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In the past 35 years, the natural coastline along Jiaozhou Bay has undergone

extensive changes under the influence of human activities, and the coastal

wetland area has been drastically reduced. Therefore, it is of great importance

to study the spatio-temporal changes of the Jiaozhou Bay coastline, and their

trends and causes, for sustainable economic development and the rational

utilization of coastal resources. This paper constructed a comprehensive

method for extracting the coastline information and change analysis based on

long time series remote sensing data. Based on multi-spectral optical data and

dual-polarization SAR data, the Normalized Difference Water Index (NDWI) and

the Sentinel-1 Dual-polarized Water body Index (SDWI) combined with the Otsu

threshold segmentation method were used to automatically extract the spatial

distribution of coastline. The U-Net semantic segmentation model was used to

classify the land cover types in the land direction of the coastline to count the

coastline types. The End Point Rate (EPR) and Linear Regression Rate (LRR) were

used to analyze the coastline changes, and the land reclamation was calculated

according to the changing trends. The Pearson coefficient was used to study the

reasons for the coastline changes. With an average time interval of 5 years, eight

coastlines of Jiaozhou Bay in different years were extracted, and the coastline

types were obtained. Then, the changes of the coastlines in Jiaozhou Bay from

1987 to 2022 were analyzed. The results show that: 1) Coastline type information

provides important information for analyzing the coastline changes in long time

series, and coastline information can be effectively extracted usingmulti-spectral

optical data and dual-polarization SAR data. When the resolution of remote

sensing data is 30m, the average error of the two types of data is better than one

pixel, and the error between the data is about 1-2 pixels. 2) Based on the U-Net

model, the overall accuracy of coastline classification using multi-spectral

optical data and dual-polarization SAR data is 94.49% and 94.88%, respectively,

with kappa coefficients of 0.9143 and 0.8949. 3) In the past 35 years, Jiaozhou

Bay area has shown an obvious trend towards the ocean, with an average annual

expansion of 16.723m. 4) The coastline of the Jiaozhou Bay area is dynamic. Due

to the frequent human activities, the coastline has been reconstructed on a large

scale, and the length of artificial coastline has increased significantly. The

proportion of artificial coastline length has increased from 33.72% in 1987 to
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59.33% in 2022. 5) In the past 35 years, the land reclamation area has reached

41.45km2, of which Shibei District, Licang District, and Huangdao District are the

three most frequent areas, with an area of 34.62 km2.
KEYWORDS

coastline, optical and SAR remote sensing images, spatio-temporal change analysis,
land reclamation, Jiaozhou Bay
1 Introduction

Historically, human beings have tended to live and produce in

coastal areas because these areas provide the best conditions for

survival and development, which has also led to coastal areas

becoming among the more densely populated areas in the world

(Özpolat and Demir, 2019; Ferreira et al., 2021). According to the

data of the International Union for Conservation of Nature (IUCN),

as of 2017, more than 60% of the world’s global population lived

within 60km of the coast (Moussa et al., 2019). Compared with

other areas, coastal areas are subject to frequent changes, and

coastlines change more frequently than other areas. As the most

important feature of coastal systems, coastlines have been listed as

one of the 27 most important features of the Earth’s surface by the

United Nations Initiative on Global Geospatial Information

Management (Özpolat and Demir, 2019; Chen et al., 2022).

Coastline is defined as the interface or edge of land and sea

(Moussa et al., 2019), and its change is a dynamic process (Ai et al.,

2019). In a system operating under natural conditions,

anthropogenic pressure is very low or non-existent, and it poses

no immediate risk to coastline accretion or erosion. Nevertheless,

anthropogenic activities can exert profound impacts on the

dynamics of coastlines (Thom, 2020; Wiles et al., 2022). In recent

years, due to the changes of natural factors such as global warming

and frequent human transformation activities on coastlines, the

changing of coastlines has been accelerated (Ouma and Tateishi,

2006; Chen et al., 2019). The collection and analysis of long-term

sequential data on coastlines are crucial for comprehending the

impact of natural and anthropogenic activities on coastal changes

and for providing recommendations for safeguarding and

promoting sustainable development in coastal regions (Qiao et al.,

2018; Özpolat and Demir, 2019; Boussetta et al., 2022).

Acquiring the location of the coastline is the first step in

studying spatio-temporal changes. The development of remote

sensing technology has demonstrated that coastlines can be

obtained from remote sensing images, and optical satellites such

as Landsat can be used to map flood ranges (Smith, 1997). Space-

borne synthetic aperture radar (SAR) imaging is not limited by dark

or weather conditions, and multi-polarization SAR also provides

time series information for ground object classification (Boak and

Turner, 2005). The methods for acquiring coastlines from remote

sensing images can be divided into manual rendering and automatic

interpretation. Manual delineation of coastlines from remote

sensing images is labor-intensive and subjective, whereas the
02
extracted coastlines have better continuity and are more suitable

for small-scale research (Chang et al., 2022). For automated

interpretation, digital image processing technology is utilized to

acquire coastlines through the automatic processing of remote

sensing images. This approach is highly efficient and more

suitable for the automatic extraction and spatio-temporal analysis

of coastline information (Pardo-Pascual et al., 2012; Li and Gong,

2016; Chen et al., 2018; Cai et al., 2022). Remote sensing image

processing methods for obtaining coastlines include edge detection,

thresholding, machine learning, object-oriented approaches, level

set techniques, and others (Sheng et al., 2022). Each of these

methods has its own set of advantages and disadvantages. For

example, the edge detection method is more sensitive to noise and is

better suited for detecting straight lines and simple coastlines. The

object-oriented method demands higher data, involves setting

complex rules, and has poor real-time performance. The

threshold method is greatly affected by noise, the pre-preparation

of machine learning is complicated, and the level set technique takes

a long time to obtain results (Cerimele et al., 2009; Toure et al.,

2019; Hu andWang, 2022; Li J. et al., 2022). It is necessary to further

explore remote sensing data and automatic coastline extraction

methods that are suitable for coastline change analysis.

There are generally two methods for analyzing changes in the

coastline of a district. One approach is to analyze spatial changes in

order to obtain data on coastlines, while the other involves

establishing coastline models for comparative analysis (Le

Cozannet et al., 2014; Chataigner et al., 2022; Hu and Wang,

2022). In this process, the End Point Rate (EPR) and other

assessment indicators are widely employed to evaluate changes in

the coastline. These indicators are commonly calculated and

visualized by the digital coastline analysis system (DSAS), which

combines various data to find the main causes of coastline changes

(Siyal et al., 2022; Kılar, 2023). Santosh Kumar Das et al. (2021)

analyzed the position change of a coastline by using EPR and LRR

indicators, and Najeeb S (Aladwani, 2022). predicted the future

position of a coastline by using DSAS.

However, analyzing the transition of coastline solely based on

changes in location is limited. Further analysis of the factors

driving coastal changes is necessary to provide more informed

recommendations for coastline management. Zhu et al. (2021)

combined optical and SAR to study the coastline changes of the

Yellow River Delta in the 40 years preceding 2020 and found that

the sediment transport of the river was the main factor causing the

coastline changes. By analyzing the coastline changes of islands in
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Southeast Asia, Zhang et al. (2021) pointed out that human

activities, material composition, and coastal geomorphic types

played an important role in island countries, and the impact of

sea-level rise should also be a cause for vigilance. Wang et al (Wang

X. et al., 2021). analyzed land reclamation through the changes of

coastline. In seaport areas, human activities have a more obvious

influence on changes to coastlines, and monitoring these changes

can guide policymaking and economic development (Zahra, 2018;

Wiles et al., 2022).

The classification of coastlines can complete the analysis of their

spatio-temporal changes. Different types of coastlines are

accompanied by different land cover types, which can be used to

identify the type of coastline. The combination of deep learning

technology and remote sensing is primarily aimed at meeting the

needs of processing and analyzing remote sensing images, such as

image fusion, image registration, scene classification, object

detection, land use and land cover classification, segmentation,

and object-based image analysis (Ma et al., 2019; Li Z. et al.,

2022). Son et al. (2022) used SegNet, a deep learning model, to

classify land cover types in Nanyang City, South Korea, and proved

that the accuracy was much higher than the traditional method.

Navnath et al. (2022) obtained the temporal land cover type for

France’s Reunion Island using a time series satellite image and deep

learning technology. Pouliot et al. (2021) used time series Landsat

satellite images and deep learning technology to obtain the long-

term cover type of the Canadian grasslands. These results

demonstrate the advantages of deep learning technology in time

series research.

The curved natural coastline of Jiaozhou Bay has been

extensively reconstructed due to human activities, resulting in a

significant reduction in the area of coastal wetlands and the

emergence of other problems (Wang N. et al., 2021), which have

led to an increasingly fragile coastline. To achieve the effective

monitoring of coastline changes in Jiaozhou Bay area over the past

35 years, this utilizes multi-spectral optical remote sensing data,

dual-polarization SAR data, and a semantic segmentation model U-

Net network to classify long time series land cover types and

coastline types in Jiaozhou Bay. The study explores the spatio-

temporal changes of the Jiaozhou Bay coastline and their underlying

reasons. The main purposes of this study are as follows: (1) To

analyze the spatio-temporal changes of the coastline in the Jiaozhou

Bay area from 1987 to 2022 using long time series remote sensing

data; (2) to explore the driving factors of the coastline change in the

Jiaozhou Bay area; (3) to analyze the performance and accuracy of

coastline extraction by using optical remote sensing data and dual-

polarization SAR data and to search for remote sensing data sources

suitable for coastline extraction.

The structure of this paper is as follows: In Section 2, the

situation of the study area and the experimental data are introduced

in detail, as are the types of coastlines in Jiaozhou Bay. Section 3

covers the study methods, mainly introducing the coastline

extraction method based on multi-source remote sensing images,

the coastline land cover type classification method based on the U-

Net neural network, and the coastline change analysis method.

Section 4 covers the study results, including an accuracy evaluation

and a discussion of the results of the coastline extraction and
Frontiers in Marine Science 03
classification. In section 5, the spatio-temporal evolution of the

coastline of Jiaozhou Bay area from 1987 to 2022 is discussed and

analyzed. In the last section of this paper, some important

conclusions are given.
2 Study area and data

2.1 Study area

Jiaozhou Bay is located in the south of the Shandong Peninsula,

which is situated in Shandong Province, China. It is located between

35°50’~36°15’N and 120°04’~120°25’E, belonging to the warm

temperate monsoon climate. The annual average temperature is

about 14.3°, and the average water depth is about 7 meters (Yin

et al., 2023). It is connected to the Yellow Sea at its entrance (Pan

et al., 2023). The mouth of Jiaozhou Bay is bounded by the southern

end of Tuan Island (north side) and the northern end of Xuejia

Island (south side), which also taken as the starting point and

ending point in this study. Figure 1 is a schematic diagram of the

study area in this paper, and the location of Jiaozhou Bay is shown

in blue.

The city of Qingdao surrounds Jiaozhou Bay. Qingdao City is

one of the first 14 open coastal cities in China and is approved by

the State Council of the People’s Republic of China as an important

coastal central city, a coastal resort city, and an international port

city. The study area is surrounded by six districts and cities, namely,

Shinan District, Shibei District, Licang District, Chengyang District,

Jiaozhou City, and Huangdao District. The resident population of

Huangdao District alone reaches 1,964,200 (Qingdao Municipal

Statistics Bureau). Qingdao Port, one of the largest integrated ports

in the world, is located in Jiaozhou Bay (Chen et al., 2017). In 2021,

Qingdao’s GDP exceeded 1.5 trillion yuan, and its GDP has

increased by nearly 100 times in the past 35 years (Qingdao

Municipal Statistics Bureau). Great changes have taken place

along the coastline of Jiaozhou Bay due to human activities.
2.2 Data

In order to analyze the spatio-temporal changes of the coastline

in Jiaozhou Bay area from 1987 to 2022, multi-spectral optical

satellite remote sensing data and dual-polarized SAR data were

selected with an average interval of 5 years. For 1987-2008, Landsat-

5 optical image data were selected, and for the period since 2013, the

multi-source data of Landsat-8 and Sentinel-1A/1B were used (in

2022, two scenes of data are mosaiced). The detailed parameters of

the experimental data are shown in Table 1.

Both Landsat-5 and Landsat-8 have a spatial resolution of 30m,

containing multi-spectral information, and can derive various

remote sensing indices for different purposes. To achieve the

purpose of using the remote sensing index calculation, the dual-

polarization Sentinel-1A/1B data with a spatial resolution of

approximately 30m was selected. In November 2017, one

Sentinel-1B radar data and one Landsat-8 multi-spectral remote

sensing data (with a temporal offset of only 1 day) were selected. On
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the one hand, a comparison was conducted between the

performance of multi-spectral remote sensing data and SAR data

in the coastline extraction. On the other hand, in order to establish a

unified standard for coastline classification, it is imperative to

conduct histogram matching on multi-spectral optical data and

dual-polarization SAR data. The U-Net model is then used to

classify the two different datasets.

The Landsat data were from the U.S. Geological Survey (USGS,

https://earthexplorer.usgs.gov/). The dual-polarization Sentinel-1A/

1B data were from the European Space Agency (ESA, https://

scihub.copernicus.eu/dhus/#/home/).
Frontiers in Marine Science 04
3 Method

3.1 Overall technical route

The overall technical route is shown in Figure 2, which mainly

included the preprocessing of optical and SAR images, the

extraction method of coastlines, and the classification method of

coastlines. Firstly, NDWI and SDWI were used to process the two

types of data, respectively, and the coastline was extracted by the

threshold method and manual confirmation. Then, a buffer zone

was established along the coastline to obtain classified samples, and
TABLE 1 Data used in this study.

Date Time Satellite Sensor Level Bands (or Polarization) Pixel Spacing (m)

03/05/1987 01:55:33 Landsat-5 TM L1TP 8 30

03/26/1992 02:00:14 Landsat-5 TM L1TP 8 30

06/28/1997 02:06:03 Landsat-5 TM L1TP 8 30

03/06/2002 02:14:06 Landsat-5 TM L1TP 8 30

02/19/2008 02:26:42 Landsat-5 TM L1TP 8 30

09/12/2013 02:38:13 Landsat-8 OLI_TIRS L1TP 9 30

11/25/2017 03:44:23 Sentinel-1B SAR_IW Level 1 VV/VH 2.3×14.1

11/26/2017 02:36:20 Landsat-8 OLI_TIRS L1TP 9 30

06/13/2022 02:56:18 Sentinel-1A SAR_IW Level 1 VV/VH 2.3×14.1

06/13/2022 02:56:43 Sentinel-1A SAR_IW Level 1 VV/VH 2.3×14.1
FIGURE 1

Geographical location of the study area.
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the U-Net convolutional neural network was used for model

training. After the classification map was predicted, the specific

type information of the coastline could be obtained. Finally, the

obtained results were visualized, the accuracy difference between the

multi-source data was analyzed, and the spatio-temporal changes of

the coastline in Jiaozhou Bay area in the past 35 years were

analyzed. In this section, the impact of human activities,

particularly land reclamation behavior, on changes to the

coastline is analyzed in detail.
3.2 Coastline extraction

The extraction of the coastline is crucial for analyzing its spatio-

temporal changes. Boak and Turner (2005) proposed three

indicators to determine coastlines. In this paper, the third

indicator was adopted as the main method to obtain coastline data:

1) The water and land were preliminary separated. For optical

remote sensing images, preprocessing was performed first. Then,

the green and near-infrared bands (NIR) were utilized to calculate

the normalized difference water index (NDWI) (McFEETERS,

1996; Teng et al., 2021) and its formula expressed as (1) and (2):
Frontiers in Marine Science 05
NDWILandsat−5 =
Band2Green − Band4NIR
Band2Green + Band4NIR

(1)

NDWILandsat−8 =
Band3Green − Band5NIR
Band3Green + Band5NIR

(2)

where Band2Green and Band4NIR represent DN values used for

bands of the Landsat-5 image, and Band3Green and Band5NIR
represent DN values used for bands of the Landsat-8 image.

For the dual-polarization SAR image, multi-look processing was

performed first. Then, refined Lee filtering (Lee, 1981) was applied

to filter speckle noise in the radar image while retaining

texture information in heterogeneous areas, minimizing radiation

and texture information loss. Jia et al. proposed using the

backscattering coefficient (dB) for Sentinel-1 dual-polarized data

to calculate the SDWI (Jia et al., 2019). The SDWI was slightly

improved in this study, as shown in formula (3).

SDWISentinel−1 = ln (10 · VV · VH) (3)

where VV and VH represent the value of the backscattering

coefficient corresponding to this polarization mode.

2) Next, water and land were accurately separated. The Otsu

threshold method (Otsu, 1979) was utilized to determine the
FIGURE 2

Flowchart of the method in this paper.
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optimal threshold for segmenting water bodies and land in the

obtained NDWI and SDWI images. For the NDWI images, the

overall threshold was used. For the SDWI images, the local

threshold was used to splice the segmented images due to

significant variations in backscattering coefficients across the

different types of coastlines. Thus, the binary image of water and

land separation was obtained.

3) For obtaining the coastlines, the morphology operation was

performed on the acquired binary image. The opening operation

was first carried out to smooth the boundary, followed by the

closing operation to eliminate meaningless objects near the

boundary. The coastline was determined by the boundary of the

land area with the largest size in the obtained binary image.
3.3 Coastline type acquisition

Before classifying coastlines, it is necessary to determine the

required types. In this study, taking into account factors such as

image resolution, the coastlines in Jiaozhou Bay area were classified
Frontiers in Marine Science 06
into three categories: artificial coastlines, sandy or muddy

coastlines, and bedrock coastlines. Pseudocolor composite images

combining near-infrared, green, and blue wave segments were used

for optical images due to the high degree of separation in land cover

between the NIR or SWIR bands (Sunny et al., 2022). For the

pseudocolor SAR image, the VH polarization mode was used to

assign red and blue channels, and the VV polarization mode was

used to assign green channels. An example of the classification

standards is shown in Table 2.

To classify land cover types corresponding to different

coastlines with multi-source data, this paper adopted the U-Net

(Ronneberger et al., 2015) neural network model and then counted

the coastline type information. U-Net is a semantic segmentation

model that adopts a convolutional neural network. Initially

established for medical image segmentation, U-Net has later been

applied to remote sensing image processing due to its outstanding

segmentation effect (Zhang et al., 2023). In this study, the optical

pseudocolor composite image from November 26 2017 and SAR

pseudocolor composite image from November 25 2017 were used as

standards to conduct histogram matching for images from other
TABLE 2 Coastline classification standards.

Type Describe Optical Pseudocolor
Image

SAR Pseudocolor
Image

Artificial
The coastline transformed by artificial activities mainly includes ports, embankments, and
breeding bases, and the geometric features of the coastline are obvious.

Bedrock The coastline is meandering and generally covered with vegetation.

Sandy
or
Muddy

Higher water content and more affected by tides.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1233410
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhu et al. 10.3389/fmars.2023.1233410
years. After the comparison test, the extracted coastline data were

extended towards land to establish a 500m buffer in order to remove

interference information and obtain the range of samples. The

samples were cut into 512×512 size for manual labeling. A total of

447 optical image samples and 178 SAR image samples were

labeled. Of these, 80% were used for model training and the

remaining 20% for verification. The optical and SAR samples

were input into the U-net model for training to obtain their

respective prediction models. The classification images were sized

to 512×512 for prediction and mosaic, and the coastline land cover

type of each year was obtained through classification. The coastline

type was statistically analyzed according to the classification results.
3.4 Accuracy verification methods

To verify the accuracy of both types of data, coastline extraction

was performed in 2017 using two different types of data with only

one day apart. Due to the lack of real data, part of the artificial

coastline was manually drawn using GF-2 data with a spatial

resolution of 4m as a substitute for the actual coastline. A total of

311 checkpoints were selected at intervals of 30m for precision

comparison. For the accuracy evaluation of the coastal land cover

result, the confusion matrix was used to calculate, and the overall

accuracy and kappa coefficient were used to evaluate the accuracy.
3.5 Analysis of coastline changes

The artificial coastline index is most often used to describe the

changes of coastline. In this paper, the End Point Rate (EPR)

(Akbari et al., 2022) (Formula (4)) and Linear Regression Rate

(LRR) (Thior et al. (2019)) (Formula (5)-(7)) were used to evaluate

the changes of the coastline of Jiaozhou Bay area.

EPR =
Distance(m)
Time(year)

(4)

where the parameter Distance is the net coastline movement

distance, which is the distance of the change in the direction of the

extended baseline between the oldest and latest years of the

coastline, and the parameter Time is the time span, which is the

interval between the coastline of the oldest year and the latest year.

LRR = a + bx (5)

b = o
n
i=1(xi − �x)(yi − �y)

on
i=1(xi − �x)2

(6)

a = �y − b�x (7)

where xi is the year and yi is the distance from the coastline to

the baseline along a cross section, and �x and �y are the averages of xi
and yi, respectively.

These two indicators represent changes relative to a baseline,

and the EPR only considers the relationship between the newest and

oldest coastlines, which more directly reflects the results of coastline
Frontiers in Marine Science 07
changes. In contrast, the LRR calculated by the least squares method

is considered to have a more statistical concept and can better reflect

the average trend of coastline change (Zoysa et al., 2023). Landward

movement (erosion) refers to the inward movement of a coastline

relative to the baseline, while seaward movement (accretion) refers

to the outward movement of a coastline relative to the baseline.

Erosion is typical expressed as negative (-), while accretion is

expressed as positive (+). The buffer boundary 500m to the ocean

of the results obtained in 2022 was taken as the baseline, and 100m

was taken as the average interval to obtain 1048 transects

perpendicular to the coastline for calculating the artificial

coastline index.

To analyze the reasons for coastline changes in the Jiaozhou Bay

area, we introduced the Pearson coefficient r to determine the

relationship between two quantities. As shown in Formula (8),

the value of the Pearson coefficient between [-1,+1] and “+” and “-”

indicates the positive and negative relationship between two

quantities. The stronger the correlation between two quantities,

the closer their absolute value of Pearson coefficient is to 1.

r = Correlation(x, y) = o​(x − �x)(y − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o​(x − �x)2o​(y − �y)2

q (8)

where �x and �y are the average values of the two variables x and

y, respectively.
3 Results and accuracy verification

3.1 Coastline extraction results and
type information

By comparing the extracted coastline results (Figure 3) with the

coastal land cover results (Figure 4), we obtained the results of eight

periods of Jiaozhou Bay coastline since 1987. The coastline lengths

of different years and different types were counted, and the results

are shown in Figure 5.

From 1987 to 1992, the coastline of Jiaozhou Bay briefly

increased from 187.23km to 214km but then decreased to

167.59km in 1997. During this period, the length of artificial

coastline also showed a consistent trend of first increasing and

then decreasing. After 1997, there was a general trend of growth,

and by 2022, the length of the coastline reached 219.24km. The

length of artificial coastlines increased significantly from 61.18km in

1987 to 129.8km in 2022, while the other two types of coastlines first

decreased and then increased.
3.2 Accuracy verification

The confusion matrix, as shown in Table 3, indicates that the U-

Net model accurately classified the three types of coastlines based

on their degree of separation. The overall accuracy of optical and

SAR image classification is 94.49% and 94.88%, and the kappa

coefficient is 0.9143 and 0.8949, respectively.
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As shown in Figure 6A, the average error of optical and SAR data is

29.2m and 13.1m, respectively. The average deviation in the direction

of the ocean, or comprehensive accuracy, is better than 1 pixel when

using data with a resolution of 30m. Additionally, SAR data has higher
Frontiers in Marine Science 08
accuracy than optical data at the same resolution. To compare and

analyze the differences in coastline extraction between multi-spectral

optical data and dual-polarization SAR data, 2,865 comparison points

were selected along the coastline with a spacing of 50m at each point

for position comparison, as shown in Figure 6B. Among them, 2,021

points are less than 30m apart, accounting for 70.54%, and 2,624 points

are less than 60m apart, accounting for 91.59%. The mean error is

5.44m, which is much less than 1 pixel, and the error for the part of the

coastline that remains unchanged in the five-year cycle of coastline

extraction is 1.09m/yr. When the spatial resolution is approximately

30m, it can be concluded that the coastline extraction error between

different datasets is around 1-2 pixels.
3.3 Dynamic changes in coastline location

The line chart depicting the changes in the EPR and LPR along

the coastline of Jiaozhou Bay from 1987 to 2022 is presented in

Figure 7. The coastline of Jiaozhou Bay is constantly changing, and

the results of the EPR and LRR are highly consistent. Nearly 90% of

the coastline extends from land to sea, and the average variation is

14.19m/yr and 14.24m/yr, respectively. The statistical changes in

different districts are shown in Table 4, with the maximum value

occurring in Huangdao District. The EPR and LRR values indicate

that the maximum rate of accretion reaches 59.94m/yr and 69.48m/

yr, respectively, which are 2.95 and 3.12 times higher than the

average change observed in the district. The maximum accretion

point has changed by nearly 2.5km towards the ocean in the past 35

years. Shibei, Licang, and Huangdao districts exhibit a high rate of

coastline change, with accretion far exceeding erosion. These areas

will be studied and discussed as key regions.
FIGURE 4

Results of coastal land cover type classification of Jiaozhou Bay. The base map is the result of matching the respective buffer histograms.
FIGURE 3

Overlay of coastline, baseline, and cross section (pseudocolor
composite image with 1987 data in background).
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4 Discussion of the changes of the
coastline from 1987 to 2022

4.1 Statistics of land reclamation area

The expansion of coastlines into the sea or land is influenced by

dominant factors. From the above results, it can be seen that the

artificial coastline in the Jiaozhou Bay area is the type of coastline

with the most significant changes, which are directly related to

human-made land reclamation and excavation. We have calculated

these changes according to the following principles:
Fron
• The breakpoints along the coastline were connected to form

a closed polyhedron, and the polyhedron formed by the

coastlines of the two adjacent years was overlaid to obtain

the changing region of the coastline.

• Based on the accuracy evaluation results of the two consecutive

years, any change area less than 4 pixels was excluded.

• In order to eliminate the influence of tides, the coastal areas

with the same sandy or silty type and bedrock change were

deleted. The region of change with an earlier time of any
tiers in Marine Science 09
type and a later time of sandy or silty type and spreading out

to the ocean was deleted.

• If the coastline change area of the adjacent two years was

any type of coastline at an earlier time and expanded to the

sea as an artificial coastline at a later time, it was considered

as reclaimed land change area. If the early time was artificial

coastline and the late time was any type of coastline and

expanded to land, it was regarded as the change area of

excavated land.
The statistical results are shown in Figures 8 and 9. Due to the

small area of excavated land (0.17km2, 1.47km2, and 0.20km2 from

2002 to 2008, 2008 to 2013, and 2013 to 2017, respectively), changes

were no longer reflected by years and were uniformly represented as

the erosion part.

Land reclamation activities were frequent in the east coast of

Jiaozhou Bay, mainly concentrated in Shibei and Licang districts

during the first 20 years. Afterwards, these changes were mainly

concentrated in Huangdao District, where several seaports were

constructed, including Qianwan Port, Victoria Port, and Haixi Gulf,

as highlighted in Figure 8. In addition, road construction was

carried out, including Huanhu Road on the east coast and
TABLE 3 Accuracy calculation of semantic segmentation (pixel).

Type
Optical SAR

Sandy or Muddy Bedrock Artificial Sandy or Muddy Bedrock Artificial

Sandy
or Muddy

266279 1357 10296 116292 35 1118

Biomass 3093 156606 12202 6304 30234 11124

Artificial 4148 12320 321597 1150 5148 314698

Overall Accuracy 94.49% 94.88%

Kappa Coefficient 0.9143 0.8949
FIGURE 5

The total length of coastline and the length of different types of coastlines changed during the study period.
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Shengtai Road on the west coast. Over the past 35 years, the total

land area reclaimed from the sea has reached 41.45km2.
4.2 Coastline changes and policies in
Shibei, Licang, and Huangdao

It should be noted that Shibei District, Licang District, and

Huangdao District are the three districts where land reclamation is

most frequent among the six districts surrounding Jiaozhou Bay. In

this study, Shibei District and Licang District are considered as one

region. Therefore, the land reclamation changes in these two

regions are counted separately, as shown in Figure 10. The

broken EPR line coincides highly with the histogram of the trend
Frontiers in Marine Science 10
in area change. It is indicated that the changes of the coastline in

these two regions were mainly caused by land reclamation. In the

past 35 years, the land reclamation areas of Shibei and Licang have

reached a total of 12.03km2, while that of Huangdao District has

reached 22.59km2, accounting for 81.45% of the total area, which

indicates that the land reclamation activities mainly occurred in

these two regions. Shibei and Licang districts are located on the east

bank of Jiaozhou Bay, where the “Old City” of Qingdao is situated.

In order to further open up to the outside world and introduce and

utilize foreign investment, Qingdao established the Huangdao

Economic and Technological Development Zone in the

Huangdao area in 1984. The coastline changes of the two areas

over the past 35 years have been greatly influenced by

Qingdao’s policies.
FIGURE 7

The coastline change rate of Jiaozhou Bay from 1987 to 2022. EPR and LRR are shown in blue and red solid lines. The blue and red dotted lines are
the mean values of EPR and LRR, respectively. The parentheses are the maximum values for the two rates.
FIGURE 6

Precision comparison verification diagram. (A) is the distance between the SAR image and the optical remote sensing image and the real coastline in
2017. Checkpoints were selected at intervals of 30m. The blue dot is the extraction result of the optical image, the red dot is the extraction result of
the SAR image, and the corresponding dashed color line is the average error; (B) is the difference distance between the SAR image and optical
remote sensing image in 2017, and the comparison point is selected with an interval of 50m. The blue and green dotted lines indicate ranges of ±30
and ±60, respectively.
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In the Ten-year Plan of Qingdao National Economic and Social

Development and the Outline of the Eighth 5-Year Plan issued in

1991, it was mentioned that the “Old City” should be planned as a

group in the south, middle, and north. The plan included

establishing a north–south narrow belt layout, strengthening

infrastructure construction, improving urban functions, and

enhancing urban modernization. During this period, Shibei and

Licang districts constructed a road around the sea called Huanwan

Road and carried out numerous reclamation activities. The zigzag

coastline was transformed into a relatively straight one, resulting in
Frontiers in Marine Science 11
a reduction of the total length of the coastline. During this period,

the reclamation activities in Shibei and Licang districts also peaked,

and the construction of Qianwan Port and other ports in Huangdao

District supported land reclamation in the Huangdao area.

Especially after implementing the strategy of advancing to the

Qingdao West Coast New Area in 2003, which aimed to promote

industrial cluster development in Huangdao District, a large

number of ports were constructed there, leading to extensive land

reclamation activities. During this period, the land reclamation

activities in Huangdao District reached a peak.
4.3 Reasons for coastline changes

To explore the main factors that lead to coastline changes in

Jiaozhou Bay and their relationships, Figure 11 presents a scatter

matrix that was formed of the length of three types of coastlines,

total coastline length, and area change caused by artificial

reconstruction. The relative relationship between them was then

obtained through fitting.

The relevance value (r) between the total length of the coastline

and artificial coastline was 0.727, indicating a strong positive

correlation. However, there was a strong negative correlation

between the total length of the coastline and the area change

caused by artificial coastline, with an r value of -0.819. This

indicates that the dominant factor driving coastline change in the

Jiaozhou Bay area over the past 35 years has been human activities

related to coastline reconstruction. These activities, especially the

construction of seaports and roads, made the coastline of Jiaozhou

Bay more regular in shape. As a result, the coastline initially

appeared to be shortening but then began to lengthen due to

further reconstruction in these areas. Sandy or muddy shorelines,

which are strongly affected by tides and may lead to changes in the

area of Jiaozhou Bay, have little impact on the total length of the

coastline. Artificial coastline is negatively correlated with sandy or

muddy coastlines and bedrock-rich coastlines. This is because

human activities related to coastal reconstruction have

transformed parts of these two types of coastlines into artificial

ones over the past 35 years. Human reconstruction activities in the
FIGURE 8

Reclamation and excavation in Jiaozhou Bay from 1987 to 2022.
The shoreline in the base map is extracted from the experiment in
1987.
TABLE 4 Statistics of the overall changes of coastline in Jiaozhou Bay from 1987 to 2022.

Rate
Number of Accretion Transects Number of Erosion Transects Accretion (m/yr) Erosion (m/yr)

EPR LRR EPR LRR EPR LRR EPR LRR

Shinan 41 37 8 12 2.463 2.456 −0.910 −0.820

Shibei 103 101 18 20 15.180 16.342 −1.801 −0.844

Licang 80 80 0 0 24.794 26.104 0 0

Chengyang 296 290 59 65 9.240 7.317 −3.273 −3.049

Jiaozhou 57 58 4 3 28.332 25.424 −9.578 −10.093

Huangdao 353 349 29 33 20.328 22.287 −1.060 −1.126

Total
(Proportion)

930 (89%)
915

(87%)
118

(11%)
133

(13%)
Average change 16.723 16.655 −2.769 −2.655
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Jiaozhou Bay area began to weaken after 2013. Since 2017, the

length of the other types of shorelines has been increasing, while the

artificial coastline area remains stable.

In a word, the coastline of Jiaozhou Bay is constantly changing.

During the nearly 20 years from 1992 to 2013, the reconstruction of

Jiaozhou Bay’s coastline was at its peak, particularly in terms of sea

and land reclamation for port and coastal road construction, which

significantly altered the spatial distribution of the coastline. Over

the following 10 years, developers along the shoreline gradually

came to realize that the reconstruction of Jiaozhou Bay’s coastline

had caused significant damage to its marine ecological

environment. Then, the reconstruction speed leveled off, and the

length of sandy or muddy coastline and bedrock increased.
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5 Conclusions

To analyze the spatio-temporal changes of Jiaozhou Bay’s

coastline over the past 35 years, we utilized a combination of

long-term optical and SAR images and the NDWI and SDWI

indices with the Otsu threshold method to automatically extract

the coastline. We then used the U-Net network to classify different

types of coastlines and analyzed their spatio-temporal changes over

the past 35 years. Through the research in this paper, the following

valuable conclusions can be drawn:
1) The coastline type information provides important

information for analyzing long time series coastline
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Integrated phase change table of land surface reclamation in Shibei, Licang, and Huangdao districts. The broken line shows the change of EPR, and
the bar chart shows the area of land reclamation.
FIGURE 9

Statistics of reclamation and excavation area (km2) in Jiaozhou Bay from 1987 to 2022.
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changes. Based on the U-Net model, the coastline type

information of Jiaozhou Bay was accurately extracted. The

overall accuracy of the classification based on the optical

and SAR images is 94.49% and 94.88%, and the kappa

coefficient is 0.9143 and 0.8949, respectively.

2) The NDWI based on multi-spectral remote sensing data and

the SDWI based on dual-polarization SAR data can

effectively extract coastline information. The average error

of the coastline extracted from the NDWI by optical data

and SDWI by SAR images is about one pixel, and the

accuracy of SAR image is better than that of optical image.

The error of coastline extraction from the two types of data

is within the 1-2 pixels range. When these errors are

reflected in the coastline evaluation index, the error is

1.09m/yr, which achieves a high accuracy under the

image condition with a resolution of 30m.
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3) The coastline of Jiaozhou Bay is dynamically changing. In

the past 35 years, due to the frequent human activities, the

coastline has been reconstructed on a large scale, and the

length of the artificial coastline has increased significantly.

According to the LRR, the coastline is developing at an

average of 14.24m per year towards the sea, and the

maximum change reaches 69.48m/yr.

4) In the past 35 years, the main reason for the coastline

changes in Jiaozhou Bay area is human reclamation. The

total land reclamation in the past 35 years has reached

41.45km2, among which Shibei District, Licang District,

and Huangdao District are the three districts with the most

drastic coastline changes and the most frequent land

reclamation activities, with a total land reclamation area

of 34.62km2. The coastline changes in each area are closely

related to the policies of Qingdao City.
FIGURE 11

Scatter matrix of sandy or muddy material, bedrock, artificial coastline length, total coastline length, and area changes caused by human behavior.
The red line is the fitting line, and r value is the Pearson correlation coefficient.
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This paper realizes the extraction and classification of coastlines

through multi-source remote sensing data, providing a reasonable

method for analyzing spatio-temporal changes in coastlines using

such data. Meanwhile, analyzing the spatio-temporal changes of the

coastline in the Jiaozhou Bay area can provide a reference for local

coastal zone development and protection. Its deficiency is the lack

of analysis on the impact of tides on coastal changes in areas greatly

affected by tides. In addition, due to issues such as remote sensing

image resolution, only three types of coastlines have been classified;

we can provide a more detailed classification of coastline types in

future work.
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