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Abundance indices play a crucial role in monitoring and assessing fish population

dynamics. Fishery-independent surveys are commonly favored for deriving

abundance indices because they follow standardized or randomized designs,

ensuring spatiotemporal consistency in representative and unbiased sampling.

However, modifications to the survey protocol may be necessary to

accommodate changes in survey goals and logistic difficulty. When the survey

undergoes changes, calibration is often needed to remove variability that is

unrelated to changes in abundance. We evaluated a long-term monitoring

program, the Long River Survey (LRS) in the Hudson River Estuary (HRE), to

illustrate the process of calibrating survey data to account for the effects of

changing sampling protocol. The LRS provided valuable ichthyoplankton data

from 1974 to 2017, but inconsistencies in sampling timing, location, and gears

resulted in challenges in interpreting and comparing the fish abundance data in

the HRE. Generalized Additive Models were developed for five species at various

life stages, aiming to mitigate the impact of sampling protocol changes. Model

validation results suggest the consistent performance of the developed models

with varying lengths of time series. This study indicates that changes in the

sampling protocol can introduce biases in the estimates of abundance indices

and that the model-based estimates can improve the reliability and accuracy of

the survey abundance indices. The model-estimated sampling effects for each

species and life stage provide critical information and valuable insights for

designing future sampling protocols.

KEYWORDS

fishery-independent survey, Hudson River Estuary, ichthyoplankton, survey
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1 Introduction

Abundance indices derived from fishery-dependent and fishery-

independent data play a crucial role in stock assessment by

providing valuable information on fish population dynamics

(Pennino et al., 2016; Maunder et al., 2020). Fishery-independent

surveys are commonly favored for deriving abundance indices

because they follow standardized or randomized designs, ensuring

consistency in gear, effort, and sampling methods across different

locations and time periods. However, modifications to the survey

protocol may be necessary to accommodate changes in survey goals,

such as focusing on specific species or fishery-related

measurements. Nominal CPUE, measured as the total catch

divided by an observable measure of effort, may not always

accurately reflect the true abundance of resources over time and

space (Harley et al., 2001), as it can be influenced by various factors

such as sampling area, gear used (Chiarini et al., 2022; Ducharme-

Barth et al., 2022), and changes in the sampling protocol. In cases

where the study area is not uniformly surveyed due to biased

sampling, catch rate calibration (Webster et al., 2020) is often

employed to eliminate variability that is unrelated to changes in

abundance (Walters, 2003).
Frontiers in Marine Science 02
The Hudson River is an environmentally, economically, and

socially important waterbody flowing south through New York,

from the Adirondack Mountains through New York City. The

Hudson River Estuary (HRE) extends 245 km from Troy, New York

to the Battery in New York City, where it drains into the Atlantic

Ocean (Figure 1). The estuary is high in nutrients and well-mixed

due to tidal mixing, with approximately 1-meter tides, and a salt

wedge fluctuating about 100 river km from New York Harbor,

depending on freshwater flow and tidal cycles (Cooper et al., 1988).

The HRE is home to over 200 fish species (Levinton and Waldman,

2006). The HRE provides critical habitat for freshwater, marine,

estuarine, and diadromous fishes, including many key fish species of

economic, ecological, and social importance in the northwest

Atlantic Ocean (e.g., American Eel Anguilla rostrata, American

Shad Alosa sapidissima, Atlantic Tomcod Microgadus tomcod,

Striped Bass Morone saxatilis, and White Perch Morone

americana). Habitat restoration and fisheries management are

being used to conserve the HRE’s ecosystem and restore the

HRE’s signature fisheries after decades of overharvest and habitat

destruction. The success of these efforts depends on understanding

how the HRE ecosystem responds to environmental and climate

changes and anthropogenic activities.
FIGURE 1

The Hudson River Estuary (in dark blue) divided into 13 river regions for the stratified random sampling design of the LRS based on river kilometer.
The dashed line indicates the northernmost boundary of the study area prior to the expansion of the study area in 1988 when region 12 expanded to
include river kilometers 226-245. Region 0 was not included in the sampling until 1988.
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The Long River Ichthyoplankton Survey (LRS) under the Hudson

River Biological Monitoring Program (HRBMP) is a fishery-

independent ichthyoplankton trawl survey conducted continuously

from 1974 through 2017. It was concluded in 2017 with the

announcement of the closure of the Indian Point power plant. The

LRS collected over 467 thousand observations for over 150 species in

the HRE with over 108 thousand tows, targeting a range of fish

species and providing critical information on the abundance and

spatiotemporal distribution for their early life stages, including eggs,

yolk-sac-larvae (YSL), post-yolk-sac-larvae (PYSL), young-of-year

(YOY), and older. The LRS provided a unique opportunity to study

how different fish species and fish communities respond to

climatically and anthropogenically induced changes in

environments within the HRE. However, before these data can be

used they must be understood and their quality assured. While the

LRS followed a stratified random survey design consistently over the

survey period, many technical changes occurred during the survey to

address various issues encountered in the survey due to logistic

limitations, modified survey objectives, and foci on specific topics.

These inconsistencies in sampling practices could introduce

observation bias in the sampled fish abundance data, raising

significant difficulties in using and interpreting survey catch rates

and fish dynamics over space and time. This calls for a careful and

comprehensive evaluation of the possible impacts of changing survey

protocols and the development of approaches to calibrate and

standardize the survey data to make them spatiotemporally

consistent and comparable, serving as an excellent example for

illustrating the process of calibrating fishery-independent data.

The present study aims to use the LRS as an example to develop a

data calibration procedure and evaluate the impacts of sampling

protocol changes on the estimates of fish abundances and

spatiotemporal distributions. Using several representative species

and their key early life stages, we aim to: 1) evaluate and identify

the influential sampling factors to the LRS dataset, 2) explore

appropriate and duplicable statistical approaches to calibrate the

data to minimize the sampling bias in fish abundance indices and

validate their performance, 3) provide more robust model-based

abundance indices, and 4) demonstrate the risks of neglecting

sampling bias by comparing discrepancies between the model-

based abundance indices and the design-based abundance indices.

The formulated data calibration procedure will be widely applicable

to not only the entire LRS dataset but also similar fisheries surveys

and biological monitoring programs seeking solutions to address

sampling bias in data. The findings of this study will also provide

insights into optimizing survey designs and analyzing survey data in

broader environmental studies. These insights can contribute to

improving the reliability and accuracy of abundance estimates in

similar fishery-independent surveys.

2 Materials and methods

2.1 Long river survey

The HRE is the southern portion of the Hudson River, extending

245 rkm (river kilometer) from the Federal Dam in Troy, NY to the

Battery in New York City (Figure 1). The upper portion of the HRE is
Frontiers in Marine Science 03
a freshwater ecosystem and the southern 97 rkm is a brackish/marine

ecosystem (Daniels et al., 2005). Although the sampling area covers

from Albany to Battery Park, NY, the sampling in the Battery Park

region and the northernmost reaches of the Albany region did not

start until 1988.

The LRS ichthyoplankton data were collected throughout the

HRE primarily from April through November, 1974-2017; however,

the starting and ending dates varied from year to year (Figure 2).

Sampling was done on a weekly basis during May-July, and on a

biweekly basis during the other months. Although a stratum-based

stratified random sampling design was used for determining

sampling locations, the allocation of sampling effort across river

regions and strata was adjusted over time based on the projected

occurrence and spatial distribution of the target species and life stages

(ASA Analysis & Communication (ASAAC), 2016). The sampling

strata in the study are divided into 13 longitudinal river regions

(Figure 1), ranging from Albany to Battery, and 3 habitat strata,

including shoal, channel, and bottom (Heimbuch et al., 1992). A 1 m2

Tucker trawl was used for sampling shoal and channel strata, and a 1

m2 epibenthic sled was used for sampling the shoal and bottom strata.

Both gears were fitted with 505 mm mesh plankton nets and were

used for all sampling times and areas. In general, the Tucker trawl

sampled shallower depths ranging from 0 to 47.3 meters (m) with a

mean of 6.5 m, and the epibenthic sled sampled deeper depths

ranging from 0 to 60.3 m with a mean of 10.57 m. The sample

depth was the distance from the surface of the water to the top of the

gear. The sample depth was determined randomly for each tow, based

on the strata being sampled.

Sampling was carried out throughout the entire study area,

during both daytime and nighttime except 1987-1994. Daytime was

defined as the period from 30 minutes after sunrise to 30 minutes

before sunset, while nighttime was defined as the period from 30

minutes after sunset to 30 minutes before sunrise. Prior to 1987,

surveys were conducted in daylight until early June, after which they

were conducted at night to minimize possible gear avoidance by the

developing fish (Bowles et al., 1978; Boreman and Klauda, 1988).

Gear avoidance by larval fish has been found to relate to visual stimuli

(Bridger, 1956) and fish size, with larger fish exhibiting greater gear

avoidance (Ahlstrom, 1954). Larval fish have been found to engage in

diel migrations, (Haldorson et al., 1993; Murphy et al., 2011; Ospina-

Alvarez et al., 2012), including species that are found in the HRE

(Noble, 1970). From 1987 through 1994, no daytime sampling was

conducted. Sampling intensity was heavily skewed toward nighttime

from the years 2000 – 2017. The dates of switching from daytime to

nighttime sampling were not consistent over the years (Figure 2).

Abundance data of ichthyoplankton and fishes at several life stages

were collected from the LRS, including eggs, YSL, PYSL, and YOY.

Analyses were performed using catch data for striped bass, white perch,

and American shad (eggs, YSL, and PYSL), Atlantic tomcod (PYSL and

YOY), and American eel (YOY and yearling and older (YROL).
2.2 Case study species

Five species were selected as species of focus with data from two

or three life stages selected for each species for analysis (Table 1).
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These species and their respective life stages were selected

considering their representation in the LRS database in terms of

ecological roles, targeting status in the survey design, and socio-

economic importance.

Striped bass is a significant species in the HRE not only because

of their commercial value but also their iconic social-ecological
Frontiers in Marine Science 04
importance (McLaren et al., 1988; Limburg et al., 2006). The

Hudson River has been identified as a significant contributor of

striped bass to the Atlantic coastal fisheries (McLaren et al., 1981),

and the HRE is crucial spawning and nursery ground for striped

bass (Nack et al., 2019). Striped bass were initially the single species

of focus of the LRS because the utility company was obligated to
FIGURE 2

Boxplots of the sampling day of year for the Long River Survey in each year. The vertical bars in the boxes are medians. The left and right limits of
the boxes are the first (Q1) and third (Q3) quartiles (25th and 75th percentiles). The difference between Q1 and Q3 is the interquartile range (IQR).
Potential outliers are defined as observation points that fall outside the range of Q1-1.5*IQR and Q3 + 1.5*IQR. If potential outliers are presented, the
whiskers extend to 1.5 times the IQR from Q1 or Q3. If no outliers are presented, the whiskers extend to the minima and maxima of the distributions.
Yellow boxes denote daytime sampling, and navy-blue boxes denote nighttime sampling.
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demonstrate compliance with federal regulations for the

construction and operation of the Cornwall pumped-storage

facility and thermal power plants with once-through cooling

(Barnthouse et al., 1988). Therefore, striped bass eggs, YSL, and

PYSL were used in this study.

Later, the Federal Nuclear Regulatory Commission and the U.S.

Environmental Protection Agency required the inclusion of white

perch and Atlantic tomcod as Representative Important Species to

define and assess their long-term population dynamics in relation to

power plant operations (Barnthouse et al., 1988; Dew and Hecht,

1994b). The white perch and Atlantic tomcod were then included as

target species in the LRS in 1975. Despite the closure of the white

perch fishery due to PCB contamination in February 1976, white

perch remain crucial in the HRE due to their abundant population,

and the HRE serves as vital spawning and nursery grounds for them

(Klauda et al., 1988a), thus white perch eggs, YSL, and PYSL were

used. Atlantic tomcod stands out as the only abundant species that

spawns during winter in the HRE. Their spawning grounds are

mainly located in the lower Hudson River, which sets them apart

from other fish species in the river in terms of their spatiotemporal

distribution (Dew and Hecht, 1994a). Consequently, they are an

important species to examine when assessing the impacts of

changes on sampling protocols. Due to winter ice conditions in

the river, the survey was not able to consistently sample the egg and

YSL stages. Therefore, Atlantic tomcod PYSL and YOY stages were

used in this study.

The Hudson River American shad fishery has a rich history in

New York, existing for over 200 years and was one of the most

profitable shad fisheries on the East Coast at one time, before the

fishery closed in 2010 due to depletion of the stock (ASMFC

(Atlantic States Marine Fisheries Commission), 2020). Despite the

historical, economic and cultural importance of American shad,

they did not become a target species in the survey until 1982.
Frontiers in Marine Science 05
American shad are anadromous, relying on the HRE as their

spawning and nursery habitat, therefore eggs, YSL, and PYSL

were used in this study (Limburg, 1996a).

The Hudson River system accommodates several anadromous

fish species that use it as a nursery habitat, yet American eel is the

only catadromous fish found in the river, which renders them

unique (Mattes, 1989). However, the LRS never intended to target

the American eel, although the LRS data provided important stock

assessment inputs for American eel juvenile and YROL life stages

(ASMFC, 2017). Being a catadromous species, the larval eels

migrate from the Sargasso Sea to the HRE after hatching, where

they spend most of their lives in brackish or freshwater before

returning to the Sargasso Sea to spawn (Schmidt, 1923; Mattes,

1989). Therefore, this study focused on American eels in older life

stages (YOY and YROL). Additionally, the American eel is the most

widely distributed fish species in the Hudson River system (Mattes,

1989), which makes it an excellent candidate for assessing the

impact of changes in sampling protocols on non-target species.
2.3 Data calibration procedure

2.3.1 Variables selection
Changes in LRS sampling protocol had gone through variation

in sampling timing in a day, sampling period in a year, sampling

locations, gears, and depth. These changes could affect catch rates

over the survey period for different species and hence were treated

as predictors in our statistical modeling. We then used the catch-

per-unit-effort (CPUE) of different species as the measurement of

sampling efficiency, which was calculated by dividing the fish

abundance by the filtered water volume in m3. Statistical

modeling was built to describe the relationship between these

variables with the following multivariate formula:
TABLE 1 Analyzed species and life stages selected from the Long River Survey database.

Species Consideration in survey
design

Life
stage

Presumed season as
DOY

Spatial range as river region as in Figure 1

American eel never a target species YOY 58-338 0-12

YROL 56-288 0-12

American shad became a target species since 1982 egg 97-188 7-12

PYSL 124-211 7-12

YSL 117-189 7-12

Atlantic
tomcod

became a target species since 1975 PYSL 52-236 0-7

YOY 70-288 0-7

Striped bass target species during the entire period egg 100-196 3-11

PYSL 122-239 2-10

YSL 111-229 1-9

White perch became a target species since 1975 egg 97-194 7-12

PYSL 111-246 7-12

YSL 99-210 5-11
PYSL, post-yolk-sac-larvae; YOY, young-of-year; YROL, yearling and older; YSL, yolk-sac-larvae.
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CPUE ∼ year + f (DOY) + f (hour) + f (rkm) + f (depth) + gear

+ f (op : inter : terms) + ϵ, (1)

where CPUE is related to all the sampling protocol variables

through their respective functions which are specified by different

models. In this formula, CPUE denotes the CPUE value for certain

species and life stage calculated from the LRS database, year denotes

the data year, DOY denotes the sampling day of the year, hour

denotes the sampling time of the day rounded to the hour, rkm

denotes the sampling location measured with river kilometer, depth

denotes the sampling depth, gear denotes the gear used in the

records, and op.inter.terms denotes optional interaction terms

between any variables that may be included in candidate models.

Year and gear were modeled as discrete categorical variables while

the other variables were modeled as continuous variables.

Multicollinearity among the predictors was evaluated using

Variance Inflation Factor (VIF) analysis for all species and life

stages prior to the model selection to avoid error inflation and

unreliable coefficient estimates (Hair et al., 2010). Outliers in CPUE

data were identified as those that were two times larger than the

second largest value, which was then excluded from the model

development process. As the LRS dataset did not record zero-catch

tows from the survey for each species, we added zero-catch tows to

the survey stations that did not have a catch record for the

study species.
2.3.2 Candidate model exploration
We explored different statistical models to calibrate the catch

rates for different species and life stages. We restricted our modeling

to data collected from their habitats during the seasons each life

stage occurred in the HRE, measured with the HRE river region and

DOY, respectively (Table 1). The use of a stratum-based stratified

random sampling design with 13 river regions by the LRS facilitates

the description of the geographical distribution of a given species/

life stage. The seasons of occurrence were determined as the ranges

of DOY where the first and last non-zero catch was observed over

the time series, and their spatial ranges were determined as the river

regions they inhabit during certain life stages, through a literature

review and preliminary data review. This design could not only

ensure the calibrated survey catchability is ecologically reliable in

terms of the species’ spatiotemporal dynamics but also reduce the

potential bias in model fitting using maximum likelihood methods

due to the “complete separat ion” i ssue (Albert and

Anderson, 1984).

Specifically, the habitat of American shad was defined as the

upper HRE (river region 7-12), according to their well-reported

spawning activities (Limburg 1995; Limburg, 1996b). The

occasional observations of American shad eggs in the lower HRE

were assumed to be produced by vagrants from different river

systems, indicated by their distinct otolith growth rates and Sr : Ca

values (Limbrug, 1995), hence not included in our data calibration.

According to Klauda et al. (1988a) in their study on white perch,

the upper zone of the freshwater area, particularly in the Saugerties-

Albany regions, had a higher incidence of white perch spawning

activity. The white perch eggs and YSL were similarly distributed
Frontiers in Marine Science 06
spatially, as they have limited mobility and minimal downstream

transport due to their short life stage duration (Klauda et al., 1988a).

On the other hand, PYSL was more widely dispersed across the

sampling regions in the upper and middle estuary zones (Klauda

et al., 1988a). Therefore, for white perch eggs and YSL, the study

area was limited to the upper HRE regions 7-12, while for PYSL, the

study area was shifted to river regions 5-11.

Striped bass spawn mostly in the middle regions of the HRE

(Boreman and Klauda, 1988), and they move downstream as they

grow into larval stages (McLaren et al., 1981). This distributional

shift by life stages was further adjusted and determined based on

their occurrence. Atlantic tomcod is known as a winter spawner in

the lower HRE (Klauda et al., 1988b). Accordingly, the inhabiting

river regions for their PYSL and YOY were defined as the lower

HRE (river regions 0-7) in this study. The American eel YOY and

YROL habitats were defined as the entire HRE, considering that

they were observed throughout the river, their well-developed

mobility, and their catadromous nature (hatch in the ocean and

enter the Hudson River Estuary at a later life stage) (Mattes, 1989).

Although early life stages such as eggs and larvae are known to have

limited mobility, the study areas were determined to cover a

sufficient geographical range to include their distributions.

The LRS CPUE data were found to be heavily zero-inflated

(Supplementary Materials Figure S-1), which is a common

challenge in ecology statistical modeling that needs to be

addressed with specified assumptions in distribution and model

selections (Zuur et al., 2009). Recognizing the zero-inflated nature

of the data, we conducted a preliminary model trial procedure with

a suite of generalized models based on several different responsive

variable assumptions that were widely used in modeling zero-

inflated data in aquatic ecology. Following the standardized

multivariate formula (1) and previous modeling practices

(specified as references in the parenthesis), the trialed

models included:
• Generalized Linear Models (GLMs) with negative binomial

distribution (modeling fish abundance from catch sample

data, Power and Moser, 1999);

• Generalized Additive Models (GAMs) with negative

binomial distribution (modeling the Gulf of Mexico fish

community abundance with climatic and oceanographic

factors using a fishery-independent dataset, Drexler and

Ainsworth, 2013);

• Generalized Additive Models (GAMs) with Tweedie

distribution (modeling juvenile fish distribution with

environmental variables and prey abundance in the

Yellow Sea using a fishery-independent dataset, Xue et al.,

2018);

• Generalized Additive Models (GAMs) with zero-inflated

(hurdle) Poisson distribution (modeling juvenile crayfish

river and stream habitats in New Zealand using an ecology

survey database, Jowett et al., 2008);

• Generalized Additive Models (GAMs) with zero-inflated

negative binomial distribution (modeling relative

abundance indices of silky shark using data collected by

observer programs, Lennert-Cody et al., 2019);
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Fron
• Generalized Linear Models (GLMs) with zero-inflated

negat ive binomia l d is t r ibut ion (bi l lfish CPUE

standardization using commercial longline fishery data,

Walsh and Brodziak, 2015);

• Generalized Linear Mixed-effects Models (GLMMs) with

random intercept and slope (modeling Northwest Atlantic

shark abundance using fishery-dependent data, Baum and

Blanchard, 2010);

• Generalized Additive Mixed-effects Models (GAMMs) with

random intercept and spline (modeling capability of two

recreational species in West Australia using catch data,

Navarro et al., 2020).
Considering some of the examined distributions were only

applicable to discrete count data in ecology (such as negative

binomial and Poisson distributions), we specifically modified the

modeling techniques to deal with the continuous CPUE data in our

study by incorporating offset terms (CPUE = catch.abundance/

sampled.volume).

Despite these efforts, the preliminary model trial procedure

showed that only the GAM assuming Tweedie distribution could

return converged model outputs, while the other models either did

not converge or returned extremely poor fitting with an R square of

less than 0.01. Tweedie distribution is a generalization of several

probability distributions including normal, gamma, inverse-

Gaussian, and Poisson distribution, determined by a power

parameter theta, which could be estimated via maximum

likelihood estimation (Tweedie, 1984). With certain values of

theta (1<theta<2), the Tweedie distribution can interpret a

compound Poisson-gamma distribution (quasi-Poisson and quasi-

negative binomial) in the response variable (Tweedie, 1984;

Jørgensen, 1987). This characteristic makes it particularly effective

in dealing with zero-inflated fisheries and aquatic data such as

CPUE and catch volume (Shono, 2008; Arcuti et al., 2013; Berg

et al., 2014). The GAMs with Tweedie distribution were developed

with the R package “mgcv” version 1.8-40 (Wood andWood, 2015).

2.3.3 Model selection
Three versions of Tweedie GAM variants were developed as the

final candidate models following the multivariate formula (1),

including a base version without optional interaction terms, a version

with an interaction term between depth and year, and a version with an

interaction term between depth and gear. The depth-year interaction

was evaluated because the LRS tow depths were inconsistent over the

surveyed year, with the tows from the more recent years concentrated

in shallower water (Supplementary Materials Figure S-2). The depth-

gear interaction was evaluated because the two survey gears (Tucker

trawl and epibenthic sled) could have different selectivity by depth,

which could result in misspecified catchability even in identical depths

(Supplementary Materials Figure S-3).

The three final candidate models were developed for the case

study species with their respective life stages. Among the candidate

models, we aimed to select the single model that best described the

survey catchability based on their goodness-of-fit, which were
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compared with three indicators: Akaike Information Criterion

(AIC), Root Mean Square Error (RMSE), and deviance explained.

AIC is a widely used model selection criterion in ecological

modeling (Portet, 2020). It measures the goodness-of-fit as well as

model complexity of candidate models to a set of data based on the

relationship between maximum likelihood and divergence, with a

lower AIC value indicating a better fit. RMSE is a commonly used

estimator in fisheries stock assessment to measure the difference

between the model-fitted values ( dCPUEt ) and the observed value

(CPUEi) with the following equation (Wilberg and Bence, 2008;

McCormick et al., 2012):

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(CPUEi −   dCPUEi )2
n

s
,   (2)

where n represents the number of CPUE observations. Deviance

explained describes how much the fitted model can reduce the

deviance compared to a null model that assumes no relationship

between predictors and response variables. The values of deviance

explained are always strictly between 0 to 1, with higher values

representing better model fit.

2.3.4 Model validation
Two model validation procedures were implemented to

evaluate the models’ predictive performance for different species

and life stages, including a K-fold analysis and a retrospective

analysis. The statistical analyses were conducted using R version

4.0.3 (R Core Team, 2020).
2.4 K-fold analysis

For the K-fold analysis, each dataset was divided into five

equally sized subsets (folds). The data were randomly resampled

within each year without replacement so each year of data is evenly

represented in each of the five subsets. Cross-validation was then

performed five times per model, with one subset used as a validation

set, and the remaining four subsets combined and used as a training

set. During each iteration, the model is trained on the training set

and evaluated on the validation set.

To evaluate the models’ performance, RMSE, root relative

square error (RRSE), and Spearman correlation coefficient

estimated from each fold were used. The RMSE quantifies the

average magnitude of the differences between predicted values and

actual values. The RMSE indicates a perfect match between

observed and predicted values when it equals zero, with higher

RMSE values indicating an increasingly poor match (Kouadri

et al., 2021).

The RRSE indicates how well a model performs relative to the

average of the true values. Therefore, when the RRSE is lower than

one, the model performs better than the simple model. Hence, the

lower the RRSE, the better the model. The square root of the relative

squared error is used to reduce the error to the same units as the

predicted quantity (Kouadri et al., 2021):
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RRSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(CPUEi −   dCPUEi )2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(CPUEi −  CPUE)2
q , (3)

where  CPUE denotes the mean observed CPUE value.

The correlation coefficient assesses the strength and direction of

the monotonic relationship between the observations and

predictions. Due to a large number of zeros and skewed

distribution with extremely large values in the data, the Spearman

correlation coefficient (rho) was used (Spearman, 1904).
2.5 Retrospective analysis

A retrospective analysis was performed by sequentially

removing the data from the most recent years, fitting the best-fit

models, and comparing the terminal year estimates (Kell et al.,

2021). Retrospective analysis is widely used in quantitative fisheries

science to understand the consistency of a statistical model’s

performance over time, providing key diagnostic evidence for

accepting or rejecting a model. The process of sequentially

removing the last year’s data is called “peeling”. In this study, we

performed a five-year peel for all the best-fit models and focused on

the estimates of year-effects, as they represented the temporal trend

in fish abundance, which was the most important stock status

indicator. Specifically, we performed the peeling procedure by

sequentially removing all data from the terminal year (2017) by a

one-year step until five years (when 2012 became the terminal year).

The model was then refitted with each set of truncated time series

data using the same variable and model structure. We then

compared the terminal year estimates of stock abundance to the

full model estimate for that year for potential retrospective errors.

We used a quantitative indicator, Mohn’s rho (Mohn, 1999), to

measure the magnitude of the five-year retrospective errors, which

is calculated as:

Mohn0s   rho =  
1
5
 oT−1

t=T−5

y(1 : t),t −   y(1 :T),t
y(1 :T),t

(4)

where T is the terminal year of the complete data series, t is the

terminal year of the peeled data series, y(1:t),t is the model-based year

effect estimated for the terminal year using the peeled data series, y

(1:T),t and is the model-based year effect estimated for the terminal

year using the full data series. Mohn’s rho ranges between -1 to 1,

with a value close to 0 representing a negligible retrospective pattern

in the model, indicating consistent model performance with

different lengths of time-series data. According to the earlier

simulation analyses based on integrated, age-structured models

with different species (Hurtado-Ferro et al., 2015), a Mohn’s Rho

is considered reflective of the existence of a retrospective pattern

when its value is higher than 0.20 or lower than −0.15 for longer-

lived species, or larger than 0.30 or lower than −0.22 for shorter-

lived species, though these thresholds may not apply to age-

aggregated CPUE estimates as in the presented study.
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2.6 Model calibration effects

We measured the model calibration effects by comparing the

model-based abundance indices (year effects estimated from the

Tweedie GAMs) with the design-based abundance indices.

The design-based annual abundance indices have been

historically used for evaluating fish abundances for key species.

The design-based annual abundance indices (I) were calculated as

averaged density (number of individuals divided by the volume of

water sampled) over all surveyed regions, strata, and weeks (ASA

Analysis & Communication (ASAAC), 2016):

I =olast  week
w=first  week

o12
i=1o3

s=1Vi,s(oj  
Ctj,i,s,w
vj,i,s,w

)

o12
i=1o3

s=1Vi,s

24 35   (5)

where Ctj,i,s,w denotes the number of individuals of a species in

sample j, region i, stratum s, and week w, vj,i,s,w denotes the volume

of water sampled for sample j in region i, stratum s, and week w, and

Vi,s denotes the volume of stratum s in river region i, and first week

denotes the first week of a year in which the accumulative weekly

density estimates exceeds 5% of the sum of densities over all weeks

of sampling, and last week is defined as first week + 7 weeks.

To make the annual abundance comparable over time, only

river regions 1-12 were used as the Battery (river region 0) was not

sampled until 1988. The weeks used for eggs, YSL, and PYSL of

striped bass, American shad, and white perch were their proposed

peak seasons, assuming an 8-week long duration of spawning

season. For Atlantic Tomcod, due to ice conditions in the River,

the LRS was unable to consistently sample the YSL stage. However,

an abundance index for the period when the transformation from

PYSL to the juvenile stage occurred could be calculated for weeks

19-22 (approximately DOY 127-154). This period roughly

corresponds to the month of May, and the abundance of Age 0

tomcod was calculated from LRS data for these four weeks (ASA

Analysis & Communication (ASAAC), 2016). The annual

abundance of American eel was estimated based on data from

weeks 18-26 when the survey was conducted throughout the river,

assuming that the occurrence of YOY and YROL eels takes place

during the spring and early summer (Mattes, 1989). To compare if

the proposed weeks (PW) have effects on the estimates, we also

estimate abundance indices using all weeks (AW). Pearson’s

correlation coefficient was used to evaluate the correlation

between design-based and model-based abundance indices

(Shono, 2008).

Additional analyses were conducted for the Atlantic tomcod

PYSL due to their unique spatiotemporal distribution. Although the

Atlantic tomcod was included as a Representative Important

Species in the survey in 1975 (Barnthouse et al., 1988), the

allocation of sampling effort focused on the collection of Atlantic

tomcod PYSL was discontinued in 1981 and was not resumed until

1995 (ASA Analysis & Communication (ASAAC), 1996). The

missing allocation of sampling effort for tomcod as well as

changing survey start dates (DOY) over the years (Figure 2)
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might have impacts on the estimates of PYSL abundance indices as

the tomcod peak season for PYSL was reported from mid-March to

mid-April (Klauda et al., 1988b). It is hypothesized that the

abundance index would be negatively correlated with the survey

start DOY as the early survey start DOY was more likely to include

the peak season of tomcod PYSL, considering the survey started in

late April or May that could have missed the peak season of high

PYSL density. Furthermore, previous studies (Dew and Hecht,

1994a; Dew and Hecht, 1994b) indicated that a significant

amount of tomcod 0-age abundance (29-45%) was not accounted

for when the survey missed the seaward of the Yonkers region from

March through May. Therefore, river regions 0-12 data collected

from 1988 to 2017 were used to estimate design-based abundance

indices for Atlantic tomcod PYSL and YOY using all weeks and

proposed weeks to evaluate the potential impacts of exclusion of the

Battery area. It is hypothesized that the inclusion of the Battery area

data would improve the estimates of abundance indices, assuming a

significant proportion of tomcod postlarvae and juveniles

distributed in the Battery area (Klauda et al., 1988b; Dew and

Hecht, 1994a; Dew and Hecht, 1994b).

The model-based abundance indices were denoted as IM. The

design-based abundance indices using the proposed weeks’ data

were denoted as IPW, and the design-based abundance indices using

the proposed weeks’ data were denoted as IAW for all species except

for Atlantic tomcod PYSL. For the Atlantic tomcod PYSL, the

design-based abundance indices using data with the inclusion of

Battery area were denoted as IPW (0-12) and IAW (0-12), and the

design-based abundance indices using data without the inclusion of

Battery area were denoted as IPW (1-12) and IAW (1-12).
3 Results

3.1 Changes in sampling protocol

The changes in sampling protocol of the LRS have altered the

catchability of different ichthyoplankton in the HRE. The duration

of sampling varied yearly, with inconsistencies in the start and end

dates (Figure 2). The number of days of sampling also varied,

ranging from the 32 days of sampling in 1982 to 104 days of

sampling in 1995. In addition to varying sampling duration,

differences in diel timing of sampling fluctuated. Sampling during

the day was conducted in the early weeks of the sampling season, for

the years in which there was daytime sampling, starting as early as

February and as late as May, and ending as early as March and as

late as July (Figure 2). Nighttime sampling was conducted for later

river runs, starting as early as February and as late as June, and

ended as early as July and as late as October, with little overlap

between daytime and nighttime sampling each year (Figure 2).

The Tucker trawl and epibenthic sled were inconsistently used

throughout the LRS. The annual sampling intensity for the sled

ranged from 270 tows in 2012 to 1591 tows in 1976, and for the

trawl ranged from 982 tows in 1982 to 1974 tows in 1976 (Figure 3).

The location of sampling also varied by year and by gear. The survey

area expanded over the duration of the LRS (Figure 1) and the two

gears were disproportionately used in different river regions. The
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differences in gear and sampling locations also resulted in changes

in sampling depths throughout the LRS (Supplementary Materials

Figure S-2).
3.2 Model fitting

Three versions of Tweedie GAM variants (a base version

“tw.gam.base”, a version with depth and year interaction

“tw.gam.depth.year”, and a version with depth and gear

interaction “tw.gam.depth.gear”) were compared for their

goodness-of-fit with AIC, deviance explained, and RMSE

(Supplementary Materials Table S-1). The Tweedie GAM with

depth and gear interaction performed the best among all cases

(except for the Atlantic tomcod PYSL where it did not converge),

exhibited particularly by AIC. The base model without interaction

always had relatively higher AIC values and lower deviance

explained and RMSE. However, the discrepancies in deviance

explained and RMSE were mostly negligible. Considering the

simplicity of base models and low computational demands

(required less than 5% computation time given the large size of

LRS), the base model demonstrated a more favorable tradeoff

between model complexity and goodness of fit. Therefore, the

base model was selected as the optimal calibration model for the

following analyses.

Relationships between the survey CPUE and the six considered

predictors were modeled using the base Tweedie GAM. The four

spatio-temporal factors in the LRS were found to be strongly related

to the predicted CPUE values for all species and life stages
FIGURE 3

Boxplots of the usage of the two gears by river kilometer for all
sampling tows for all species in each year of the LRS. The horizontal
bars in the boxes are medians. The bottom and top limits of the
boxes are the first (Q1) and third (Q3) quartiles (25th and 75th
percentiles). The difference between Q1 and Q3 is the interquartile
range (IQR). Potential outliers are defined as observation points that
fall outside the range of Q1-1.5*IQR and Q3 + 1.5*IQR. If potential
outliers are presented, the whiskers extend to 1.5 times the IQR
from Q1 or Q3. If no outliers are presented, the whiskers extend to
the minima and maxima of the distributions. Purple boxes denote
sampling using an epibenthic sled, and green boxes denote
sampling using a Tucker trawl.
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examined, and the year and gear effects were also significant

(Supplementary Materials Figure S-4 to S-16). Peaks in DOY,

hour, and Rkm were obvious and unsynchronized among species

and life stages, indicating varied seasons and hours of appearance

and use of habitat in the HRE. CPUE demonstrated fluctuations

over the surveyed years, which could reflect model-based fish

abundance (results and analysis see section 3.2). The epibenthic

sled consistently displayed significantly higher median CPUE values

compared to the Tucker trawl. In only 7 out of 13 cases did their

CPUE distributions overlap, indicating considerable gear effects in

survey catchability.
3.3 Model calibration effects

The model-based and design-based abundance indices were

shown in Figure 4. The Pearson’s correlation coefficients (r) of the

model-based and design-based abundance indices were all

statistically significant for all species and life stages with a mean r

of 0.76 except for Atlantic tomcod PYSL IAW (0-12) and IAW (1-12)

(Figure 5 and Supplementary Materials Table S-2). The model-

based and design-based abundance indices were generally highly

correlated (r>0.73) for all species either using the PW data (see

methods) or AW data except Atlantic tomcod.

The r of IM and IPW (1-12) was 0.62 (p<0.05, df=42) for tomcod

PYSL; however, the r of IM and IAW (1-12) was only 0.20 (p=0.20,

df=42). With the inclusion of the Battery river region data, the IPW

(0-12) still had a higher correlation coefficient with the IM (r=0.39,

p<0.05, df=28) than IAW (0-12) (r=0.22, p=0.236, df=28). It should be

noted that the estimates using inclusion and exclusion of the Battery

data were not directly comparable as the inclusion of Battery data

was only available from 1988-2017.

On the other hand, the r of IM and IAW (1-12) was 0.70 (p<0.05,

df=42) for tomcod YOY; while the r reduced to 0.46 (p<0.05, df=42)

for IM and IPW (1-12) (Table S-2). With the inclusion of the Battery

data, the r of IM and IPW (0-12) for tomcod YOY was 0.72 (p<0.05,

df=28) and the r of IM and IAW (0-12) for tomcod YOY was 0.93

(p<0.05, df=28).

Without the inclusion of the Battery data (1974-2017 time

series), the IAW (1-12) for tomcod PYSL was negatively correlated

with survey start DOY (Figure 6A, r=-0.375, p<0.05, df=42) as

hypothesized. The IPW (1-12) was positively correlated with survey

start DOY, although it was not statistically significant (Figure 6B,

r=0.14, p=0.365, df=42). Similarly, the IM (1974-2017) were

positively correlated with survey start DOY (Figure 6C, r=0.331,

p<0.05, df=42), reflecting declining abundance (Figures 3 and 4)

when the survey started earlier and resumed the allocation of

sampling effort for tomcod PYSL after 1995.

With the Battery data (1988-2017 time series), the IPW (0-12) and

IAW (0-12) were negatively (Figure 6D, r=-0.138, p=0.468, df=28) and

positively (Figure 6E, r=0.132, p=0.485, df=28) correlated with

survey start DOY, respectively, yet they were not statistically

significant. The IM (1988-2017) was still positively correlated with

survey start DOY (Figure 6F, r=0.563, p<0.05, df=28).
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3.4 Model validation

3.4.1 K-fold analysis
The RMSEs varied among species and life stages, depending on

the statistics of each dataset. In general, the RMSEs estimated from

the 5 trials generate similar RMSEs with low variation (Figure 7A

and Supplementary Materials Table S-3). However, a few models

(shad eggs and striped bass eggs) showed a wider range of RMSEs as

the RMSE is sensitive to extreme values, reflecting the nature of the

datasets. The rho between observations and predictions are all

significantly different from zero at the significance level of 0.05,

suggesting the observations and predictions are significantly

correlated (rho around or higher than 0.5) (Figure 7B and

Supplementary Materials Table S-3). However, the rho for eel

YOY is notably lower (c. 0.25), possibly due to a lack of data

during the 1980s. For most models, the RRSEs were below or

around 1 (Figure 7C and Supplementary Materials Table S-3),

suggesting reduced error compared to the simple models.

Nevertheless, the RRSEs were above 1 for shad YSL and white

perch eggs, indicating that the model performance was not

satisfactory and caution should be taken for the accuracy of the

estimates for these two models.

3.4.2 Retrospective analysis
A five-year retrospective analysis indicated negligible

retrospective errors in the optimal calibration model (base Tweedie

GAMs) according to the estimatedMohn’s rho (Figure 8). The largest

absolute value ofMohn’s rho was observed with “American shad egg”

at 0.102, which did not indicate noticeable retrospective pattern

(<0.3) for such a short-lived species. White perch had the smallest

Mohn’s rho values for all its life stages compared with other examined

species, indicating the most stable model fitting performance over

time. Eggs tended to possess the largest absolute Mohn’s rho values

compared with other life stages, implying a relatively stronger

retrospective pattern in the optimal calibration model for egg

abundance, despite their extremely low levels.

While the retrospective patterns were not strong for the

terminal years (based on which the Mohn’s rho values were

estimated), there were still some retrospective patterns observed

for the intermediate years. Specifically, variabilities between

different “peel” models were observed around 2010 for striped

bass egg, white perch egg, and white perch YSL. However, the

relative range of these variabilities was always smaller than 15%,

indicating low risks of retrospective patterns with the optimal

calibration models.
4 Discussion

4.1 Model-based abundance indices can
mitigate the spatiotemporal biases in
design-based abundance indices

With the growing utilization of long-term data sets for

establishing baseline reference points in aquatic environments, it
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becomes increasingly important to understand any biases or

evaluate the uncertainty that may arise from changes in sampling

strategies or protocols (Tuckey and Fabrizio, 2013). In this study,

the model-based and design-based abundance indices generally

exhibited high correlation, despite inconsistencies in the sampling

protocol across various areas and time periods resulting in some

unsampled areas and inconsistent survey durations and shifts

between day and night. This suggests that the design-based

abundance indices provide valuable information that is
Frontiers in Marine Science 11
comparable to the model-based abundance indices, even without

accounting for sampling effects resulting from changes in the

protocol, when considering the annual and river-wide scale.

However, abundance can be underestimated or overestimated

when important factors were not considered (e.g., peak season, major

spatial distribution). The model-based abundance indices take these

factors (e.g., spatial and temporal variables) into account and can

address the inconsistent sampling issue. Furthermore, the model

estimated sampling effects reflected the observations in other studies.
FIGURE 4

Model-based (IM) and design-based abundance indices for each species and life stage. IPW denotes the design-based abundance indices estimated
using the proposed weeks’ data. IAW denotes the design-based abundance indices estimated using all weeks’ data. For the Atlantic tomcod, the IPW
(0-12) denotes the design-based abundance indices estimated using proposed weeks data with the inclusion of Battery, and the IAW (0-12) denotes the
design-based abundance indices estimated using all weeks data with the inclusion of Battery. PYSL, post-yolk-sac-larvae; YOY, young-of-year;
YROL, yearling and older; YSL, yolk-sac-larvae.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1237549
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chang et al. 10.3389/fmars.2023.1237549
For example, the model estimated the two spatial peaks for striped

bass eggs around rkm 90 and rkm 140 (Supplementary Materials

Figure S-11), which corresponded to the observations in Boreman

and Klauda (1988). Also, even with the inconsistent survey start

DOY, the model estimated the highest density of Atlantic tomcod

PYSL occurred during DOY 70-120 (Supplementary Materials Figure

S-9), which corresponded to the observations in previous studies

(Klauda et al., 1988b; Dew and Hecht, 1994a). On the contrary, the
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design-based indices may be sensitive to the inconsistent allocation of

sampling effort over space and time, especially for early life stages. If

the peak of spawning for eggs and YSL occurs in a specific location

and time, it can be challenging to capture the maximum abundance

of these life stages both spatially and temporally, especially since they

last for less than a week (Boreman and Klauda, 1988). The Atlantic

tomcod illustrated an example that the estimates could be

considerably affected by the inconsistent sampling protocol.
FIGURE 5

Pearson’s correlation coefficients between model-based and design-based abundance indices. IPW denotes the design-based abundance indices
estimated using the proposed weeks’ data. IAW denotes the design-based abundance indices estimated using all weeks’ data. For the Atlantic
tomcod, the IPW (0-12) denotes the design-based abundance indices estimated using proposed weeks data with the inclusion of Battery, and the IAW
(0-12) denotes the design-based abundance indices estimated using all weeks data with the inclusion of Battery. PYSL, post-yolk-sac-larvae; YOY,
young-of-year; YROL, yearling and older; YSL, yolk-sac-larvae.
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Dew and Hecht (1994a; 1994b) pointed out that it is necessary

to include the most seaward region of the estuary (Battery) to define

a self-contained, measurable population of larval and early juvenile

Atlantic tomcod. Our results showed that the inclusion of the

Battery region did improve the estimates of abundance for

tomcod YOY, suggesting that there is a considerable amount of

Atlantic tomcod juveniles distributed in the Battery area over the

season. However, the estimates of abundance with the inclusion of

Battery may still be biased for the tomcod PYSL if the peak season

was missed in several years. In other words, even if the majority of

the spatial distribution of the population was covered by the survey,

the inconsistent sampling protocol would still have significant

impacts on the estimates of abundance if the peak season was

missed in several years, especially for early life stages that generally

have sharp seasons. Timing in relation to the seasonal cycle and

location of the target species, and the fact that only a limited

amount of data can be collected, are considered to be two main

deficiencies in fishery-independent surveys, which could lead to

unrepresentative sampling (Hilborn and Walters, 1992; Pennino

et al., 2016). The Atlantic tomcod in this study provides an example

where the estimates derived from the fishery-independent survey

could be biased.

Although abundance indices were used for evaluating changes

in annual abundance for each species, especially for early life stages

due to their high mortality rates, it should be noted that having

more accurate absolute abundance estimates can provide valuable

insights and benefits for fisheries management. Absolute abundance

estimates provide information on the size and productivity of the
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population, which is crucial for setting appropriate fishing quotas or

catch limits. Reliable abundance estimates contribute to more

effective and sustainable management practices. Furthermore,

absolute abundance estimates could be used to identify threatened

or endangered populations (e.g. sturgeon species), monitoring

population recovery efforts, and assessing the effectiveness of

conservation measures. While relative indices provide useful

information for assessments, having more accurate absolute

abundance estimates adds value from a management perspective.
4.2 Sampling efficiencies on the target and
non-target species

Long-term fishery-independent survey datasets often involve

the addition of new target species, which may require modifications

to the sampling protocol. However, the effects of these changes on

both target and non-target species are often overlooked, even

though data from non-target species can offer valuable insights

into population dynamics and ecosystem dynamics. The design-

based abundance indices for the eggs and larval stages of most target

species (striped bass, American shad, and white perch) included in

this study showed a strong correlation with the model-based

abundance indices, whether using all weeks or only the proposed

week data. This could be due to the fact that early life stages offishes

tend to have shorter seasons compared to juvenile and older stages

(Boreman and Klauda, 1988), and the assumption of the design-

based abundance indices that the periods of early life stages present
B C

D E F

A

FIGURE 6

Relationships between (A) IAW (1-12) and survey start DOY (day of year); (B) IPW (1-12) and survey start DOY; (C) IM and survey start DOY, using 1974-
2017 time series, and (D) IAW (0-12) and survey start DOY; (E) IPW (0-12) and survey start DOY; and (F) IM and survey start DOY using 1988-2017 time
series data for the Atlantic tomcod PYSL. IPW denotes the design-based abundance indices estimated using the proposed weeks’ data. IAW denotes
the design-based abundance indices estimated using all weeks’ data. IPW (0-12) denotes the design-based abundance indices estimated using
proposed weeks data with the inclusion of Battery, and the IAW (0-12) denotes the design-based abundance indices estimated using all weeks data
with the inclusion of Battery. A trendline using linear regression analysis was added to each of the panels, denoting the trend of the correlation.
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in the river last seven weeks seemed reasonable for the three target

species (Heimbuch et al., 1992) when estimating annual

abundance indices.

Although both white perch and Atlantic tomcod were included

as Representative Important Species since 1975 due to their high

abundance and susceptibility to impingement and entrainment

(Barnthouse et al., 1988; Klauda et al., 1988a), there was no

allocation of sampling effort for tomcod during 1981-1994. The

exact reason for over ten years of discontinuation of sampling
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allocation for the Atlantic tomcod was not clear. It is possibly

because of the unique spatiotemporal distribution of the Atlantic

tomcod as the only abundant winter spawners in the lower HRE,

making it different from other target species (Dew and Hecht,

1994a). This, however, suggests that being considered as a target

species did not guarantee better data quality compared to non-

target species, particularly when the sampling events were not

carried out consistently. As suggested by Dew and Hecht (1994a),

a sampling plan that is designed to capture other major species in
B

C

A

FIGURE 7

(A) Root mean squared error (RMSE); (B) Correlation coefficient (rho); and (C) Root relative squared error (RRSE) of the 5 folds for models of each
species and life stage. The red lines indicate 1. PYSL, post-yolk-sac-larvae; YOY, young-of-year; YROL, yearling and older; YSL, yolk-sac-larvae. Note
that the y-axis range differs among the panels.
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the Hudson River may not be optimal for the Atlantic tomcod due

to its unique characteristics.

On the contrary, the abundance indices of American eel showed

high correlations (r > 0.8, p< 0.05, df = 42) between the IAW and IPW
with IM. Despite never being a target species in the LRS, this finding

suggested that the survey had adequately covered the major

spatiotemporal distributions of American eel YOY and YROL in

most years, even with the changing sampling protocol. However,

during the 1980s, several years had no catch data for American eel

YOY (1982-1987 and 1990), and only two YOY were observed in

1984, making it challenging to evaluate the effect of survey start date

on the abundance index estimates, given that most early survey start

dates occurred in the 1980s (Figure 2). It is unclear whether
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American eel YOY were not observed or were not considered in

the survey during those years, as American eel was not regarded as a

target species in the LRS.
4.3 Spatiotemporal effects
in data calibration

For long-term fishery-independent surveys, spatiotemporal

scales can be an important factor for assessing the accuracy and

uncertainty associated with the estimates. The impact of changes in

sampling protocol on estimates varies depending on the scale and

purpose of the analysis, as shown in this study. When examining
FIGURE 8

Retrospective trajectories of the year effects for the most recent 10 years for the optimal calibration model (The base Tweedie GAM). The calculated
Mohn’s rho values are shown in the corresponding panel. Est represents the estimated CPUE value. PYSL, post-yolk-sac-larvae; YOY, young-of-year;
YROL, yearling and older; YSL, yolk-sac-larvae.
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annual and river-wide trends, the design-based abundance indices

for most species were consistent with model-based abundance

indices, indicating that the major spatiotemporal distributions

were well captured by the survey and that the sampling protocol

changes did not significantly affect the estimates. However, when

analyzing spatiotemporal changes at a finer scale, estimates may be

biased or incomparable over time. For instance, the onset of the

spawning season for American shad could not be accurately

estimated in some years due to a late start in the survey.

Additionally, when evaluating distributional shifts over time, the

sampling location effects must be taken into account, as some areas

were not sampled in early years, which could bias the estimates,

especially for species distributed in both ends of the survey area

(Dew and Hecht, 1994a; Dew and Hecht, 1994b). Although this

study considered several significant factors, there may be other

potential factors that can influence the estimates, such as variations

in the spawning season due to the lunar phase (Takemura et al.,

2004) or climate-related environmental changes (O’Connor et al.,

2012). Similarly, distributional shifts over time may be caused by

factors such as water quality changes, habitat alterations, invasive

species, and anthropogenic activities, which are beyond the scope of

this study and require further investigation.
4.4 Implications for future survey data
calibration and sampling design

This study highlights the importance of identifying target species

when designing fishery-independent surveys, as they determine the

necessary spatiotemporal coverage of the survey. The results derived

from this study indicate that the survey should sufficiently cover the

significant spatiotemporal distributions of the target species. This

study emphasizes how sampling protocol changes could result in

biased estimates of abundance indices (e.g. Atlantic tomcod),

providing valuable insights for future sampling protocols.

Additionally, the model-estimated spatiotemporal distributions for

each species and life stage provide critical information for designing

future sampling allocations.

The calibration models developed in this study were effective in

removing the effects not directly related to abundance and

accounting for changes in the sampling protocol over time. The

employed Tweedie GAMs can produce robust data calibration

effects with different sample sizes and lengths of time-series data

according to the retrospective analysis. However, for a few species

and life stages, the uncertainty of the estimates should be taken with

caution. For example, the shad YSL and white perch eggs models’

performance were not satisfactory, suggesting that there may be

other important variables that were not included in the models

driving the changes in CPUEs. On the contrary, the retrospective

analysis showed that the developed calibration model performed

consistently with different lengths of time-series survey data,

indicating a relatively stable catchability pattern over the

historical years. The K-fold analyses also showed satisfactory

prediction performance for most species and life stages,
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demonstrating relatively consistent calibration effects over varying

sample sizes. However, a calibration model update is still required

when extreme climatic or environmental events are observed in the

HRE ecosystem, as they may drastically affect the spawning

dynamics of ichthyoplankton and result in altered survey efficiency.

Some caveats should be noted when interpreting the prediction

results over the calibration models. First, the LRS did not have a

cross-design sampling scheme which could generate full

combinations of all sampling variables at all levels. This could

disallow the use of mixed-effect models that assume nested design

in data sampling (Schielzeth and Nakagawa, 2013) and result in

limitations in predicting the sampling catchability over space and

time, although these variables were treated as continuous variables

(Webster et al., 2020). In most years, the daytime sampling started

first in the year and switched to nighttime sampling to reduce gear

avoidance by the PYSL (Boreman and Klauda, 1988), while each

species and life stage have varying spawning and growth schedules.

Furthermore, there was no or very limited daytime sampling during

1987-1994. Therefore, it should be noted that the daytime and

nighttime effects on CPUE might be an artifact resulting from the

sampling protocol. Second, the nature of the LRS data poses

additional challenges in modeling and predicting sampling

catchability. Specifically, the records on ichthyoplankton juvenile

abundance (measured with “count”) are often in decimal numbers

as they were expanded from subsamples collected for laboratory

processes, which is a common and standard procedure in collecting

juvenile surveys. The dominance of zero tows further adds to the

complexity of the data distribution and they appear with various

sampling efforts (measured with “water volume filtered”). We chose

to use CPUE as an abundance index for the data calibration based

on Tweedie GAM, which was the only option that could best

address these data issues. However, the smoothing effects in the

GAMs still could not perfectly predict the zero CPUE value, which

limited its predictive power for extremely low and high

catch scenarios.

The identified effects in the sampling designs not only can

provide a baseline to calibrate the historical LRS dataset but also

offer valuable insights for developing and optimizing future survey

designs. The statistical patterns in the sampling factors (such as

sampling season, time, and location) highlight improved or reduced

survey efficiencies for different species as well as life stages in the

HRE. This knowledge allows for more effective sampling for species

with emphasized conservation or management demands, while a

tradeoff still exists between species-specific and whole-community

levels survey objectives. To ensure better data calibration quality, it

is recommended to conduct some more standardized samplings

following a strict cross-design. This will generate comparable catch

records in terms of sampling design and hence enable the evaluation

of relative catch efficiencies using more statistical approaches.

Gaining a thorough understanding of how to apply available data

sets and recognizing their limitations will provide valuable support

to scientists and managers who are confronted with uncertainties in

research surveys and are tasked with the challenge of effectively

managing resources.
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