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Tidal variation modulates the
dissolved silicate behavior and
exchange flux across the
semi-enclosed bay‐coastal
water continuum, China

Peng Zhang, Jiale Xie, Jibiao Zhang*, Miaojian Fu,
Weisheng Luo and Mingyue Cheng

College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang,
Guangdong, China
Coastal water is the key transition zone for the circulation and transport of

nutrients. Their role in transporting nutrients is important to understanding

global dissolved silicate (DSi) cycles and sources of nutrients supporting the

biological pump and ocean carbon cycle. However, the understanding of

controlling DSi exchange flux between the semi-enclosed bay and coastal water

was still scarcely due to limitations in continuous observation. In this study, we

conducted continuous investigations during spring tide (ST) and neap tide (NT) in

2021 in Shuidong Bay (SDB), China, to explore the impacts of different tidal cycles

on DSi in SDB and the fluxes across SDB and South China Sea (SCS) coastal water.

The findings demonstrated that there were significant differences in DSi

concentrations and nutrients ratios between ST and NT in S1 station (P < 0.05).

In addition, the DSi concentrations were 32.01 ± 27.21 mmol/L and 51.48 ± 48.44

mmol/L in ST and NT, respectively. Besides, the net export of DSi from SDB to SCS

was 0.18 t throughout the entire early of autumn tidal cycle, suggesting SDB was

the source of DSi, and its behavior across the semi-enclosed bay‐coastal water

continuum was largely controlled by tidal characteristics (tidal height, flow

velocity), water physicochemical parameters (salinity, pH), biological uptake and

terrestrial sources input. SDB in ST has higher proportions of DSi: DIN (dissolved

inorganic nitrogen) (1.49 ± 1.28) and DSi: DIP (dissolved inorganic phosphorus)

(58.6 ± 43.73) compared with NT, DSi: DIN and DSi: DIP for the NT period were

1.45 ± 1.15 and 43.99 ± 28.59, indicating that phosphorus (P) is the limiting trophic

factor for SDB. The tidal cycle in SDB would alter the DSi stoichiometry and

mitigated the impact of eutrophication caused by terrestrial sources. This study

provides new insights in the Si tidal cycling across the semi-enclosed bay‐coastal

water continuum, which was implications for understanding DSi biogeochemical

process and primary production dynamics in coastal water.
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Introduction

Silicon (Si) is a non-metallic element, which is one of the main

components of seawater and the second most prevalent element in

the Earth’s crust after oxygen. Si is also found in both dissolved and

particulate form in the ocean (Carey and Fulweiler, 2012). Si

profoundly influences the surface material cycle and is one of the

key elements in the study of surface processes, land-sea interactions,

and the global carbon cycle (Zang et al., 2020). Si cycling is an

important component of biogeochemical processes, and the surface

runoff is the main sources of Si in the ocean, groundwater discharge,

and sewage discharge (Zhu, 2017; Wang et al., 2023). Excessive

nutrient levels cause eutrophication of water bodies and even

natural calamities like red tides (Liu et al., 2011; Guo et al., 2012).

Conversely, very low nutrient levels may cause disturbances in

nutrient stoichiometry, hinder phytoplankton normal growth, and

affect the balance of marine ecosystems (Bricker et al., 2003; Zhou,

2021). Dissolved silicate (DSi) is a crucial nutrient for diatom

breeding (DeMaster, 1981; Papush et al., 2009; Cao et al., 2020).

Diatom production accounts for more than 40% of the world’s

marine primary production, making them one of the most

significant primary producers in the ocean (Song, 2010; Kranzler

et al., 2019). Si played a key role in controlling the phytoplankton

community (Officer and Ryther, 1980; Blanchard, 1988; Derry et al.,

2005). Amorphous silica, also known as biogenic silica (BSi), is used

by diatoms to build a silicified cell wall (Carbonnel et al., 2009; Wu

and Liu, 2020). The amount of DSi that is available and how

abundant it is in relation to other nutrients affects the make-up of

the phytoplankton population and, consequently, the ecological

efficiency of an ecosystem (Officer and Ryther, 1980; Conley et al.,

1993; Turner et al., 2003; Carbonnel et al., 2009). In addition, the Si,

combined with nitrogen (N) and phosphorus (P), which regulated

planktonic blooms in aquatic ecosystems (Huang et al., 2019; Wu

and Liu, 2020). Due to its intimate ties to the marine carbon cycle

and biological pumps, the biogeochemical behavior and transport of

Si has received much people’s eyesight in recent years (Song et al.,

2018; Sutton et al., 2018; Cao et al., 2020; Wu and Liu, 2020).

Under the climate change and human activities, the semi-

enclosed bay-coastal water continuum has significantly impacted

due to global warming, land-based sources input, land-reclamation

and so on (Billen et al., 1991; Daniel et al., 2009; Zhang et al., 2017a).

The coastal area is a key region for marine biogeochemical

reactions, and ecological changes caused by human activities in

the watershed are usually manifested in estuaries and bays (Ke et al.,

2022). In addition, the bay’s physicochemical properties, alters in

the water column with tidal ebb and flow, and inputs of nutrients

and organic matter are all significantly impacted by the tidal cycle.

Natural factors such as geomorphic features, hydrodynamic

conditions and water exchange cycles in estuarine bays influence

their nutrient levels and eutrophication pattern (Cheng and Li,

2006). The circulation of water between estuaries and the outer sea,

and predation by marine organisms also influence the

eutrophication characteristics of estuaries, and therefore, the

physical processes occurring here have important implications for

biogeochemical reactions (Qu et al., 2007; Li et al., 2016; Li, 2021).

Bays are one of the most eutrophic water habitats in the ocean and
Frontiers in Marine Science 02
the unique coastal weak exchange hydrodynamic environments, has

experienced ecological deterioration under the impact of high-

intensity human activities (Daniel et al., 2009; Wang, 2019; Li

et al., 2020). In recent years, anthropogenic activities have had a

major impact on the nutrients in bay water, increasing the amount

of terrestrial nutrients entering coastal water (Santos et al., 2008;

Amato et al., 2020). The stoichiometry and enrichment of nutrients

in some coastal waters in China has gradually changed to some

extent. From 2017 to 2019, the nitrogen and nitrogen-phosphorus

limitations in Zhanjiang Bay were gradually replaced by

phosphorus limitation (Zhou and Zhao, 2021); the silicate

limitation in Jiaozhou Bay were gradually replaced by phosphorus

limitation (Gao et al., 2018; Zhao et al., 2020); the Bohai Bay and

Pearl River estuary’s phosphorus limitation status deteriorated

rapidly (Zhang et al., 2018; Ke et al., 2022); and Laizhou Bay

experienced phosphorus limitation, which was particularly

evident in flood period (You et al., 2021). Tidal changes, winds,

convective dispersion, biological activity, and interaction at the

water-sediment interface all have an impact on the distribution of Si

in coastal waters (Pan and Shen, 2009). However, these studies have

focused on the dynamic balance and cycling of Si, and the effects of

tidal variations on the behavior and exchange flux of DSi has rarely

been studied.

Tidal forces play an important role in regulating the dynamics

of water-sediment in estuarine and coastal systems, including

regulating water stratification, influencing freshwater and

sediment funnel between rivers and bays, and further changing

the dynamics of organic and inorganic components (Fang et al.,

2008; Gao et al., 2009; Cheng et al., 2020). After terrestrial

weathering of silicate minerals, large amounts of DSi flow into

coastal waters with rivers (Billen et al., 1991; Tréguer and Rocha,

2013; Amann et al., 2014), and the riverine inflows provide

approximately 80% of DSi to the world’s seas (Sun and Song,

2001). These nutrients had various biogeochemical properties, and

under the impact of tidal forces, they display various distributions,

variations, and behaviors that further influence primary production.

For example, the Venice Lagoon exported nitrogen and phosphorus

to the Adriatic Sea while importing silicate (Ferrarin et al., 2013).

Yuan et al. (2018) derived that Jiaozhou Bay exported DON and

DOP to the Yellow Sea and imported DIN from the Yellow Sea.

Therefore, a comparison of DSi concentrations and fluxes in the

SDB with those in other coastal bays can provide insights into the

similarities and differences between these coastal systems and their

interactions with the open ocean. For example, the complex

underwater environment and strong tidal mixing in San

Francisco Bay have implications for the spatial and temporal

distribution of suspended sediments and nutrients (Cloern et al.,

2020). In addition, the sea surface temperature (SST) in the SCS and

its coastal systems also changed in the context of global warming

(Zhang et al., 2017b). The warming coastal water may trigger diatoms

community, and then perturbed the DSi concentration dynamics.

Therefore, studying the DSi dynamics in tidal cycle across the semi-

enclosed bay-coastal water systems is important for a better

understanding of DSi biogeochemical process in coastal water.

Shuidong Bay (SDB), as a semi-enclosed bay, is created when

the Earth’s crust slightly lifted (Liu, 2019; Cao, 2022). The bay’s
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mouth faces south and is encircled by a sizable sandbar. The bay is

gently curved. The SDB marine dynamic environment is dominated

by tidal currents (Yang et al., 2011), and its tidal type belongs to

irregular semi-diurnal tides (Qin et al., 2014; Feng, 2017), i.e., there

be two high tides and two low tides in a day, and the unequal tide

levels and tidal times are obvious. Studies have shown that semi-

diurnal tidal changes may significantly affect the dynamics of

nutrients in SDB (Qin et al., 2014; Shi et al., 2017). Tides in SDB

basically flow reciprocally along the tidal channel (Feng, 2017), and

the special topographic and tidal variation characteristics of SDB

largely determine the nutrient dynamics. In addition, the residence

period of nutrients is determined by the hydrographic

characteristics of coastal bays, and the combined impacts of

surrounding seas further complicates the biogeochemical

processes of the implicated nutrients (Hopkins et al., 1993; Li,

2021). Some nutrients may be absorbed or created during the

movement of seawater as currents convey nutrients between SDB

and SCS, resulting in increase or decrease nutrient concentrations

in seawater during tidal fluctuations (Li, 2021). Numerous physical

and biological elements, including microbial activity, terrestrial

inputs, tidal forces, and primary generation in estuaries and

seawater, affect the biogeochemical processes of nutrients

(Dittmar and Lara, 2001; D’Croz and O’Dea, 2007; Guo et al.,

2014). However, in recent years, with the rapid economic and social

development, frequent human activities have exacerbated the

decrease of exchange capacity and the occurrence of

eutrophication of water bodies in the coastal waters of SDB,

especially in estuarine bays (Li, 2011; Qin et al., 2014; Li et al.,

2016; Feng, 2017; Zhang et al., 2022). Among them, the

development of mariculture has directly disturbed the tidal

pattern of the SDB, with a dramatic decrease in the exchange

capacity of the water body and a serious deterioration of the

water quality environment (Qin et al., 2014). Most of the

available studies have concentrated on the mechanisms of tides

and their effects on hydrodynamics (Song et al., 2011; Wu et al.,

2011; Cheng et al., 2020), and the effects of estuarine

physicochemical factors on phytoplankton and chlorophyll a (Niu

et al., 2016) as well as only nutrients distribution patterns in coastal

waters (Guo, 2020; Liu et al., 2021; Zhang et al., 2021; Ke et al.,

2022). However, the natural environment and dynamic
Frontiers in Marine Science 03
circumstances were been focused on in the earlier research in

SDB, these studies lacked continuous measurements of DSi

dynamics throughout the spring tide (ST) and neap tide (NT)

cycles (Yang et al., 2020; Zhang et al., 2020c). At present, the DSi

behavior, exchange flux, and controlling factors affected by different

tidal cycles remains to be elucidated across the semi-enclosed bay-

coastal water continuum, which is implications for understanding

DSi biogeochemical process and primary production in

coastal water.

Therefore, to better understand the effects of tidal variability on

DSi, we concentrated on the temporal and spatial DSi variation and

exchange flux in the SDB during the tidal period. We conducted

periodic observations in the SDB-coastal water continuum during

ST (22-23 August 2021) and NT (29-30 August 2021). Continuous

interval observations of physicochemical parameters and shallow

water samples were taken in the SDB during a ST-NT tidal cycle in

2021. The aims of this study were to: (1) investigate the cyclic and

spatial variations in DSi concentration along the SDB-coastal water

column continuum; (2) calculate DSi fluxes exchanged by the water

column across the SDB and SCS; and (3) identify the major factors

and processes that controlling the dynamic changes and transport

patterns of DSi in the SDB during different tidal periods.
Materials and methods

Study areas

The study areas was located in SDB (111°0′-111°6′E, 21°27′-21°
32′N), southwestern side of Maoming City, Guangdong Province

(Figure 1). Approximately 32 Km2 in size, SDB is a semi-enclosed

bay with a wide water surface and a narrow sea mouth. The bay is

long and oval in shape, oriented slightly to the southeast, with the

mouth of the bay facing southeast. A 12.7 Km long, 500-800 m

wide, and 5-15 m deep tidal channel connects the inner bay to the

external SCS (Su et al., 2015). The symbols of R1 to R4 are the main

seasonal major rivers adjacent to the bay. The topography of the bay

bottom is complex with a clear distribution of grooves (Feng, 2017),

and the bottom of the bay is muddy and sandy with high

sedimentation and widespread subsidence (Su et al., 2015). Tidal
FIGURE 1

Geographic location and monitoring sites in the SDB.
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action is the primary source of the SDB’s hydrodynamic drive. The

tidal characteristics of the SDB conform to the irregular semi-daily

tide rule, with a maximum average flow velocity of 0.3-0.5 m/s and a

maximum flow velocity of 1.0 m/s in the tidal channel (Qin et al.,

2014). The mudflats and mangrove beaches are extensive within the

SDB, with large saline areas along the coast (Cao, 2022). Recent

years have seen the swift development of offshore aquaculture and

increasing pollution from land-based sources have led to a

reduction in the size of SDB waters and a deterioration in water

quality, thus having a significant impact on the tidal patterns of the

SDB (Li, 2011; Qin et al., 2014; Feng, 2017). According to the tidal

characteristics and hydrological conditions of SDB, four distinct

monitoring sites were chosen for this study to collect water samples

at various periods during ST and NT. The methods standardized in

the Marine Survey Code (General Administration of Quality

Supervision, Inspection and Quarantine, People’s Republic of

China) were used to select the coastal water monitoring sites of

the SDB, and the specific sampling sites are shown in Figure 1.

Hydrological data for the SDB were obtained from Zhang et al.

(2022), and specifications for different elements of nitrogen are

cited in this study.
Field sampling and pre-treatment

Continuous 24-hour water sampling of the SDB was conducted

during the ST (August 22-23, 2021) and NT (August 29-30, 2021) in

early of autumn, respectively. A sampling period is divided into day

(6:00 to 18:00) and night (18:00 to 6:00). Based on the shallow coastal

consideration of the SDB, sampling was conducted from the surface

layer at a depth of 0.5 m. The specific sampling method and water

sample storagemethod refer to the study of Zhang et al. (2022).During

this simultaneous survey cruise, four stations (S1, S2, S3, and S4) were

deployed at sea for hydrodynamic and water quality monitoring.

Hydrodynamic conditions were checked every 1 h and surface

seawater samples were collected every 3 h for 24 hours of continuous

monitoring. Prior to analyses, all samples were carefully collected, pre-

processed, and stored in accordance with themethods standardized in

the Marine Monitoring Code (GB17378-2007, AQSIQ, 2007b). The

water samples need to be thawed before the measurement, so there

should be sufficient time (preferably more than 24 hours) for

depolymerization. The analysis of the water samples before and after

freezing ensures that the freezing and thawing processes have no effect

on the DSi content and that the results of the twomeasurements (10%

of samples) are not significantly different.
Chemical analyses in the laboratory

DSi analysis was performed using the silicomolybdate blue

spectrophotometric method, which has a detection limit of 0.03

mmol/L and a measurement blank of 0.002 mmol/L for DSi in water

samples. A UV-Vis spectrophotometer (Shimadzu UV2600i) was

used to measure the results of the aforementioned method at 812

nm. TN and TDN were analyzed by potassium persulfate oxidation.

N-NH4
+, N-NO3

- and N-NO2
- were performed using the
Frontiers in Marine Science 04
hypobromite oxidation, zinc-cadmium reduction, and diazo–azo

methods, respectively. DIN was the sum of the concentrations of the

above three components. The concentrations of DON

(DON=TDN-DIN) and PN (PN=TN-TDN) were obtained

indirectly by the method of making differences (Zhang et al.,

2022). The phosphomolybdenum blue spectrophotometric

method was used to analyze TP, TDP and DIP with the detection

limit of 0.02 mmol/L at 882 nm. Similarly, the concentrations of

DOP (DOP=TDP-DIP) and PP (PP=TP-TDP) were obtained

indirectly by the differential method. Suspended particulate

matter (SPM) was selected for measurement by weight method.

Glass fiber membrane used in Chl-a filtration. Chl-a was measured

using a spectrophotometric method. All of the above methods were

estimated to have better than 5% relative deviation in repeatability,

reproducibility and precision by duplicate measurements on 10% of

the samples. All samples were strictly in accordance with the Marine

Monitoring Code (GB17378-2007) to implement the whole process

of monitoring quality control of collection - pretreatment - storage -

analysis (AQSIQ, 2007a).
Estimation of the net flux of DSi in the
tidal cycles

The SDB is closed on three sides, with only a narrow bay

channel connecting the coastal waters to the SCS, S4 is designated to

represent the DSi flux from the SDB gulf mouth to the SCS since it is

near to the bay mouth while the other three stations are far away,

and the specific directional division is referred to the study of Zhang

et al. (2022). After designating the direction of flow to the SDB, the

DSi flux transported between SCS and SDB was calculated with

equations (1) and (2). The equation (1) calculates the water flux

through S4 at different time. Then, the net DSi flux between the SDB

and SCS was estimated by according to equation (2). The DSi net

exchange flux between the SDB and SCS was approximately

calculated at the cross sections of the bayport at different

moments based on the variation of flow velocity at different

moments, and then the DSi net exchange flux between the SDB

and SCS was calculated for one day.

Q = W � D� V (1)

Where Q is the vector of net water flow rate (L/h) per unit time

at the SDB port, W is width (m), D is depth (m), and V is flow rate

at each time point (cm/s). All the above data refer to the data of S4.

FDSi = CDSi � Q� 10−6 �MSi (2)

Where FDSi is the net exchange of DSi (t/h), CDSi is the

concentration of DSi at different moments (mmol/L), and MSi is

the relative atomic mass of silicon. All the above data refer to the

data of the SDB port.
Statistical analyses

The normality of DSi concentrations between ST and NT was

examined using K-S test (Kolmogorov-Smirnov test), if the results
frontiersin.org
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demonstrate a normal distribution, an independent samples t-test

was used, and if they did not demonstrate a normal distribution, a

non-parametric Mann Whitney U test was then used for analysis to

find signifificant differences between DSi specimens during ST and

NT. Principal component analysis was performed on the major

environmental factors and nutrients in SDB waters to determine the

dominant factors affecting the DSi of SDB. To find the correlation

between the dominant environmental factors, spearman correlation

analysis was also performed. The relationship between ambient

factor variables and various Si specimen concentrations was

examined using Spearman correlation analysis (Zhang et al.,

2020a). The link between DSi fluxes and flow rates during ST and

NT was also examined using linear regression analyses. A

significant difference between the variables is shown if P < 0.05.
Results

Dynamics of DSi in SDB in tidal cycles

There was no significant difference in DSi concentration

between ST and NT in all stations (p > 0.05). DSi showed

temporal and spatial variations in the SDB-coastal water

continuum (Figure 2 and Table 1). Figure 2 showed the variation

of DSi concentration with tidal height at the four stations of SDB.

DSi concentrations during ST (Figure 2A) and NT (Figure 2B)
Frontiers in Marine Science 05
ranged from 4.48-108.31 mmol/L and 5.82-153.96 mmol/L, with

mean concentrations of 32.01 ± 27.21 mmol/L and 51.48 ± 48.44

mmol/L, respectively. The DSi concentration peaked at 4:00 in S2

and the lowest at 10:00 in S2 during ST, and the DSi concentration

peaked at 9:23 in S1 and the lowest at 14:26 in S2 during NT. DSi

concentrations were lower in S1, S2, S3 and S4 at ST than at NT.

Both during ST and NT, the mean values of DSi at SDB were S1 > S2

> S3 > S4; and the mean values of DSi at each station during ST were

lower than those at each station during NT. The DSi concentrations

and tides roughly showed a pattern of low DSi concentrations at ST

and high DSi concentrations at NT on different time scales of ST

and NT.
Nutrients ratios in SDB coastal waters
during the tidal cycles

The DSi: DIN and DSi: DIP ratios were utilized to evaluate the

temporal and spatial fluctuations of the nutrient stoichiometric

balance in the bay in accordance with the tidal cycle and nutrient

ratio variation patterns. The DSi: DIN and DSi: DIP varied with tidal

cycles (Figure 3). There was a significant difference between DSi: DIN

and DSi: DIP during ST and NT in S1 station (P < 0.05). DSi: DIN

was closer for ST (1.49 ± 1.28) and NT (1.45 ± 1.15), while DSi: DIP

differed more with 58.6 ± 43.73 and 43.99 ± 28.59. It was clear from

Figure 3 that during the ST, the ratio of DSi: DIN exceeded 1 at all
B

A

FIGURE 2

DSi concentration and tidal height variation during spring tide (A) and neap tide (B).
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moments except 10:00 and 7:00, and showed a regular trend of rising-

falling- rising. The maximum value of DSi: DIN was 2.59, which

occurred at 9:25 during the NT, and the minimum value was 0.69,

which occurred at 11:00 during the NT. The ratio of DSi: DIP was

significantly higher than 16 throughout the tidal cycle, with a general

trend of increasing and then decreasing, and a wide range of

variation. The maximum value of 92.53 and the minimum value of

25.92 occurred at 17:00 during ST and 11:00 during NT, and the

average value of DSi: DIN during ST was 1.49 ± 1.28, which was 1.49

times of the reference value. The mean value of DSi: DIN during NT

was 1.45 ± 1.15, which was 1.45 times of the reference value. DSi: DIP

was 58.6 ± 43.73 during ST and 43.99 ± 28.59 during NT, which were

3.67 and 2.75 times of the reference value, respectively.
Net DSi flux of tidal cycles between SDB
with SCS

The magnitude and direction of DSi fluxes varied with tidal

cycles (Figure 4). There was a great variation in the net flux between

SDB and SCS during ST and NT. During the ST of SDB (Figure 4A),

DSi transported from SDB to SCS during half of the 24 h (11:00-

17:00 and 24:00-4:00); while the rest of the time, DSi flowed from

the SCS to the SDB. Since the DSi transport period from SDB to SCS

accounts for half of the transport period and the DSi concentration

was generally larger during ST, the total DSi transport from SDB to
Frontiers in Marine Science 06
SCS was larger than that from SCS to SDB, and the DSi exhibited an

inflow from SDB to SCS. During NT of SDB (Figure 4B), SDB

transported DSi to SCS during the time periods of 15:00-20:00 and

3:00-10:00, and during the rest of the time, SCS transported DSi to

SDB. Although most of the time DSi transport was from SDB to

SCS, the total DSi transport from SCS to SDB was higher than that

from SDB to SCS, and DSi manifests itself as an inflow from SCS to

SDB. At ST, DSi was the net export, and the daily efflux was 1.24 t.

At NT, DSi was the net import, and the daily influx was 0.89 t. By

counting the number of ST and NT days in SDB in early of autumn,

it was calculated that the net exchange flux of DSi is expressed as

input from SDB to SCS with a size of 0.18 t in the whole early of

autumn tidal cycle.
Principal component analysis of DSi in SDB

Principal component analysis (PCA), as a variable reduction

method, was applied to analyze the results of SDB water samples.

The physicochemical variables included water physicochemical

parameters (i.e., tide height, flow velocity, salinity, pH, and SPM),

nutrients (i.e., N, P, and DSi), and Chl-a. PCA (Figure 5) showed

relatively good repeatability between sites under ST conditions,

indicating that the sample data were very similar. In contrast, there

was a good variability between sites under NT conditions. This

indicated that periodicity was the most important influencing factor
TABLE 1 Mean concentration of DSi at per station in SDB (mmol/L).

S1 S2 S3 S4

ST NT ST NT ST NT ST NT

DSi 62.11 ± 16.54 119.92 ± 22.01 33.07 ± 32.64 44.71 ± 43.06 21.53 ± 12.93 27.00 ± 17.22 11.31 ± 3.16 14.3 ± 6.33
fro
FIGURE 3

Distinction of DSi: DIN and DSi: DIP during the tidal cycles in SDB.
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under ST conditions. The spatial differences were more obvious

under the NT conditions (Figures 2, 5). During ST, the first two axes

(PC1 and PC2) accounted for 39.4% and 12.9% of the variation in

SDB-related parameters, respectively (Figure 5A). DIP, Chl-a and

DIN exhibited high positive DSi loadings, while salinity, pH and

flow rate exhibited negative DSi loadings. It indicated that DSi may

be positively correlated with DIP, Chl-a and DIN, and inversely

correlated with salinity, pH and flow rate. DSi had some positive
Frontiers in Marine Science 07
correlation with sites S1 and S2, and weak correlation for site S3. In

addition, different environmental factors and nutrient

characteristics were evident during ST periods. clusters S1, S2 and

S3 were separated by PC1, while PC2 separated cluster S4 from the

other three clusters (Figure 5A). Analysis of water sample data from

the NT showed that PC1 and PC2 covered 42.5% and 13.3% of the

variation in water samples during NT, respectively. DIP, TDP and

TP showed highly positive DSi loadings, while pH, flow velocity and
BA

FIGURE 5

PCA considering the data collected during spring tide (A) and neap tide (B).
B

A

FIGURE 4

DSi exchange flux of SDB and SCS during spring tide (A) and neap tide (B).
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TNshowednegativeDSi loadings, indicatingthatDSimaybepositivelycorrelated

withDIP,TDPandTPandinverselycorrelatedwithpH,flowvelocityandTN.DSi

showedsignificantpositivecorrelationswithsiteS1andweaknegativecorrelations

with the other three sites. In addition, the NT period also showed different

environmental factors and nutrient characteristics. clusters S2 and S3

were separated by PC1 and separated cluster S1 from the other three

clusters (Figure 5B). It was noteworthy that the positive load ofDIP on

DSi was the highest for both ST andNT periods, and the negative load

of pHandflowvelocity onDSiwas higher. This indicated thatDIP, pH

and flow velocity may have a greater effect on DSi during both ST and

NT periods. In general, the data dispersion of S2 was larger in both ST

and NT conditions, indicating that several parameters had a greater

impact on S2. The data in NT condition were more dispersed than

those in ST condition.
Discussion

Comparison in DSi concentration in
estuarine and coastal waters around
the world

Table 2 showed the DSi concentrations in SDB with those in

comparable semi-enclosed bays in China and other countries. The
Frontiers in Marine Science 08
results showed that the average DSi concentrations in SDB were

41.74 ± 40.48 mmol/L, which only lower than The western Bohai

Bay (Wang et al., 2020), and much higher than those in Coastal

waters of the northern Yellow Sea, Hangzhou Bay, Maumere Bay,

and other estuaries and bays affected by human production and life

(Gao et al., 2011; Zhang et al., 2020c; Meirinawati and Prayitno,

2021; Sun et al., 2022). In contrast, the mean DSi concentration in

Maumere Bay was significantly lower than in other coastal waters

with potential fishery resources (Meirinawati and Prayitno, 2021).

In comparison, DSi concentrations were found to be relatively high

in bays with aquaculture areas (Gao et al., 2011; Wang et al., 2020).

The bays near economically developed areas, such as Shenzhen Bay,

Hangzhou Bay, Bay of Bengal, the western Bohai Bay, Tokyo Bay

and estuary, and San Francisco Bay, had relatively high DSi

concentrations with wide range of concentrations. The combined

comparisons indicated that human activities had an impact on DSi

circulation (Kamatani and Takano, 1984; Gao et al., 2011; Satinder

et al., 2015; Cloern et al., 2017; Wang et al., 2020; Tao et al., 2021).

Both the mean DSi concentration and concentration range in

winter were significantly lower than the data in this study (Fu

et al., 2023), suggesting that the tidal driving effect on DSi in winter

was not as pronounced as in early of autumn period. However, DSi

concentrations in both seasons showed a similar trend of decreasing

from the bay to the mouth of the bay. The SDB, as a semi-enclosed
TABLE 2 Comparison of DSi concentration between SDB and other bays and estuaries.

Study area Survey time
Mean Concentration of DSi
(mmol/L)

Range of DSi
Concentration
(mmol/L)

Reference

Shenzhen Bay 2016 — 1.18-174.64 Tao et al., 2021

Rongcheng Bay 2009 6.62 1.36-13.80 Xie et al., 2013

Hangzhou Bay 2006-2007 44.86 11.74-81.59 Gao et al., 2011

Caofeidian coastal water 2013.08-2014.05 — 0.71-9.52 Liu et al., 2020

Bay of Bengal 2014 — 0.6-152.5 Satinder et al., 2015

Daya Bay 2006.07-2007.11 13.20 — Shi and Huang, 2013

The western Bohai Bay 2017 85.7± 9.52 74.6-95 Wang et al., 2020

Jiaozhou Bay 2013-2014 — 0.71-42.14 Gao et al., 2018

Maumere Bay 2017.08 4.54 —
Meirinawati and
Prayitno, 2021

Laizhou Bay 2001 11.31 1.00-52.08 Sun et al., 2006

Coastal waters of the northern Yellow Sea
(Aquaculture area)

2017 7.86 ± 0.78 — Sun et al., 2022

Coastal waters of the northern Yellow Sea (Non-
aquaculture area)

2017 7.77 ± 1.25 — Sun et al., 2022

Tokyo Bay and estuary 1979-1980 — 10-300
Kamatani and Takano,
1984

San Francisco Bay 1988–2015 — 25-275 Cloern et al., 2017

Zhanjiang Bay (Coastal water) 2019 20.86 ± 13.14 3.57–56.42 Zhang et al., 2020c

SDB 2021.01 6.15 ± 1.37 3.75-10.36 Fu et al., 2023

SDB 2021.08 41.74 ± 40.48 4.48-153.96 This study
“—” means not detected.
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bay, had only a narrow bay channel connected to the water

exchange in the SCS, causing to difficulties in the exchange of the

internal and external circulation in the inlet (Zhang, 2015; Feng,

2017). Due to the estuary’s long-term deposit of pollutants, which

cannot be diffused and diluted, the land coastal areas of the bay were

more abundant in DSi than near the bay mouth.
Modulation of DSi dynamics by coastal
hydrodynamics due to tidal variations

Figure 6 demonstrated that DSi and salinity exhibited a strong

connection during both ST and NT(P < 0.01). Furthermore, linear

fitting of DSi concentration and salinity (Figure 7) revealed a linear
Frontiers in Marine Science 09
decreasing relationship between DSi and salinity during ST; while

the relationship between DSi and salinity during NT was more in

line relationship with the nonlinear model. During NT, DSi varied

more when the salinity was below 25‰ and less when the salinity

was above 25‰. This suggests that salinity around 25‰ during NT

is a turning point in the magnitude of DSi variation. Studies have

concluded that tides are a key factor in regulating the transport of

materials from rivers and oceans to coastal areas (Montani et al.,

1998; Cheng and Li, 2006; Fernandes et al., 2021). The findings of

the correlation study between environmental parameters and DSi at

ST and NT, respectively, are displayed in Figures 6A, B. The results

showed that a highly significant negative correlation (P < 0.01) was

between DSi concentration and salinity and flow velocity during ST

and NT, indicating that physical mixing may be the main factor
B

A

FIGURE 6

Correlation coefficients between SDB hydrological conditions and DSi concentration during spring tide (A) and neap tide (B).
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influencing the tidal variation of DSi, and its distribution was

mainly influenced by the strong mixing effect of the outer ocean

currents and their mutual extinction (Ren, 2019). Freshwater runoff

also strongly affected the salinity of the estuarine surface layer

(Montani et al., 1998; Lee et al., 2018). Uncles and Stephens (1996)

found that saline water intrusion was slightly connected to

freshwater inflow and highly correlated with tidal state. The flow

velocity at ST was significantly greater than that at NT, and the

greater the variation in flow velocity, the stronger the turbulence

effect in the water column and the more pronounced the effect on

nutrients (Ren, 2019). Increased flow velocities cause enhanced

mixing of the water column. Particulate organic matter precipitated

and was thus degraded by bacteria when the flow velocity decreases

(Yin and Harrison, 2000). At the same time, the resuspension of

sediments drastically altered the chemical stoichiometry of the

overlying water column, releasing nutrients that required for

planktonic life activities (Bancon-Montigny et al., 2019;

Fernandes et al., 2021).

At ST, there was a significant positive correlation between DSi

concentration and Chl-a concentration (P < 0.01), while at NT,

there was a negative correlation (P < 0.05). Greater variability is

allowed under ST conditions, as stronger seawater-river variability

affects water quality parameters and phytoplankton biomass may

increase due to resuspension of benthic communities (Biguino et al.,

2021). The results suggesting that in addition to DSi dynamics being

controlled by water exchange and chemisorption or desorption

processes (Dilorenzo et al., 2004; Cloern et al., 2017), diatom and

plant root uptake may also contribute to DSi (Kamatani and

Takano, 1984; Wang et al., 2023). Although DSi fluxes at ST were

substantially larger than at NT, DSi concentrations were lower. This

may be due to the large number of mayfly organisms and diatoms

brought in by ST, whose biosorption and release of DSi affect DSi

concentrations (Blanchard, 1988; Song, 2010), while groundwater

discharge from mangrove sediments affected DSi concentration in

NT (Wang et al., 2023). The SDB was a tidally powered lagoon

whose dynamic characteristics were driven by offshore tidal

currents (Gan et al., 2006) and there were few river confluences
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nearby. At ST, there was a strong correlation between DSi

concentration and tidal height (P < 0.01), and it can be

speculated that seawater played a dominant role with a large

range of tidal height variation and significant tidal level change at

ST (Wang et al., 2023). The phytoplankton in SDB was dominated

by diatoms, which grow well in low temperature, low salinity and

high nitrogen-phosphorus ratio (Shi et al., 2017). SDB is located in

the subtropical zone with favorable water temperature. During the

ST period, due to the influence of tides and waves, strong mixing

occurred in the surface and bottom waters of the bay, and the water

level dropped, which brought the diatoms favoring benthic life to

the planktonic community, and these algae were in the competitive

advantage of growth and reproduced in large quantities under the

suitable environmental conditions, thus inhibiting the survival

space of other species and becoming the dominant population.

While the water exchange in the bay was smooth during the NT

period, a large amount of foreign seawater influxed, the mixing of

benthic diatoms weakened, and their dominance decreased

accordingly (Su et al., 2015; Shi et al., 2017). And the poor water

permeability in the SDB due to harbor transportation, aquaculture,

and littoral currents affects the photosynthesis of the organisms,

resulting in a lower biomass in the bay (Li, 2011; Yang et al., 2011;

Qin et al., 2014). Longitudinal tidal advection was an important

process controlling nutrient distribution in the coastland

(Dilorenzo et al., 2004). Changes in tide levels caused longitudinal

tidal advection, which in turn affected the distribution of nutrients.

Since there was a large amount of seawater exchange between SDB

and SCS, and the large amount of seawater exchange had a

significant dilution effect on DSi concentration, resulting in the

variation of DSi concentration with seawater exchange. In other

words, there was a certain variation relationship between DSi and

tide level. In previous research, it was discovered that the

concentration of DSi increases with decreasing pH when the pH

is between 4 and 9 (Qin and Weng, 2006). The significant negative

correlation between DSi and pH at NT (P < 0.01) showed pH

strongly affects Si dissolution. This could be as a result of the

significant DSi absorption by phytoplankton during photosynthesis
FIGURE 7

Linear regression analysis of DSi with salinity.
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(Qu et al., 2006), resulting in a significant increase in pH in the

water column. In addition, the pH had an impact on the release of

weakly bound Si (Kellermeier et al., 2012). In contrast, the frequent

seawater exchange between SDB and SCS during ST and mangrove

roots absorb acid ions from sediments (Wang et al., 2023) leaded to

a stabilization of pH and DSi in the bay, so that the relationship

between DSi concentration and pH during ST did not show a

significant relationship.
Implications for tidal cycle on nutrients
composition in SDB coastal waters

Previous researches have shown that the level and structure of

nutrients had a significant impact on phytoplankton blooms in

coastal waters (Zhang et al., 2020b; Zhang et al., 2019). In nutrient-

balanced and sufficient populations, the Si:N:P ratio of marine

diatoms was around 16:16:1 (Redfield et al., 1963; Brzezinski,

1985; Danielsson et al., 2008; Maguire and Fulweiler, 2017).

Therefore, the ratios of DSi: DIN and DSi: DIP should be lower

than 1 and 16, respectively, which also indicates the potential

limiting effect of DSi on diatom populations growth. Alters in

nutrient stoichiometry maybe have a negative influence on the

ecology in coastal waters (Brzezinski, 1985; Fisher et al., 1992;

Danielsson et al., 2008). The mean ratios of DSi: DIN and DSi: DIP

in coastal waters of the SDB were 1.49 ± 1.28 and 58.60 ± 43.73 at

ST; The mean ratios of DSi: DIN and DSi: DIP at NT were 1.45 ±

1.15 and 43.99 ± 28.59. The ratios of DSi: DIN and DSi: DIP were

higher than the Redfield ratios, suggesting that Si was not limited in

the studied region in comparison to Nitrogen (N) and P (Figure 3)

and that the SDB falls within a severe phosphorus depletion zone.

This was consistent with the conclusion of Guo et al. (1998) that the

major estuaries and bays offshore China are generally at

phosphorus-limited or moderately phosphorus-limited levels of

potential eutrophication. In addition, DSi: DIN and DSi: DIP

ratios showed significant tidal cyclic distinctions in S1 station (P

< 0.05). The ratios of DSi: DIN was higher at ST (1.49 ± 1.28) than

at NT (1.45 ± 1.15), and the DSi: DIP ratio showed the same trend

of tidal periodicity. These nutrient loading discrepancies might

result in varied nutritional conditions for phytoplankton breeding

(Lee et al., 2018). The discharge of nutrient-rich production and

domestic wastewater had been a crucial factor disturbing the

stability of the bay-coast system. Biogeochemical cycling together

with influent components from estuaries and sewage outfalls can

led to increases in DSi: DIN and DSi: DIP, which had a sizable effect

on the nutrient stoichiometry of SDB coastal waters. This might be

one of the essential reasons why riverine inputs regulate the nutrient

ratios in coastal waters (Montani et al., 1998; Zhang et al., 2019).

Eutrophication of SDB coastal waters, increased primary

production and colonization of diatom communities caused an

increase in DSi: DIN and DSi: DIP from terrestrial sources. Previous

studies have demonstrated that P enrichment increases diatom

production and depletes DSi reserves in the water, resulting in

DSi-limited diatom growth (Conley et al., 1993). Significantly low P
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levels in the SDB may limit diatom production, resulting in

significant DSi accumulation. Under the diatom-driven diatom

biopump, which is distinguished by rapid proliferation rates and

high nutritional demand (Raguneau et al., 2006; Cao et al., 2020).

Eutrophication was not the only environmental factor that induces

red tides; nutrient ratios also frequently regulate algal cell growth,

phytoplankton diversity and abundance, leading to the occurrence

of red tides, which in turn destabilize marine ecosystems (Humborg

et al., 1997; Han et al., 2003; Garnier et al., 2010; Lin and Lin, 2022).

Therefore, adjusting the trophic structure of SDB is the key to

reduce the occurrence of red tide in the region.
Factors controlling the flux of DSi through
the SDB-SCS

Figure 8 showed the relationship between DSi flux and flow rate

during ST and NT. The direction of water flow into SDB is specified

to be positive, and if the flow rate > 0, the SCS transports exchange

flux to the SDB; conversely, the SDB transports exchange flux to the

SCS. The results showed a significant relationship between flow rate

and DSi flux. During ST and NT in the SDB, there was an extremely

significantly negative correlation between FDSi and flow velocity

(P < 0.01) during ST and was a significantly negative correlation

between FDSi and flow velocity (P < 0.05) during NT when SDB

transports DSi net flux to SCS. When SCS transports DSi net flux to

SDB, there was an extremely significantly negative correlation

between FDSi and flow velocity during ST (P < 0.01) and was a

significantly negative correlation between FDSi and flow velocity

during NT (P < 0.05). Changes in flow velocity led to changes in

current direction and material concentration (Cheng and Li, 2006;

Li et al., 2016), which in turn led to tidal cycle changes in DSi

concentration. While the high concentration of DSi in SDB is

caused by the discharge from land-based DSi sources, the high

flow rate from SDB to SCS makes the flux of DSi between SDB and

SCS increase significantly. Gao et al. (2009) suggested that the tidal

variation of SPM concentration is an critical factor affecting

nutrient levels in the Yangtze estuary. The tidal variation of DSi

in SDB may be similar to that of the Yangtze estuary. Upper shore

surfaces were disturbed by wave deformation and fragmentation,

which affected sediment distribution (Yu and Chen, 2010), most

particulate organic matter was produced at NT and trapped in the

estuary, and channel sinuosity and the resuspension of sediment

from bottom to surface influence DSi changes (Fernandes et al.,

2021). Hydraulic conditions affected the velocity of coastal seawater

passage through the open ocean and the bay, resulting in net

exchange flux input and output of DSi on the day. During the

winter ST period, DSi is transported from the SDB to the SCS (Fu

et al., 2023), which is consistent with DSi transport during the ST

period in this study. It was noteworthy that the different directions

of nutrient transport between the Venice Lagoon and the Adriatic

Sea do not coincide (Ferrarin et al., 2013). This may indicate that

tidal variations had different effects on biogeochemical processes in

different coastal ecosystems.
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The findings revealed that the concentration of DSi in SDB had

a distinct temporal and spatial distribution characteristic over the

investigation period. During ST and NT, DSi concentrations at

the four stations presented a rise trend from the estuary to the bay.

The DSi concentration varies from station to station, and stations

with high DSi concentration were distributed within the bay. It was

possible that the proximity of human activities in the bay to local

living and breeding seas has led to increased DSi concentrations in

the water (Li, 2011). In contrast, the SDB is a semi-enclosed bay

linked to the SCS by a narrow tidal channel. Long and narrow bays

tend to have weak hydrodynamic conditions within the bay due to

the small width and long depth of the inlet (Zhang, 2015). There

was a large amount of seawater exchange from the SCS at the coastal

mouth, and the frequent seawater exchange results in low and

fluctuating DSi concentrations. Ocean currents had the greatest

impact on coastal waters. As SDB and SCS exchange tidal currents

across the mouth of the bay, dilute mixing of SDB seawater

occurred (Béjaoui et al., 2017; Bancon-Montigny et al., 2019).

Previous studies at Sado estuary and the Yangtze River estuary

shown that enhanced seawater exchange capacity play a significant

dilution role, thereby alleviating nutrient enrichment in semi-

enclosed bays (Cereja et al., 2022; Song et al., 2022).
Conclusions

In summary, this study explores that tidal variation modulates

the dissolved silicate behavior and exchange flux across the semi-

enclosed bay‐coastal water continuum by time series observations.

The findings show there were significant differences in DSi

concentrations and nutrients ratios between spring tide and neap

tide in S1 station. In addition, DSi behavior and exchange flux

across the semi-enclosed bay‐coastal water continuum was largely

controlled by tidal characteristics (tidal height, flow velocity), water

physicochemical parameters (salinity, pH), biological uptake and

terrestrial sources input. Furthermore, the DSi concentrations in the
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SDB during ST and NT were 32.01 ± 27.21 mmol/L and 51.48 ±

48.44 mmol/L, respectively, which were at a high level compared to

the bays near economically developed regions around the world.

The significantly high DSi: DIP ratio (58.6 ± 43.73 in ST and 43.99 ±

28.59 in NT) indicates that P is the limiting trophic factor in the

SDB. The spatial and temporal distribution of DSi and the fluxes

across the SDB-SCS indicate that the SDB is the source of DSi. The

net export of DSi from SDB to SCS was 0.18 t throughout the entire

early of autumn tidal cycle. Besides, tidal cycle in SDB will alter the

stoichiometry of DSi and mitigate the effects of eutrophication in

the bay due to land-based inputs, which may regulate

phytoplankton biomass and community in coastal water. This

study sheds new light on the effects of tidal changes on Si cycling

in a semi-enclosed bay-coastal water continuum. Future studies of

other bay-coastal water bodies continuum are recommended to

explore the regional long-term effects of tidal changes on Si

biogeochemical cycling and ecological effects.
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