, chlorophyll-a concentration,
spatiotemporal dynamics, driving factor
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1 Introduction

Although Estuaries are among the most productive ecosystems

in the world, they are vulnerable to climate change and

anthropogenic activities (Scanes et al., 2020; Burford and

Faggotter, 2021). Located at the land-ocean interface, estuaries are

vulnerable to nutrient inputs from surrounding agricultural,

industrial, and urban development (Jeffries et al., 2016).

Meanwhile, the withdrawal of potable water from upstream

catchments can significantly decrease freshwater inflow while

facilitating nutrient accumulation in estuaries (Jiang et al., 2014).

Additionally, estuarine eutrophication has become a global issue,

causing multiple environmental issues, including harmful algal

blooms, hypoxic “dead zones”, and habitat degradation, which

have affected species richness (Testa et al., 2018; Wurtsbaugh

et al., 2019; Montefiore et al., 2023). On average, in China’s

coastal regions, there have been over 60 red tide events annually

over the past two decades (Wang B et al., 2018). To improve estuary

sustainability, it is important to clarify long-term water quality

variation and associated driving factors in eutrophic estuaries.

Satellite-based remote sensing provides an efficient and cost-

effective way to monitor environmental changes in aquatic systems

(Gholizadeh et al., 2016; Jay et al., 2017; Chawla et al., 2020), which

is becoming increasingly attractive because of its high monitoring

frequency and spatiotemporal coverage (Tong et al., 2022). It has

been widely used in retrieval of various water quality indicators,

such as chlorophyll-a (Chl-a), total suspended solid (TSS),

dissolved oxygen (DO), nutrients, and chromophoric dissolved

organic matter (CDOM) (Ross et al., 2019; Kim et al., 2020).

Specifically, Chl-a is a key indicator used to evaluate algal

conditions and eutrophication status in freshwater and marine

environments (Tong et al., 2022). Significant advancements have

been made in Chl-a concentration research. For example, many

relevant studies have used remote sensing algorithms to estimate

Chl-a concentrations. These include fluorescence peak algorithms,

artificial neural network algorithms, and blue-green band ratio and

near-infrared-red band ratio (Gilerson et al., 2010; Ioannou et al.,

2013; Beck et al., 2016; O'Reilly and Werdell, 2019). The application

of these algorithms improves the accuracy and universality of Chl-a

estimates through remote sensing. Much attention has been paid to

long-term spatiotemporal variation in Chl-a concentrations and

associated driving factors. Researchers have employed various

remote sensing techniques and water quality monitoring methods

to comprehensively analyze the spatiotemporal evolution of Chl-a

concentrations (Zhang et al., 2013; Moradi and Kabiri, 2015; Wang

et al., 2015). External driving factors, such as climate, anthropogenic

activities (Conley et al., 2009; Paerl and Huisman, 2009), ENSO

effects (i.e., climatic oscillations), and water mass transportation

(Durack, 2015; Guo et al., 2017; Lao et al., 2022; Lao et al., 2023)

have all been found to be extremely important factors that affect

Chl-a variation. Changes in temperature, precipitation, and water

pollution have a particularly impactful influence on Chl-a

concentrations in estuarine zones (Ding et al., 2015; Shrestha

et al., 2018; Li et al., 2022).
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The Pearl River Estuary (PRE) is one of China’s regions where

anthropogenic activities and natural factors converge and conflict,

particularly over the past three decades (Cao C et al., 2022).

Therefore, it is vital that we investigate long-term spatiotemporal

variation and associative driving factors in PRE water quality (Chen

et al., 2021). Extensive relevant research has focused on the methods

used to retrieve PRE water quality data (Zheng and DiGiacomo, 2017),

including the three-band model (Chen et al., 2011), red-peak

algorithms (Liu and Tang, 2019), and deep learning (Ye et al., 2021).

Other studies have focused on analyzing spatiotemporal water quality

variation in the PRE, such as spatiotemporal variation in Chl-a

concentrations (Gao et al., 2020), total phosphorus (TP) (Lu et al.,

2020), total nitrogen (TN) (Guo et al., 2022), dissolved organic carbon

(DOC) (Liu et al., 2015), TSS (Wang C et al., 2018), and CDOM (Chen

et al., 2004). Some studies have even explored the combined impact of

natural factors and anthropogenic activities on PRE water quality.

These studies have examined various factors, including air temperature,

precipitation, reclamation initiatives, and industrial and agricultural

activity development within the vicinity of water (Wang et al., 2019;

Cao B et al., 2022; Shen et al., 2022). The aim of these studies was to

understand the complex interactions that occur between natural

processes and human interventions that subsequently influence

estuarine water quality. Chl-a research has been especially extensive.

This is due to its influencing factors, such as seasonality, tides, estuarine

mixing, and seasonal changes in terrestrial nutrient inputs (Qiu et al.,

2010; Ye et al., 2016; Tao et al., 2020; Liang et al., 2021). Moreover, Chl-

a concentrations in the PRE exhibit distinct seasonal and interannual

variation as well as significant spatial heterogeneity across different

sections. Collectively, this pattern closely correlates to natural factors

and anthropogenic activities (Sigman and Hain, 2012; Xu et al., 2022).

However, there is a lack of comprehensive research on long-term

spatiotemporal dynamics in the PRE prior to 2000, while relationships

between Chl-a concentrations and internal and external factors remain

unclear. Therefore, it is critical that we investigate long-term

spatiotemporal dynamics and associative driving mechanisms of PRE

water quality.

The aim of this study was to analyze the spatiotemporal evolution

of PRE water quality over the past 30 years and explore its associative

driving factors. For this study the PRE was divided into four regions

where we collected water quality data, meteorological data, socio-

economic development data, and satellite imagery products.

Moreover, we built a Chl-a concentration retrieval model to analyze

spatiotemporal variability within the PRE. Both statistical analysis and

correlation analysis were used to investigate the relationship between

Chl-a concentrations and associative driving factors in conjunction

with spatial and temporal variability.
2 Methods

2.1 Study area

The Guangdong-Hong Kong-Macao Greater Bay Area (GBA),

more commonly referred to as the GBA, is one region in China with
frontiersin.org
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the highest urbanization and industrialization rates (Zhou et al.,

2018). Along with the GBA’s rapid economic development, a large

amount of nitrogen (N) and phosphorus (P) pollutants from

industrial and agricultural wastewater and domestic sewage is

discharged into the PRE (Huang et al., 2003; Tao et al., 2021).

The PRE’s water surface area, which the GBA surrounds, is

approximately 1700 km2. Its longitudinal and latitudinal

coordinates are 113°44′43.1″ E and 22°34′38.25″ N, respectively

(Yuan et al., 2022). The PRE’s complex hydrological network and

diverse environmental conditions have made it a prominent

research focus within the scientific community (Wu et al., 2016).

Under the influence of its subtropical monsoon climate, river flow

and wind speed are manifested by pronounced seasonal variation

(Lu and Gan, 2015). Most annual discharge from the Pearl River

(approx. 80%) occurs during the rainy season (Ye et al., 2017). This

causes considerable disparity in river flow between the dry season

(October to April) and the rainy season (May to September), with

average values of approximately 1500 m3/s and 20000 m3/s,

respectively (Liu et al., 2012). In the PRE, weak southwesterly

winds predominant during the summer, whereas strong

northeastern winds dominate during the winter (Zhang et al.,

2019). Seasonal variations in hydrodynamic conditions have a

considerable influence on seasonal water quality dynamics in the

PRE. In brief, climate change and rapid urbanization exert a heavy

strain on PRE water quality, posing significant challenges to its

ecological well-being. The PRE is a large aquatic region.

Anthropogenic activities in many of its cities throughout its

different sections cause varying degrees of pollution and nutrient

inputs, which significantly impact Chl-a concentrations. In this
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study, we divided the PRE into four sections based on its coastal

cities to analyze spatiotemporal evolutionary features (Figure 1).

These four sections were specifically divided into the northern

section (adjacent to Guangzhou and Dongguan), the eastern

section (adjacent to Shenzhen), the western section (adjacent to

Zhuhai and Zhongshan), and the southern section (adjacent to the

open sea).
2.2 Data sources

Since 1986, the Environmental Protection Department (EPD) of

Hong Kong has measured water quality monthly within its coastal

waters. This study uses water quality indicators, including Chl-a, TP,

TN, ammonia nitrogen (NH3-N), and biotic oxygen demand (BOD5).

Long-term data on these water quality indicators were collected

between 1989–2019, which we sourced from 9 EPD meteorological

stations (Figure 1). For detailed information on water quality, please

refer to the EPD website. (https://www.epd.gov.hk).

Precipitation and temperature fluctuations can give rise to

alterations in the physical and chemical attributes of aquatic

environments. Anthropogenic activities, including the discharge

of industrial wastewater and the agricultural development of

urban areas, exert a considerable influence on water quality,

which are as significant as external factors (Liu et al., 2022). A

higher proportion of primary industries is indicative of a developed

agricultural sector within urban areas. Therefore, this study selected

temperature, precipitation, industrial wastewater discharge, and the

proportion of primary industries as driving factors. Given the
FIGURE 1

Location and sectional divisions of the study area. The locations where data were measured are marked with points.
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limited availability of historical water temperature data within the

study area, we used temperature data from cities near the PRE

between 1989–2019, which we obtained from meteorological

websites (http://data.cma.cn/). The precipitation data used in this

study derive between 1989–2019, which we obtained from the daily

global precipitation measurement dataset provided by the National

Aeronautics and Space Administration (NASA) (https://

disc.gsfc.nasa.gov). Socio-economic development factors

considered in this study include the industrial wastewater

discharge, and the proportion of the primary industry in the cities

neighboring the PRE between 1989–2019. Urbanization data used

in this study primarily derive from statistical yearbooks, which were

obtained from various regions.

This study uses satellite imagery products, including digital

products from the Landsat 5 and Landsat 7 satellites. The Landsat

series satellites are jointly developed by NASA and the United States

Geological Survey (USGS) which were launched in 1972. These

satellites have a revisit period of 16 days and a spatial resolution of

30 m. Considering sampling time and cloud cover on satellite

acquisition dates, we collected approximately 100 surface reflectance

images of the PRE between 1989–2019. Satellite imagery products are

obtained from USGS (https://earthexplorer.usgs.gov).
2.3 Retrieval model and model evaluation

The satellite images used in this study included both water and

land information. However, only water information was used

during the retrieval process. It was necessary to extract water

information and remove land information. Google Earth Engine

(GEE) platform offers a geospatial processing service. Users can

perform large-scale geospatial processing provided by Google

Cloud Platform support. Landsat 5 Collection 2 Tier 1 calibrated

top-of-atmosphere reflectance (TOA) reflectance images were

directly downloaded from the GEE platform (Mutanga and

Kumar, 2019). Because the GEE platform eliminates the need for

radiometric calibration and atmospheric correction, we used it to

preprocess Landsat 5 images between 1989–2011, including

cropping, cloud removal, and band manipulation.

To ensure research analysis accuracy and improve the

extraction precision of satellite image information, it was

necessary to use atmospheric correction to remove interference

caused by atmospheric scattering and other factors on land features.

In this study, ENVI 5.3 software was used to preprocess Landsat 7

images between 2012–2019, including cropping, striping removal,

radiometric calibration, atmospheric correction, and band

calculations. The FLAASH atmospheric correction tool was used

for atmospheric correction, which ENVI 5.3 provides. It offers high

multispectral data accuracy correction, and it has widely been used

in atmospheric correction models. Additionally, digital numbers

recorded by the sensor must be converted to radiance values. The

radiometric calibration tool in ENVI 5.3 was used for conversions,

applying the following formula:

L =
DN
a

+ L0 (1)
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where L is radiance; DN is the recorded sensor grayscale values;

a represents gain; L0 represents the offset value.

Chl-a concentration remote sensing retrieval is a process of

estimating Chl-a concentrations from satellite images by utilizing

its spectral reflectance characteristics. Chl-a exhibits strong

absorption and reflection in the blue wavelength range(450-

495nm) and green wavelength range(495-570nm) (O'Reilly et al.,

1998). Both bands strongly correlate with Chl-a. Most empirical

a lgor i thms use them to estab l i sh models for Chl-a

concentration retrieval.

Two-band (OC2v4) and four-band (OC4v4) global algorithms

were developed by NASA; however, they tend to systematically

overestimate Chl-a concentrations (D'Ortenzio et al., 2002). The

OC2_D’Ortenzio algorithm is an improved version of OC2v4. It

performs well when applied to biogeochemical measurements or

satellite data (Pan et al., 2010). Considering the dynamic nature of

the study area, we used the OC2_D’Ortenzio algorithm to construct

a Chl-a concentration retrieval model. This algorithm is based on a

nonlinear relationship, improved by a cubic polynomial function,

between ocean reflectance and in-situ Chl-a concentrations

measurements.

C = 10(a0+a1�B+a2�B2+a3�B3) + a4 (2)

B =
Rrs490
Rrs555

(3)

where C is the Chl-a concentration; B is the land-surface

reflectance ratio; Rrs490 and Rrs555 were obtained from 490 nm

and 555 nm land surface reflectance; a = 0.217, −2.728, 0.704, 0.297,

and −0.035, which are algorithm constants.

To evaluate model accuracy, the statistical metrics used for

validation were the coefficient of determination (R2), the root-

mean-square error (RMSE), and biases. The following equations

show the formulae used:

R2 = 1 −
o
n

i=1
(Sest,i − Xobs,i)

2

o
n

i=1
(�Xobs,i − Xobs,i)

2
(4)

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Xobs,i − Xest,i)
2=n

q
(5)

bias =
1
no

n
i=1(Xobs,i − Xest,i) (6)

where n is the sample size; Sest,i is the value fitting curve

obtained; Xobs,i is the in-situ data obtained; X̄obs,i is the average of

Xobs,i; Xest,i is the estimated data obtained.
2.4 Driving factor analysis

Relationships among water quality factors (TP, TN, NH3-N,

and BOD5) and external driving factors are examined through

Pearson correlation analysis and regression analysis. Pearson
frontiersin.org
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correlation coefficient is used to measure the correlation between

various variables and Chl-a concentrations in the PRE. Pearson

correlation coefficient ranges from −1 to +1, where −1 denotes no

negative correlation, +1 denotes a positive correlation, and 0

denotes no correlation. A significance level<0.05 (P< 0.05) was

considered statistically significant. Data preparation for Pearson

correlation analysis was conducted using IBM SPSS Statistics

27 software.

Partial least squares regression (PLS regression) models were

used to analyze driving factors. PLS regression is a statistical

modeling method used to establish predictive models between

input variables and output variables. Its advantage is its ability to

manage highly correlated input variables. By constructing latent

variables, it decouples relationships between input variables and

output variables. Additionally, PLS regression can effectively

manage small sample sizes. PLS regression effectiveness can be

evaluated using Variable Importance in Projection (VIP) scores.

VIP scores indicate the importance of each predictor variable in

explaining the response variable. If the VIP score of a predictor

variable is >1.0, the variable has a significant impact on explaining

the response variable. On the other hand, if the VIP score is<0.5, the

variable does not contribute significantly to explaining the response

variable. Values between 0.5 and 1.0 indicate a moderate level of

importance. PLS regression was constructed using IBM SPSS

Statistics 27 software.
3 Results and discussion

3.1 Model validation

This study validates the performance of a remote sensing

retrieval model used to estimate Chl-a concentrations by

comparing simulated values with a dataset of measured data. The

measured data spans from 1989 to 2019, with a total of 113
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observations. Measured data were obtained from the EPD of

Hong Kong and is considered highly reliable. Simulated Chl-a

concentration values derived from satellite images. Simulated

values and measured data correspond closely in time and

geographical coordinates. The RMSE of the model was 2.55 mg/L,

with a bias of −1.39 mg/L. A scatter plot (Figure 2) was generated

using measured values as the independent variable and the

simulated values as the dependent variable. Outliers that deviate

significantly from other data points were removed, resulting in a

total of 110 data points. The data points are relatively clustered, and

the R2 values between the linear regression line (i.e., the blue solid

line) and the data points was 0.7155. Difference among verification

results and that from other relevant PRE studies were within an

acceptable range (Ma et al., 2022). This strongly indicates that this

model used in this study can estimate PRE Chl-a concentrations.
3.2 Spatial distribution

This study analyzed annual spatial distribution characteristics

in PRE Chl-a concentrations using images taken in the spring

(March to May), summer (June to August), autumn (September to

November), and winter (December to February) of 2010 (Figure 3).

The spatial distribution of PRE Chl-a concentrations exhibited

distinct patterns across the various seasons. Average Chl-a

concentrations in spring, summer, autumn, and winter were 5.07

mg/L, 6.15 mg/L, 4.29 mg/L, and 3.11 mg/L, respectively. Standard

deviations were 2.59 mg/L, 1.52 mg/L, 2.25 mg/L, and 0.68 mg/L. In

spring and autumn, the western and eastern sections exhibited high

Chl-a concentrations while the northern and southern regions

exhibited lower Chl-a concentrations. Elevated Chl-a

concentrations were found near the coastline but gradually

decreased the further inland they were. During winter, due to

lower water temperatures and slower phytoplankton growth, Chl-

a concentrations in the water column was relatively low.

Furthermore, the mixing of water masses within the PRE was

influenced by strong northeasterly monsoons and tidal currents,

resulting in a relatively uniform Chl-a concentration phytoplankton

in the water column. In summer, areas with high Chl-a

concentrations were mainly within the northern and western

sections, which exhibited a decreasing trend from north to south.

Additionally, we simulated summer phytoplankton growth using

influencing factors (i.e., temperature and rainfall), which resulted in

significantly higher Chl-a concentrations and distinct spatial

distribution patterns. Accordingly, we focused on investigating

the spatiotemporal Chl-a concentration variations in the PRE

during summer, accounting for the distinct characteristics and

relevance to ecological processes and environmental management

in the region.

Additionally, the eastern region had higher Chl-a

concentrations during all four seasons, where areas with high

concentrations were mainly distributed within the Shenzhen Bay

area. This phenomenon is due to enclosed bays that typically have

smaller openings or inlets, subsequently resulting in less water

exchange compared to the surrounding open sea. This leads to

nutrient accumulation via organic and inorganic substances within
FIGURE 2

Comparison of estimated and measured Chl-a concentrations.
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enclosed bay areas. These substances provide ample nutrients for

phytoplankton growth. Moreover, they can contribute to an

increase in phytoplankton growth within enclosed bays, resulting

in higher Chl-a concentrations.

In this study, remotely sensed images taken in the summer of

1999, 2009, and 2019 were used to analyze interannual variations in

spatial distribution characteristics of Chl-a concentrations in the

PRE (Figure 4). The overall distribution of Chl-a concentrations in

the PRE was uneven and exhibited significant spatial differences.

Specifically, in the northern section, Chl-a concentrations in 1999,

2009, and 2019 were 6.48 mg/L, 5.92 mg/L, and 6.75 mg/L,

respectively. In the western section, Chl-a concentrations were

5.95 mg/L, 9.48 mg/L, and 6.01 mg/L, respectively. In the eastern

section, the Chl-a concentrations were 3.69 mg/L, 4.52 mg/L, and

3.88 mg/L, respectively. In the southern section, Chl-a

concentrations were 4.96 mg/L, 6.38 mg/L, and 5.07 mg/

L, respectively.

The northern and western sections had higher Chl-a

concentrations, which were significantly higher compared to the

other two sections. The Chl-a concentration diffusion pattern
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exhibited a spread from west to east and from north to south.

Additionally, interannual variations in Chl-a concentrations

differed among the four sections. The northern section exhibited

relatively low Chl-a concentration fluctuations, with an

approximate range of 0.7 mg/L. The western section exhibited

greater fluctuation, where the average Chl-a concentration

reached 9.48 mg/L in 2009, surpassing the other section by a

large margin. The eastern and southern sections exhibited a

similar magnitude of variation (i.e., approximately 1.5 mg/L).

Such significant interannual differences can be explained by

urbanization near the PRE, including industrial wastewater and

domestic sewage. Factors such as water temperature, rainfall, and

light conditions during different years can also have influenced

phytoplankton growth and eutrophication over the past 30 years.
3.3 Interannual variation

To obtain a better understanding of temporal water quality

variation in the PRE, this study focused on changes in Chl-a
A B DC

FIGURE 3

Distribution of Chl-a concentrations in 2010: (A) spring; (B) summer; (C) autumn; (D) winter.
A B C

FIGURE 4

Distribution of mean Chl-a concentrations in summer: (A) 1999; (B) 2009; (C) 2019.
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concentrations between 1989–2019 (Figure 5). Between 1989–2019,

Chl-a concentration on average exhibited significant fluctuations

over time, exhibiting a slight overall decreasing trend. Over the past

30 years, the average Chl-a concentration was 5.20 mg/L. The Chl-a

concentration decreased from 6.74 mg/L in 1989 to 5.56 mg/L in

2019. The highest value was measured in 1989 (i.e., 6.74 mg/L),

while the lowest was measured in 2005 (i.e., 3.66 mg/L). In 2009, a

sudden jump in Chl-a concentration occurred, increasing from 4.26

mg/L to 6.73 mg/L. In this study, long-term (i.e., 30 year) Chl-a

concentrations variation was divided into three distinct periods.

Between 1989–1999, Chl-a concentrations only exhibited small

fluctuations (i.e., 5.96 mg/L average). However, compared to the

other two periods, this period exhibited significantly higher Chl-a

concentrations. Between 2000–2009, Chl-a concentrations

exhibited higher fluctuations (i.e., 5.02 mg/L average). On the

other hand, there was a notable upward trend between 2004–

2009, indicating water quality degradation during this period.

Between 2010–2019, the average Chl-a concentration was 4.80

mg/L, which was the lowest among the three periods and

exhibited a clear downward trend, indicating a significant

improvement in water quality during this period.

In the different sections, Chl-a concentrations differed in spatial

and temporal variation characteristics. This study divided the PRE

into four sections to analyze each section’s specific Chl-a

concentration over time (Figure 6). The western section had the

highest Chl-a concentration (i.e., 5.92 mg/L average). Additionally,

the Chl-a concentration in the western section fluctuated the most,

reaching 9.48 mg/L in 2009, indicating a more stable water quality

environment. The Chl-a concentration in the eastern section was

the lowest (i.e., 3.98 mg/L average) while more stable than the other

sections over the past 30 years. This indicated that the eastern

section’s water quality environment was relatively good. This

discrepancy was likely caused by the western section’s more

intensive industrial activities than the eastern section, resulting in

a higher overall wastewater discharge volume. The average Chl-a
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concentrations in the northern and southern sections were 5.51 mg/

L and 4.98 mg/L, respectively. Additionally, changes to Chl-a

concentrations in these two sections were similar, both exhibiting

a significant downward trend, indicating that water quality

conditions have generally improved over the past 30 years.

Considering the geographical proximity of the four sections,

several factors may have contributed to variations in Chl-a

concentrations and the eutrophication phenomena. Natural

factors can influence phytoplankton growth and eutrophication.

Generally, high temperatures and rainfall can stimulate

phytoplankton growth, resulting in higher concentrations.

Conversely, lower water temperatures and rainfall limit

phytoplankton growth. These factors can cause significant

distribution variation in Chl-a concentrations during different

seasons while also significantly impacting interannual variation.

Agricultural and industrial activities, as well as densely populated

urban areas near the PRE, can cause significant pollutant inputs into

water, such as agricultural fertilizers, industrial wastewater, and

domestic sewage. Over the past 30 years, the overall water quality of

the PRE has improved. This improvement may be attributed to

environmental protection policies that have led to a reduction of

pollutants from entering its coastal areas, including industrial

wastewater and domestic sewage discharge.
3.4 Relationship with water
quality indicators

This study analyzed data from PRE monitoring stations over a

30-year period, using the average Chl-a concentration as the

independent variable and water quality indicators as the dependent

variable. Polynomial regression analysis and significance tests

indicated a significant relationship between Chl-a and water quality

(Figure 7). Additionally, TP and TN highly correlated with Chl-a

concentrations. The R2 value for TP was >0.6, indicating a positive

correlation with Chl-a concentrations (P< 0.05), whose correlation

coefficient was 0.64. Similarly, Chl-a concentrations positively
FIGURE 5

Changes of the mean Chl-a concentration in the PRE between
1989–2019.
FIGURE 6

Seasonal Chl-a concentration changes in the PRE between 1989–2019.
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correlated with TN (P< 0.05), with a correlation coefficient of 0.71.

Although TP and TN are important nutrients, they are often present

in excessive amounts due to agricultural runoff and wastewater

discharge. These nutrients can stimulate the growth of algae and

aquatic plants, leading to increased Chl-a concentrations.

Furthermore, Chl-a concentrations positively correlated with NH3-

N (P< 0.05), with a correlation coefficient of 0.69. High levels of NH3-

N can promote the growth of algae and aquatic plants, resulting in

elevated Chl-a concentrations. Chl-a concentrations also positively

correlated with BOD5 (P< 0.05), with a correlation coefficient of 0.54.

High Chl-a concentrations in water is generally indicative of

increased algal growth. More algae will consume more oxygen,

resulting in decreased DO levels and elevated BOD5 in water.

Therefore, a high Chl-a concentration is associated with elevated

BOD5 levels in water.
3.5 External driving factors

Suitable temperatures promote phytoplankton photosynthesis,

resulting in increased phytoplankton biomass (Li et al., 2018).

Between 1999–2008, Chl-a concentrations and temperatures in

the northern section of the PRE significantly and positively

correlated (P< 0.05), with a correlation coefficient of 0.51

(Figure 8A). Between 2009–2019, reduced rainfall in the vicinity

of the PRE may have resulted in decreased nutrient absorption and

a weakened water circulation, subsequently leading to an

improvement in water quality. During this period, there was a

significant positive correlation (P< 0.05) between Chl-a

concentrations and rainfall in the northern section of the PRE,

with a correlation coefficient of 0.43 (Figure 8B). Results from this
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study indicated that a reduction in rainfall would result in a

decrease in nutrient flux into the PRE, subsequently enhancing its

overall water quality. Additionally, Chl-a concentrations in the PRE

exhibited a lag effect in response to climate factors (i.e., temperature

and rainfall).

Due to oceanic currents, the industrial wastewater discharged

from urban areas accumulates in the PRE, leading to changes in

water quality (Li et al., 2020). Between 1989–2004, a positive

correlation (P< 0.05) was observed between Chl-a concentrations

in the northern section of the PRE and the volume of industrial

wastewater discharged from coastal cities, with a correlation

coefficient of 0.53 (Figure 9A). Both variables showed a consistent

downward trend on a sweeping scale, while industrial wastewater

discharge had a lag effect on Chl-a concentrations. Non-point

source pollution from agriculture is widely recognized as one of

the main causes of water quality degradation (Evans et al., 2019). A

higher proportion of primary industries results in a greater increase

in agricultural land area and fertilizer usage in urban areas. Since

the beginning of China’s economic reforms, the industrial structure

of cities within the GBA has been optimized and adjusted, with a

consecutive proportional decrease in primary industries. Between

1989–2019, there was a significant positive correlation (P< 0.05)

between Chl-a concentrations in the northern section of the PRE

and the proportion of primary industries in its coastal cities, with a

correlation coefficient of 0.55 (Figure 9B). A general decrease in

both variables was observed over the study period. Overall, the

trend in PRE Chl-a concentrations is in decline, which may be

attributed to a reduction in industrial wastewater discharge and a

decrease in the proportion of primary industries in surrounding

cities. In this study, PLS regression was constructed to assess how

external driving factors influence Chl-a concentrations. The PLS
A B

DC

FIGURE 7

Relationship between Chl-a concentrations and water quality indicators: (A) TP; (B) TN; (C) NH3-N; (D) BOD5.
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factor weight and the loadings confirmed that all three PLS factors

can effectively explain data variance while also demonstrating the

good explanatory power of latent variables for observed variables.

The contribution of the proportion of the primary industry factor

within the three PLS factors was relatively high, indicating its

important role in predicting Chl-a concentrations. From Table 1,

it can be observed that temperature, rainfall, and the proportion of

primary industries are commonly considered strong driving factors

for changes in Chl-a concentrations (VIP > 1).
3.6 Implications and limitations

Regular collection and analysis of water samples while

monitoring key water quality indicators (i.e., NH3-N, TP, and Chl-
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a concentrations), are conducted. This aided in the establishment of a

comprehensive water quality monitoring system, helped in the

assessment of water quality conditions, and allowed for the prompt

implementation of necessary management measures. Non-point

source pollution from industrial and agricultural activities is one of

the main causes for water quality degradation, so strengthening

wastewater discharge management and improving the capacity and

efficiency of wastewater treatment plants are critical. To address the

poor water quality of the PRE’s northern and western sections, the

Government should strengthen supervision and reduce pollutant

emissions. Measures should also be taken to reduce pollution, such

as ecological restoration and wetland construction, subsequently

enhancing its water purification capacities. Water quality is closely

linked to factors such as temperature, rainfall, and other

environmental conditions. Attention should also be paid to climate

change impacts within the PRE region, while adaptive measures

should be taken to address extreme weather events.

Because of its subtropical monsoon climate, the PRE region

experiences a high frequency of cloud cover, and data gaps resulting

from such frequent cloud cover events and the limited available

samples present significant challenges for satellite monitoring.

However, amassing field data and using other satellites (i.e.,

MODIS and Sentinel) to fill satellite-based data gaps may help to

resolve this issue. Additionally, the PRE is an optically complex

water system, and the potential to overestimate Chl-a

concentrations under conditions of water turbidity should not be

ignored. Therefore, it may not be appropriate to solely rely on band
A B

FIGURE 8

Correlation between Chl-a concentrations with (A) air temperature and (B) precipitation in the northern section of the PRE between 1999–2019.
A B

FIGURE 9

Correlation between Chl-a concentrations with (A) industrial wastewater discharge and (B) the proportion of primary industries in coastal cities of
the PRE between 1989–2019.
TABLE 1 Variable Importance in Projection (VIP). A higher VIP value
indicates that the variable has greater importance.

Variable
Latent Factors

1 2 3

Temperature 0.135 1.246 1.236

Precipitation 1.351 1.039 1.034

Wastewater discharge 0.893 0.910 0.925

Primary industry 1.166 1.071 1.075
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ratio algorithms to estimate Chl-a concentrations in PRE water. It is

necessary to consider other factors, such as seasonality and water

characteristics, while establishing more complex retrieval models to

analyze water quality changes in the PRE.
4 Conclusions

In this study, spatial and temporal Chl-a concentration

variation was analyzed, showing distinct patterns across seasons

and interannual fluctuations. Results showed a slight decreasing

trend in PRE Chl-a concentrations over the study period.

Compared to the other seasons, Chl-a concentrations were

significantly higher in summer. The western section of the PRE

consistently had higher Chl-a concentrations while the eastern

section had lower concentrations. Correlation analysis between

Chl-a concentrations and water quality indicators significantly

correlated. Furthermore, external driving factors (i.e., climate and

anthropogenic activities) influenced Chl-a concentration variation.

Industrial wastewater discharge and the proportion of primary

industries in coastal cities affected water quality, and results

revealed a significant positive correlation. Findings from this

study are intended to contribute to our understanding of Chl-a

concentration dynamics in the PRE.
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