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AUV planning and calibration
method considering
concealment in
uncertain environments

Can Wang, Chensheng Cheng, Dianyu Yang, Guang Pan
and Feihu Zhang*

School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an,
Shaanxi, China
Introduction: Autonomous underwater vehicles (AUVs) are required to

thoroughly scan designated areas during underwater missions. They typically

follow a zig-zag trajectory to achieve full coverage. However, effective coverage

can be challenging in complex environments due to the accumulation and drift

of navigation errors. Possible solutions include surfacing for satellite positioning

or underwater acoustic positioning using transponders on other vehicles.

Nevertheless, surfacing or active acoustics can compromise stealth during

reconnaissance missions in hostile areas by revealing the vehicle’s location.

Methods:We propose calibration and planning strategies based on error models

and acoustic positioning to address this challenge. Acoustic markers are

deployed via surface ships to minimize navigation errors while maintaining

stealth. And a new path planning method using a traceless Kalman filter and

acoustic localization is proposed to achieve full-area coverage of AUVs. By

analyzing the statistics of accumulated sensor errors, we optimize the positions

of acoustic markers to communicate with AUVs and achieve better coverage.

AUV trajectory concealment is achieved during detection by randomizing the

USV navigation trajectory and irregularizing the locations of acoustic marker.

Results: The proposed method enables the cumulative determination of the

absolute position of a target with low localization error in a side-scan sonar-

based search task. Simulations based on large-scale maps demonstrate the

effectiveness and robustness of the proposed algorithm.

Discussion: Solving the problem of accumulating underwater localization errors

based on inertial navigation by error modeling and acoustic calibration is a typical

way. In this paper, we have implemented a method to solve the localization error

in a search scenario where stealth is considered.

KEYWORDS

cooperative navigation, acoustic communication, CCPP, cumulative error, coverage
ratio, concealment, UKF
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1 Introduction

Autonomous underwater vehicles (AUVs) are widely used in

marine applications like resource exploration, search and rescue,

and seabed mapping (Tan et al., 2021). During search missions,

AUVs must find paths to fully cover target areas while avoiding

obstacles, known as the Complete Coverage Path Planning problem.

However, limited underwater communication prevents AUVs from

using technologies like GPS and high-frequency radio waves for

precise navigation (Yan et al., 2019a). Accurate and covert

navigation and control of positioning errors are critical for

AUV operations.

AUVs typically navigate using inertial sensors, compasses, and

acoustic positioning (Sen et al., 2014; Wang and Xie, 2015; Liu et al.,

2021). For independent strap-down inertial navigation systems

(SINSs), the estimation of relative velocity and position involves

the integration of accelerometer and gyro sensor data, which can

introduce errors and result in significant drift in the estimated

position and velocity (Sahoo et al., 2019). Without feedback

measurements, these errors accumulate over time and lead to

positioning inaccuracies (Palomer et al., 2019). Loop closure

detection using vision or sonar can address drift but is not always

possible (Hong and Kim, 2019; McConnell et al., 2022).

Alternatively, acoustic navigation like long baseline or ultra-short

baseline methods can calibrate positioning (Zhang et al., 2018;

Franchi et al., 2021).

Relying solely on ultra-short baseline (USBL) acoustic

positioning for AUV navigation is imperfect due to limited

communication bandwidth and latency (Font et al., 2017).

Combining the new learning-based method (Bing et al., 2023b,

Bing et al., 2023a) and our previous work (Wang et al., 2022a), error

reduction is also enabled through planning strategies for minimum

error path design. Therefore, in this paper, two solutions address

trajectory drift in underwater exploration: device-based navigation

algorithms and a priori error estimation for path planning. We

explore Complete Coverage Path Planning (CCPP) using a priori

accuracy data to minimize positioning error. To maintain

convergence, the error correction under USBL communication is

performed in collaboration with unmanned surface vessels (USVs).

Our contributions to this paper are threefold:
Fron
1. A multi-area CCPP with known starting points is

performed by applying a priori positioning device

accuracy information to minimize the positioning error.

2. Regions with critical errors and in need of calibration are

evaluated in terms of error margins and the operative

ranges of acoustic communication. Surface vessels deploy

markers at these positions along an arbitrary path.

3. An improved unscented Kalman filter (UKF) achieves

precise AUV positioning through acoustic ranging and

evaluates coverage capability.
The paper is structured as follows: Section 2 analyzes the

relevant underwater navigation, acoustic positioning, CPP, and

existing limitations. Section 3 models a cooperative system,

analyzes the navigation errors, and performs non-linear
tiers in Marine Science 02
optimization to execute new planning strategies. In Section 4, we

propose a novel planning strategy for AUV and USV based on

acoustic correction capability. Finally, Section 5 conducts

simulations to analyze and validate the conclusions.
2 Related work

2.1 Underwater navigation and
acoustic calibration

AUVs operate underwater where GPS is unavailable, relying on

sensors like SINSs for navigation (Mu et al., 2017). However, long

missions challenge position accuracy due to inertial measurement

unit (IMU) errors and self-propulsion issues, with degradation over

time without external reference points (Zhang et al., 2015). Doppler

velocity logs (DVLs) provide self-contained velocity data without

accumulating errors, enabling SINS/DVL integration for

underwater navigation (Luo et al., 2019).

However, lacking external data, AUVs inevitably accumulate

errors over time. Methods using acoustic communication, e.g., long

baseline (LBL) and USBL, to address this. For example, global

exponential stability solutions use adaptive observers and sliding

mode control for single-beacon navigation with unknown

exponential sensor variance (Yu et al., 2021). LBL methods apply

empirical modal decomposition and maximum likelihood

estimation to improve the low signal-to-noise ratio (SNR)

accuracy and robustness (Yang et al., 2022). Septyanto et al.

(2019) compared the accuracy errors of USBL single position

calibration and quadrant calibration, demonstrating that the four-

quadrant method is more accurate. Unscented Kalman filters

incorporate direct and indirect measures for target localization,

formulating distance measures as closed-loop control (Yan et al.,

2019b). Acoustic communication co-positioning significantly

improves underwater positioning accuracy and AUV applications.

Two-way travel time (TWTT) acoustic positioning enables

localization but limits efficiency and users due to bandwidth.

TWTT requires being active in real-time and sending signals out

intermittently, which poses a risk of exposing the AUV’s position

and is dangerous for warfare. In contrast, the one-way travel time

(OWTT) technique only requires accurately synchronized clocks

for both the vehicle and the acoustic source. OWTT methods

improve accuracy, e.g., constraining INS and DVL with OWTT

ranging from surface beacons (Claus et al., 2018). Passive inverted

USBL uses OWTT and beamforming for passive receiver

localization with direction-of-arrival azimuth resolution

improvement (Wang et al., 2022b). Costanzi et al. (2017)

compared the limits of AUV positioning error drift with USBL

support through two different configurations of at-sea experiments

and found that positioning accuracy is more affected by azimuth

error. OWTT and phased-array beamforming calculate distance,

azimuth, and inclination to single transmitters, providing an

instantaneous estimate of the vehicle position (Rypkema et al.,

2017). Importantly, the method is acoustically passive at the AUV.

Clock asynchrony commonly impacts underwater navigation,

increasing delays and reducing localization accuracy. To address
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clock asynchrony challenges, some methods have been proposed. For

example, Carroll et al. (2012) introduced on-demand algorithms that

consider clock asynchrony, while Yan et al. (2020) developed an

iterative least-squares estimate of water flow and enable

asynchronous active/passive node localization. Another improves

time-difference-of-arrival (TDoA) localization, using an AUV as a

reference node at a predefined depth (Yu et al., 2019). It broadcasts/

receives localization messages and calculates positions with corrections,

adapting to complex environments without clock synchronization and

utilizing mobile AUVs to improve coverage and accuracy.

While previous studies have focused on improving navigation

accuracy, planning strategies are often neglected. New planning

strategies have been designed to facilitate error reduction (Bing

et al., 2022; Zhang et al., 2022) but have not been given much

attention. Though acoustic-based navigation has achieved

significant accuracy improvements, limitations in operating

conditions could still hinder optimal outcomes. To address this

issue, this paper investigates integrating planning strategies

combining a priori sensor data and acoustic communication to

increase mission success and accuracy.
2.2 Underwater CPP methods

Coverage algorithms typically plan online or offline based on

sensor performance. For sparse, unknown targets, Zhang et al. (2023)

integrated deep learning and replanning using high-dimensional

data. Another approach proposed by Han et al. (2020) is the CCPP

scheme for underwater gliders, which considers both the gliding angle

and the relative distance to obstacles when navigating. Zacchini et al.

(2022) developed a 3D probabilistic occupancy map system for sonar

reconstruction with backward horizon sensor-driven coverage

adaptable to environmental uncertainty.

However, the area is usually known a priori, with offline

planning combining vehicle constraints and sensor capabilities.

For example, a method identifies valuable subregions through

expectation maximization, planning coverage within each using
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adaptive oval spiral coverage minimizing overlap (Yao et al., 2021).

Another minimizes overlapping, turning paths for underwater

mining robots based on depth-first search (Pratama et al., 2015).

In another study, an improved Glasius bionic neural network

(GBNN) algorithm was utilized for the CPP of AUVs, enabling

discrete centralized coverage planning of multi-AUVs through

collaboration and division of labor (Sun et al., 2019).

Standard coverage actions are square spirals and boustrophedon

(back-and-forth), as depicted in Figure 1 (Khan et al., 2017).

However, challenges such as irregular terrain and constraints on

mobility lead to substantial overlapping adjacent strips in the paths of

the mowers. This commonly necessitates reduced spacing between

transverse strips to maximize overlap and minimize the possibility of

detection failure, especially for side-scan sonar (SSS).

The CPP method is efficient in covering the area; however, CPP

coverage capability decreases with inaccurate positioning. To address

this problem, accurate positioning needs to be prioritized, which can

be costly. A potential solution is to combine positioning sensors with

upgraded CPP strategies to effectively enhance coverage capability

despite positioning inaccuracies. Building on this concept, we

investigate the CPP strategy utilizing a priori information.
3 Principles

3.1 Problem description

This paper investigates CPP and high-precision AUV positioning

challenges with localization drift and concealment constraints,

including AUVs and USVs. The AUV has essential equipment: a

pressure transducer for depth, IMU, electronic compass, USBL

hydrophone, and DVL. Throughout the trial, AUVs are deployed

outside the region of interest, while USVs release locators a priori

based on requirements. The calibration and positioning of

hydroacoustic communication between AUVs and USBLs within a

designated area are accomplished. Refer to Figure 2 for an overview of

the entire system.
A B

FIGURE 1

Standard actions for full coverage paths. (A) Spiral motion. (B) Boustrophedon motion.
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In fixed-depth detection, AUVs must consider position drift

and target area coverage. Precise, synchronized cross-platform data

calibrate AUV positioning errors via USBL reception within range.

It is important to note that this is a one-way process to maintain

confidentiality.
3.2 Model constructions

USVs are not able to maintain their location and movements as

private, as they can be tracked by current satellite telemetry systems,

and the deployment locations of beacons can be considered covert.

Furthermore, acoustic communication poses little short-term risk

of hostile eavesdropping for non-critical data. As a result, the

acoustic capabilities of the submarine marker are turned on in

real-time after being deployed, while the AUV is only responsible

for receiving information.

The AUV can be fully defined by its six degrees of freedom

(DOF). In the inertial reference system (IRS), the AUV’s position is

determined by the coordinates PAUV = fx, y, zg along the X-, Y-,

and Z-axes. The traverse roll, pitch, and yaw angles of the AUV are

denoted by f, q , and y , respectively. It is worth noting that the

AUV is primarily stable in terms of traverse and pitch (Avila et al.,

2012). Hence, the tracking control of traverse and pitch can be

neglected, i.e., f ≈ 0 and y ≈ 0.

The AUV utilizes its IMU/DVL to obtain orientation and

relative velocity, allowing for heading projection. In this paper, it

is assumed that the initial attitude of the AUV is known, which can

be determined and calibrated by visual, initial GNSS, and other

information through a loose coupling (Han et al., 2022). In

particular, since the AUV is equipped with a depth sensor, the

position on the Z-axis is known, while the positions on the X- and

Y-axes need to be resolved.
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To simplify calculations, we posit that the position of AUV is

rectified contingent on gauges of velocity V and angular velocity w .
Conventionally, these gauges are acquired at high frequencies and

amalgamated at elevated rates, yet underwater, lineal velocity is

quantified at lower frequencies via DVL, while angular velocity is

quantified by a high-frequency gyroscope. The visualization of the

position projection over a stationary time interval is delineated in

Figure 3. Furthermore, we posit that the IMU coordinate system

overlaps with the conveyance coordinate system under their rigid

connection and comparative fixation during mobility.
FIGURE 2

The AUV and USV work together in a cooperative system. The AUV uses dead reckoning for underwater positioning, calibrating via USBL when near
submersible markers. The USV obtains real-time, high-accuracy positioning and deploys markers. AUV, autonomous underwater vehicle; USV,
unmanned surface vessel; USBL, ultra-short baseline.
FIGURE 3

The AUV’s position can be estimated by measuring its velocity (i.e.,
distance traveled at a fixed sampling interval) and angles. AUV,
autonomous underwater vehicle.
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The AUV is delineated by an underactuated two-dimensional

discrete-time non-linear model, where the state of the conveyance

in the Northeast Celestial Reference System is denoted as ck =
½xk, yk, qk�T . With a sampling interval of △ t, the state vector is

computable through the subsequent equation:

ck+1 = f (ck, uk) + wk = ck + A(ck)uk ·△ t + w ,

where (1)

A(ck) =

cos q − sin q 0

sin q − cos q 0

0 0 1

2664
3775,

uk = ½vx,k, vy,k,wk�T denotes the input vectors, i.e., the x, y

directional linear velocity measured by DVL, and the yaw rate is

measured by IMU. w is assumed to be zero-mean Gaussian process

noise with covariance wk ∼ N(0,Q). With the same sampling

interval, the input can be simplified to

uk =

cos  q=Dt 0

  sin  q=Dt 0

  0 1

2664
3775 d

 w

" #
= Bh,

where

h =
d

w

" #

denotes the step and heading changes based on polar coordinates.
3.3 Error representation of AUV

The per-step measurement hm of AUV is also defined as follows:

hm
n = �hn +fhn, (2)

where n is the time index and the pose measurement hm
n then

consists of ground truth �hn and errorfhn with standard deviation dd
and dq .

The principle of dead reckoning in the Cartesian coordinate

system is as follows:

cm
n =on

i=1h
m
i =

on
i=1(d

m
i cos  o

i

j=1
wm
j )

on
i=1(d

m
i sin  o

i

j=1
wm
j )

on
i=1w

m
i

266666664

377777775 =on
i=1

dmi cos  oi
j=1w

m
j

dmi sin  oi
j=1w

m
j

wm
i

2664
3775 : (3)

Noise measurements cause unbounded drift accumulation.

However, multiple statistics’ error distribution characteristics

enable error estimation through statistical methods.

Our previous work expresses the trajectory by the truth value.

The expectations of ~xn and ~yn are formulated as follows:

mn(�d, �q) =
E(~xnj�d, �q)
E(~ynj�d, �q)

" #
=on

i=1

�di sin  oi
j=1

�qj( exp  ( −
id 2

q
2 ) − 1)

h i
�di cos  oi

j=1
�qj( exp  ( −

id 2
q
2 ) − 1)

h i
264

375 : (4)
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For a more meticulous derivation and application, Wang et al.

(2022a) furnished supplementary intelligence on computational

methods requisite to ascertain the holistic cumulative error

expectation. Where the trajectory is definitive, an error item is

admissible to acquire a statistical delineation of the trajectory,

which proffers a novel assessment metric.
3.4 UKF-based AUV
positioning optimization

This paper proposes an optimization method based on unscented

transformation to update the position of an AUV. The method offers

excellent noise suppression and provides a smooth estimation while

considering constraints on the operating environment and physical

system (Wang et al., 2014). The paper focuses on the AUV’s position

and heading and designs state variables:

c = ½x, y, q�T (5)

where the control input u = ½d,w�T is the moving step and yaw

angular velocity per unit of time.

The two-dimensional navigation state model of the AUV is

correlated with the principles of mobility and is denoted as Equation

1. The real-time speed and heading angle of the AUV can be obtained

by utilizing DVL and electronic compass configuration. As a result, the

measurement function can be expressed as follows:

z =
v

q

" #
+ N(0,R), (6)

where it is reasonable to assume that the velocity and azimuthal

measurement noise are independent; i.e., R = diag(s 2
v ,s 2

q ).
4 Proposed algorithm

4.1 Acoustic communication calibration

The hydroacoustic positioning system harnesses synchronized

beacons for azimuth determination and localization via time

differential. The time differential of the received signal at the specified

frequency computes the beacon–AUV distances. It is worth noting that

the scale of the surface array has an inverse relationship with localization

error. Thus, using a larger scale can lead to more accurate results (Cario

et al., 2019). To eschew distance ambiguity, the echo duration must not

eclipse the transmission interval, or the operational distance must not

transcend the CT, which is rectifiable by amplifying the locator signal

transmission duration (Gemba et al., 2019).

The paper focuses on beacon–AUV acoustic interactions

enabling AUV posi t ioning/tracking al ignment within

communication range. Beacons furnish localization vertices and

novel temporal data, whereas AUVs accept exclusively non-critical

intelligence. Nonetheless, full-process communication is impossible

for the sake of AUV stealth and low mission cost. Grounded on

localization sensor performance, this paper investigates the

relationship between localization performance and the number/

location of beacons in CPP localization undertakings.
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To determine the calibration areas, the paper employs a

straightforward approach of evaluating if the positioning error falls

outside the critical range, which is theoretically determined by the

covariance. However, due to random errors, AUV positions distribute

within a probability region forming a two-dimensional elliptic normal

distribution. The AUV’s position is designated as follows:

PAUV = (x, y) ∼ N(sx ,sy ,Sxy), (7)

where

Sxy =
dxx dxy
dyx dyy

" #
: (8)

Underwater communication hindrances include sound velocity

fluctuations, clutter noise, and inaccurate position calibration.

Similarly, USBL acoustic localization accuracy relates to oblique

distance, angle between target and system coordinate axis, time

delay, and phase measurement accuracy. Notably, USBL absolute

positioning error increases with distance.

Furthermore, during USBL communication, AUV position

calibration variance is as follows:

s 2
USBL =

s 2
x

s 2
y

" #
=

d2( lf122pd )
2(2 Dc

c + DT
T + Djx

jx
− Dd

d )2

d2( lf132pd )
2(2 Dc

c + DT
T + Djx

jx
− Dd

d )2

24 35

          =
d2( lf122pd )

2 (2 Dc
c )

2 + ( DTT )2 + ( Djx
jx

)2)
h i

+ ( l
2pd )

2(Df12)2

d2( lf132pd )
2 (2 Dc

c )
2 + ( DTT )2 + ( Djx

jx
)2)

h i
+ ( l

2pd )
2(Df13)2

264
375

   

d2cos2(a)(2
Dc
c
+
DT
T

+
Djx

jx
)2

d2cos2(b)(2
Dc
c
+
DT
T

+
Djy

jy
)2

26664
37775

(9)

where a is the angle between the target and the base array system x

-axis, b is the angle between the target and the base array system y-axis,

c is the speed of sound in water, Dc is the speed of sound error, T is the

time delay, DT is the time delay measurement error, jx ,jy is the phase

difference of the target signal received by the corresponding axis, and

Djx ,Djy is the measurement error of the phase difference of the

corresponding axis. The baseline mounting error Dd is of the order of

10-3, which is negligible. R is the measured oblique distance. The

wavelength l = c
f , where c and f are the speed and incident frequency

of the acoustic wave propagating in the water, respectively. The phase

difference between the signals is obtained by the two hydrophones f =
2pd
l cos  q , where qis the angle of incidence of the acoustic wave.

4.2 Initial planning strategy

In this paper, the planner assumes the availability of historical

records of vehicle poses and their associated uncertainties. Initially, a

path is generated from the starting point to the target area, and CPP is

employed to search back to the endpoint. The increment of error

variance along the trajectory is then assayed subsequent to navigation.

Whenever the localization error transcends Vmax, the domain is

documented as a beacon locus and employed to architect theUSV route.
Frontiers in Marine Science 06
The CPP algorithm produces a path comprising straight lines

and sharp turns, with the straight segments serving as the primary

search path. Consequently, the vehicle trajectory in the mission area

necessitates only a single entrance and exit, eliminating any

Hamiltonian cycle problems that may arise. The CPP algorithm

follows path boustrophedon action, and the action spacing is

determined according to the detection width of the SSS.

Combining target area entrance/exit, the visual graph method is

used for overall path planning in this paper. Connecting start/end

points and polygon vertices separately while avoiding obstacles

forms a visual view. Finally, the shortest path algorithm ascertains

the optimal trajectory, which constitutes an acknowledged modus

yet is not the cynosure of this treatise.
4.3 Evaluation metrics

The efficacy of the planning algorithm is contingent on the

incertitude of the AUV loci and is mirrored in the CPP traverse

efficiency. Nonetheless, CPP coverage cannot address AUV

cumulative starting point to detect area errors accurately. In

reality, it is challenging to gauge the correlation between different

observations and their cumulative effects. Complex underlying

math makes derivation difficult; we use Monte Carlo simulation

to estimate coverage capacity suitably.

Building upon the insights from Das et al. (2011) and the more

recent work of Abreu et al. (2017), the authors leverage the

characteristics of the SSS to derive a probability density function

(PDF) for mine detection that is only perpendicular to the AUV

trajectory. As a result, the probability of achieving 1 − d coverage for
1 − ϵ free space is as follows:

P(C ≥ 1 − d ) ≥ 1 − ϵ  ϵ, d ∈ ½0, 1�, (10)

where C is the fraction covered.
4.4 Calibration area

The planning stratagem engenders inchoate CPP path optimized

for coverage instead of length/time to account for location faults.

Nonetheless, the incessant accrual of errors necessitates collaborative

planning to ensure that positioning is bounded. That is, the USBL

localization calibration navigates the precise positioning of the AUV

and enables optimal path generation.

Once underwater, the AUV faces external information/control

input challenges. Predicting possible paths and error accumulation

scales using prior information is crucial. Given the system

positioning sensor’s known error level, applying statistical

properties through Subsection 4.2 obtains the error accumulation

range and acoustic calibration area. With this, the USV traverses

any designated area route. Algorithm 1 shows this approach.

Algorithm 1 delineates the location and quantity of USBLs for

positioning sensor performances of different AUVs. Inter alia, the

safety coefficient h intends that the errors do not transcend the

proportion of the acoustical ambit to effectively enact

communication interlocking. For the determined positions,
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locator deployment will be effectuated via USV. The AUV trajectory

error correction strategy requires USV navigation with multiple

position constraints. We use the cubic Bézier curve theory to

generate USV trajectories based on position, moment, and

velocity constraints. We assume the exact deployment positions

of submarine markers, which helps to simplify the system.
5 Simulation test

5.1 Numerical simulation test

In this segment, we assess a large-scale map to validate the

efficacy of the proposed collaborative localization algorithm on the

coverage capability. The statistical outcomes were obtained from 500

Monte Carlo test results and are presented in a subsequent report.

A 10 × 10 km map has obstacles and a target detection zone.

The initial trajectory uses the planning strategy of Subsection 4.2.

The AUV’s cruising speed is 5Kn, while its depth is maintained at

100 m, allowing it to move on a horizontal plane at a vertical

distance of 100 m from the beacon. Notably, this study employs a

depth gauge to measure altitude information, providing more

accurate results than the altitude difference calculated between the

transponder and the onboard receiver’s center.
Fron
Input: AUV initial CPP path, positioning

sensor error levels, probing sensor

performance

Output: Planning constraints F(½t, positiont �T )
1: Determine the global path using the CCPP and

visibility graph methods

2: F = ∅
3: Calculate P(C ≥ 1 − d ) = Equation(10)

4: if P > Pmax then

5: Calculate E(path) = Equation(4)

6: Initialize the beacon distance constraint

dmax

7: Vmax = hdmax

8: for i← 1 to n do

9: while Ei > Vmax do

10: Get (t, positiont , cov)jE = Vmax

11: heappush(F, ½t, positiont �T )
12: Update location of calibration

13: Ei ← 0

14: Update Ei+1
15: end while
16: Update i, t

17: end for
18: end if

19: return C
ALGORITHM 1
Determination of calibration areas, and USV path planning
under constraints.
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During the USBL calibration process, the sound is assumed to

propagate uniformly underwater with a velocity of 1,500 m/s and a

USBL localization frequency of 1 Hz. The sound velocity is subject to a

relatively constant error of 0:001c (where c is the true sound velocity),

the measurement time has a constant error of 5×10-4 s, and the

measurement phase constant has a relative error of 1%. Additionally,

the random error variance is the same as the constant error (Zhang et al.,

2021). Positioning error evaluation of USBL is obtained by Equation 9.

The uncertainty of AUV localization is evaluated using

Equation 4, and the fully non-linear uncertainty for each case is

computed using a Monte Carlo simulation. Specifically, 500

independent Monte Carlo tests were conducted using the same

statistical characterization of data errors and a priori estimation

framework. The relevant parameters are presented in Table 1.

In factual quantifications, detector inaccuracies and biases may

induce significant drift. However, readily calibrated biases are

disregarded in this study, and exclusively random errors are

contemplated. Non-linear optimal localization (e.g., UKF) extends/

non-linearly maps to optimize approximately Gaussian localization

noise. Figure 4 shows measured/filtered trajectories under simulated

electronic compass angular velocity measurement conditions.

Reducing optimized path error is crucial to avoid AUV path

failure and inadequate area coverage. By leveraging the acoustic

communication function of the beacons, error correction in specific

areas can significantly improve coverage levels. Based on the error

expectation and the performance of the beacon, the mission

requires multiple corrections, which are intermittent. However,

the quantity of calibrations/locators is only correlated with the

predesignated parameters and the performance of the USBL. Since

the surface mission does not prioritize concealment, the USV’s

trajectory is not constrained, which means that the calibration

position is only related to the error level of the AUV.
5.2 Results and discussion

The calibrated paths are expected to maintain good position

accuracy. The innovation of this study lies in its effective

concealment of trajectories and calibration under the constraint
TABLE 1 Simulation parameters of cooperative system.

Items Settings Usage

sv 0.1 Equation 4

sq 0.5 Equation 4

h 0.9 Algorithm 1

Cruise speed of AUV 5Kn Subsection
4.2

Single-side detection width of SSS 75 m Subsection
4.2

Maximum effective distance of USBL 100 m Equation 9

Relative constant error of sound velocity 0.001c Equation 9

Relative error of the phase measurement
constant

1% Equation 9
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that AUV errors do not exceed the correction range. This approach

significantly improves the success rate of calibration and the

precision of coverage without sacrificing acoustic communication

due to excessive errors. Meanwhile, the method suggested here in

the situation where the error level is known but the actual trajectory

is unknown proved to be effective.

The algorithm generates different calibration locations/areas for

varying USBL communication distance and positioning sensor

performance constraints. Figure 5 delineates the calibration

locations/areas when the USBL system possesses a communicative
Frontiers in Marine Science 08
scope of 300, 500, 1,000, and 2,000 m. The authentic trajectory of

the AUV cannot be deduced from the beacon’s position; that is, the

trajectory is concealed.

The increase in positioning errors reduces detection capability

and effective coverage. Our algorithm addresses invalid AUV

detection overlap (Figure 6), equalizing coverage times to

enhance detection. Meanwhile, denser calibration points

effectively improve coverage capability, though insignificantly.

This confirms that corrected paths reasonably cover the task area

with excellent coverage.
FIGURE 4

AUV theoretical position and unmodified optimized path based on velocity (fixed interval distance) and angle measurements. UKF processing
significantly reduced error but did not satisfy the mission area coverage requirement. AUV, autonomous underwater vehicle; UKF, unscented
Kalman filter.
FIGURE 5

Location and communication range of beacons under acoustic communication distance difference. The number and position of these underwater
markers depend on an AUV’s communication range and navigation precision. AUV, autonomous underwater vehicle.
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Under the metric of Subsection 4.3, we evaluated optimized

paths’ coverage (Figure 7). The ideal minimum/average coverage

(planning parameters) is 1∼2, requiring each zone to be detected

once (twice for 9 ground truth). Previously, certain regions lacked

coverage, while others exhibited up to 14-fold redundant coverage.

Currently, 88% of the areas are covered at minimum once, denoting

a substantial decrease in detection redundancy. Furthermore, the

coverage of areas is more homogeneous now, signifying a more

stable mean coverage. Figure 8 compares actual/theoretical

coverage, showing that the algorithm’s results have greater

concentration/closeness to theory.

To provide quantitative insight, Figure 9 shows the x and y error

mean and confidence intervals during the cruise. Results show that

the proposed method significantly reduces errors vs. the UKF path.

Leveraging acoustic communication and constraining position
Frontiers in Marine Science 09
error within range, the algorithm effectively corrects near-

threshold errors, ensuring overall path error fluctuation remains

within range.

We use the root-mean-square error (RMSE) to compare with

other methods. RMSE is defined as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1bxi − x2i
n

r
, (11)

where x̂ represents the real location.

Figure 10 presents the RMSE evaluation results. The results

demonstrate that the errors accumulate over duration regardless of

the positioning algorithm used. Nonetheless, once an error increase

to the upper threshold is permitted, the propounded algorithm

disposes of beacons at the corresponding positions for error

rectification, thereby retaining the error confined. This
FIGURE 6

Compared with other algorithms, the proposed algorithm achieves superior coverage capabilities with minimal repetition and uniformity.
Considerably enhanced coverage within and beyond the range of the interactions, which relies on the quantity and scope of calibration points.
FIGURE 7

To achieve 90% coverage, the proposed algorithm outperforms in covering the target area uniformly and efficiently. “Minimum coverage” means
covering an area at least once, while “average coverage” refers to the average number of times an area is covered.
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exemplifies the substantial performance superiority of the

propounded algorithm over the UKF/random acoustic emendation.

Although the errors during cruising provide some indication of

performance, they do not reflect the endpoint error, which is subject

to statistical uncertainty. As delineated in Figure 11, the error

distribution of the UKF procedure complies with a normal trend,

while the KDE kernel density of the random method is relatively

minor, which suggests that the error is more inconstant. It should be

noted that more beacons allow more opportunities for

communication, but the small range of communication results in

suboptimal calibration. At the 1 ∗ 103 m scenario, the high

percentage of communication area leads to better coverage. The

proposed method exhibits smaller errors and more stable

distributions and outperforms the others, thereby demonstrating

significant superiority.
Frontiers in Marine Science 10
6 Conclusion

In this paper, we propose a novel new precision positioning

method for Complete Coverage Path approach that leverages a priori

parameters from USBL and positioning sensors to enhance the

precision of AUV navigation in GPS-deprived settings. We design

a CCPP method with initial obstacle avoidance that incorporates

cumulative error scaling and UKF localization. Moreover, the

calibration performance is modeled and amalgamated with distance

constraints to architect calibration points and hide the AUV

trajectory. Finally, the UKF was applied to assess the exact coverage

ability of the AUV through acoustic interaction. Simulations show

that the algorithm improves localization accuracy and coverage

efficiency over filtering/random methods while ensuring coverage.

Critically, it enables stealth while maintaining precision, better
FIGURE 9

Comparison of errors of different methods of optimization.
FIGURE 8

The bar chart depicts the coverage metric. The coverage achieved by the proposed algorithm is more concentrated and closer to the theoretical
value than the other methods.
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FIGURE 11

Comparison of uncertainty for x, y, and distance.
FIGURE 10

Comparison of RMSE with different methods. RMSE, root-mean-square error.
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ensuring survival in threatening areas. We will validate this approach

using an experimental platform now under construction, a key move

toward practical implementation.
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