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Assessment of thermocline
depth bias in the Seychelles-
Chagos Thermocline Ridge of
the Southwestern Indian Ocean
simulated by the CMIP6 models

Saat Mubarrok1,2,3, Fuad Azminuddin1 and Chan Joo Jang1,2*

1Ocean Circulation and Climate Research Department, Korea Institute of Ocean Science and
Technology (KIOST), Busan, Republic of Korea, 2Department of Ocean Science, University of Science
and Technology (UST), Daejeon, Republic of Korea, 3Program Study of Geophysics, Mulawarman
University, Samarinda, Indonesia
The Seychelles-Chagos Thermocline Ridge (SCTR, 5°S-10°S, 50°E-80°E) is a

unique open-ocean upwelling region in the southwestern Indian Ocean. Due to

the negative wind stress curl between the equatorial westerlies and southeasterly

trade winds, SCTR is known as a strong upwelling region with high biological

productivity, providing a primary fishing zone for the surrounding countries.

Given its importance in shaping the variability of the Indian Ocean climate by

understanding the sea-air interaction and its dynamics, the simulation of SCTR is

evaluated using outputs from the Coupled Model Intercomparison Project Phase

Sixth (CMIP6). Compared to observations, 23 out of 27 CMIP6 models tend to

simulate considerably deeper SCTR thermocline depth (defined as the 20°C

isotherm depth (D20))– a common bias in climate models. The deep bias is

related to the easterly wind bias in the equatorial to southern Indian Ocean,

which is prominent in boreal summer and fall. This easterly wind bias produces a

weak annual mean Ekman pumping, especially in the boreal fall. Throughout the

year, the observed Ekman pumping is positive and is driven by two components:

the curl term, is associated with the wind stress curl, leads to upwelling during

boreal summer to fall; the beta term, is linked to planetary beta and zonal wind

stress, contributes to downwelling during boreal spring to fall. However, the

easterly wind bias in the CMIP6 increases both the positive curl and negative beta

terms. The beta term bias offsets the curl term bias and reduces the upwelling

velocity. Furthermore, the easterly wind bias is likely caused by the reduced east-

west sea surface temperature (SST) difference associated with a pronounced

warm bias in the western equatorial Indian Ocean, accompanied by the east-

west mean sea level pressure gradient over the Indian Ocean. Furthermore, this

study finds local wind-induced Ekman pumping to be a more dominant factor in

thermocline depth bias than Rossby waves, despite CMIP6 models replicating

Rossby wave propagation. This study highlights the importance of the beta term
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in the Ekman pumping simulation. Thus, reducing the boreal summer-to-fall

easterly wind bias over the Indian Ocean region may improve the thermocline

depth simulation over the SCTR region.
KEYWORDS

thermocline depth bias, SCTR, CMIP6, Indian Ocean, Ekman pumping velocity, beta
term, curl term
1 Introduction

An open ocean upwelling region in the Indian Ocean, famously

known as the Seychelles-Chagos Thermocline Ridge (SCTR;

Hermes and Reason, 2009; D’Addezio and Subrahmanyam, 2016;

George et al., 2018; Vialard et al., 2009) or the Seychelles Dome (SD;

Yokoi et al., 2008; Nagura et al., 2013) or the thermocline ridge in

the Indian Ocean (TRIO; Jayakumar and Gnanaseelan, 2012;

Praveen Kumar et al., 2014; Deepa et al., 2019) has been observed

and analyzed by many previous studies (e.g., Xie et al., 2002; Yokoi

et al., 2012; Burns and Subrahmanyam, 2016; Nyadjro et al., 2017;

Sabu et al., 2021). The upwelling is primarily driven by the Ekman

pumping velocity associated with the negative local wind stress curl

between the southeasterly trade wind and the equatorial westerlies.

The equatorial westerlies generate equatorward Ekman flow, which

helps to enhance the upwelling off the equator (Xie et al., 2002). The

westward propagating Rossby waves act as a remote forcing and

contribute to the variation of the thermocline depth in this region

(Masumoto and Meyers, 1998; Yokoi et al., 2008). The seasonal

variation of the SCTR thermocline depth is mainly controlled by the

wind stress variation following the Indian Ocean monsoon (Yokoi

et al., 2008). The sea surface temperature (SST) is also relatively

warm (26-29.5°C), with a maximum during the boreal spring

(March-April) and a minimum during the boreal summer in

August (Foltz et al., 2010; Fathrio et al., 2017). In this study,

seasons refer to those for the Northern Hemisphere. At the

surface, the westward South Equatorial Current (SEC) current

dominates from the southern region up to 10°S. The eastward

South Equatorial Countercurrent (SECC) appears relatively weak

between the equator and 5°S (Schott et al., 2009; Vialard et al.,

2009). In the subsurface, zonal velocities are predominantly

westward up to 20 cm/s in the northern Madagascar Island and

the meridional current has relatively little variability (Nagura and

Mcphaden, 2018).

Due to the nature of the upwelling region, this area produces

high biological productivity and has become a focus area for tuna

fishing activity (Fonteneau et al., 2008; Kim and Na, 2022; Kim

et al., 2022). Substantial annual chlorophyll-a variability with a peak

in summer (June-July-August) coincided with the southeast trade

wind, which mixed the nutrient-rich subsurface layer with surface

waters (Dilmahamod et al., 2016; George et al., 2018). The SST

variability influenced by subsurface temperature has been shown to

be a significant forcing for the formation of tropical cyclones in the

Indian Ocean (Xie et al., 2002; Leroux et al., 2018; Tulet et al., 2021)
02
and affects the precipitation activity in the Indian and African

region (Ummenhofer et al., 2009). The SST anomaly in this region

is also suggested as an indicator of the onset of the Indian summer

monsoon season. In addition, the SCTR region has received

attention from major observational projects such as the Second

International Indian Ocean Expedition (IIOE-2; Hood et al., 2015),

Cirene Cruise (Vialard et al., 2009), the Research Moored Array for

African-Asian-Australian Monsoon Analysis and Prediction

(RAMA; McPhaden et al., 2009), the Indian Ocean Observing

System 2 (IndOOS-2; Beal et al., 2020) and the REunion

NOVative research on cyclonic RISKs programme, (ReNovRisk,

Tulet et al., 2021), indicating the importance of this region for

climate variability around the Indian Ocean rim countries.

Previous studies have assessed the dynamics of the SCTR region

by optimizing the availability of ocean-atmosphere coupled general

circulation models (CGCMs). Many studies have found that the

CGCMs are still inadequate to simulate the dynamics of the SCTR

(e.g. Wang et al., 2021; Zhang et al., 2023). For example, Yokoi et al.

(2009) found a substantial bias in the local Ekman pumping in the

SCTR region from the output of 22 models of the World Climate

Research Programme (WCRP) Coupled Model Intercomparison

Project Phase 3 (CMIP3) models, caused by the inability of the

models to reproduce the asymmetric monsoonal winds in the

region. Furthermore, using 20 models of the Coupled Model

Intercomparison Project Phase 5 (CMIP5), Zheng et al. (2016)

found an overestimation of thermocline depth due to an easterly

wind bias along the equator. The wind bias produces a westward-

propagating downwelling Rossby wave in the southern part and

overestimates the thermocline dome over the SCTR region (Li et al.,

2015a; Zheng et al., 2016). Nagura et al. (2013) also found that the

longitudinal bias in the 14 CMIP5 models of the SCTR dome shifted

to the east. This bias results from an easterly wind bias that is

noticeable in summer and fall and reproduces the shallow

thermocline bias in the eastern Indian Ocean (Java and Sumatra

coasts) via Kelvin wave dynamics. By evaluating 21 CMIP5 models,

Fathrio et al. (2017) found that the SST was too warm in the western

equatorial Indian Ocean during the summer monsoon season.

The outputs of the Coupled Models Intercomparison Project

Phase 6 (CMIP6), a new generation of the Coupled Models

Intercomparison Project (CMIP) series, have recently been made

available. The CMIP6 models include the DECK (Diagnostic,

Evaluation, and Characterization of Klima) and CMIP historical

simulations (1850–near present) and an ensemble of 23 endorsed

Model Intercomparison Projects (MIPs) (Eyring et al., 2016). Since
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the dynamics in the SCTR region play an essential role in global

climate variability, especially in the Indian Ocean region, the ability

of CMIP6 models to simulate the SCTR region is important,

whether or not the CMIP6 models show an improvement over

the previous CMIP generation. This study aims to evaluate the skills

of CMIP6 models to simulate the SCTR by comparing them with

reanalysis data. Specifically, the objective of this study is to assess

the ability of CMIP6 models in reproducing the key characteristic of

SCTR region, focusing on the importance of the Ekman pumping

velocity as the primary local forcing and the westward propagating

Rossby wave as the remote forcing. To the best of our knowledge,

this study is the first to evaluate the SCTR simulation in the newly

released CMIP6 climate models.

This paper is organized as follows. A brief description of the

data observations and model outputs, as well as the methods used in

this study, is presented in the next section. In Section 3, we revisit

the SCTR formation from the reanalysis data and present the

possible mechanisms that produce the CMIP6 thermocline depth

bias in simulating the annual mean state of the SCTR region. In

particular, we focus on the formation of wind-induced upwelling

represented by the Ekman pumping velocity and the contribution of

westward propagating Rossby wave to the SCTR region represented

by the thermocline depth anomaly during Indian Ocean Dipole

(IOD) events. Section 4 presents the discussion, focusing on the bias

of the CMIP6 models compared to the observations and the

previous generation of CMIP5 models. Conclusions are given in

the final section.
2 Data and methods

2.1 Data

To see the ability of the CMIP6 models to simulate the

thermocline depth, defined by the 20°C isotherm depth (hereafter

D20), we used the outputs from historical runs of 27 CMIP6

models. The historical simulations were forced by observed

atmospheric composition changes, such as greenhouse gases,

aerosols, and solar radiation (Eyring et al., 2016). The details and

references for the model configurations are provided in Table 1 and

are available at https://pcmdi.llnl.gov/CMIP6/. We chose the data

period from 1980 to 2014 of 35 years of simulation, following the

rule of thumb of at least 30 years of minimum data period to obtain

a reliable estimate of statistical data identity such as the mean

(WMO, 2017). To check whether the CMIP6 models show an

improvement over the previous CMIP generation, we use the

output of 25 CMIP5 models (Taylor et al., 2012). However, for

convenience, we choose a shorter data period from 1980 to 1999 of

20 years of simulation, since our main focus is to assess the CMIP6

data simulation. For the analysis of both CMIP5 and CMIP6

simulations, we used the monthly mean historical run and

regridded to 0.5° x 0.5° spatial resolutions using bilinear

interpolation. The details and model configuration references for

CMIP5 models are provided in Supplementary Table S1.
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To evaluate the skill of CMIP6 models to simulate the

thermocline depth, we used monthly mean ocean temperature

data from the Simple Ocean Data Assimilation version 3.4.2.

(SODA3.4.2; Carton et al., 2018). SODA3.4.2 is based on the

Modular Ocean Model version 5 (MOM5; Griffies, 2012), which

is based on the National Oceanic and Atmospheric Administration

(NOAA)/Geophysical Fluid Dynamics Laboratory (GFDL) CM2.5

coupled ocean-sea ice model (Delworth et al., 2012). It is forced by

the European Centre for Medium-Range Weather Forecasts

(ECMWF) ReAnalysis Interim (ERA-Interim; Dee et al., 2011)

near-surface atmospheric variables in addition to downwelling

shortwave and longwave radiation and includes heat and

freshwater flux correction. The SODA3.4.2 uses the Coupled

Ocean-Atmosphere Response Experiment version 4.0 (COARE4;

Edson et al., 2013) for the bulk flux algorithms. The vertical

resolution is 10 m in the upper ten levels but is coarser in the

deeper ocean from the 11th to the 50th level, and the horizontal

resolution of the monthly dataset is 0.5°. In addition to SODA3.4.2,

we also use the reanalysis data of the EN4.2.1 (EN4; Good et al.,

2013) ensemble members using the bathythermograph corrections

of Levitus et al. (2009). The EN4.2.1 dataset includes subsurface

temperature and salinity information, covering the period from

1900 to the present. The EN4.2.1 dataset combines data from Argo

profiles, the Artic Synoptic Basin-wide Oceanography (ASBO;

Curry et al., 2001) project, the Global Temperature and Salinity

Profile Programme (GTSPP; Sun et al., 2010), and the World Ocean

Database 2018 (WOD18; Boyer et al., 2018).

In addition to temperature data, the 10-m surface wind and

mean sea level pressure were retrieved from the Climate Change

Service (CCS) of the ECMWF ReAnalysis phase 5 dataset (ERA5;

Hersbach et al., 2020). A major strength of ERA5 is the much higher

temporal (1-hour) and spatial (31 km) resolution, which captures

much finer details of atmospheric phenomena than in the previous

ERA-Interim. The surface currents were retrieved from Ocean

Surface Current Analyses Real-time (OSCAR) - Final 0.25 Degree

V e r s i o n 2 . 0 ( h t t p s : / / p o d a a c . j p l . n a s a . g o v / d a t a s e t /

OSCAR_L4_OC_FINAL_V2.0). OSCAR is produced by Earth &

Space Research (ESR, https://www.esr.org/research/oscar/). OSCAR

daily ocean velocities are computed from 30-m well-mixed layer

satellite-derived sea surface height gradients, combined with vector

winds above the ocean and the SST gradients, by optimizing a

simplified physical model for geostrophic, Ekman, and thermal

wind dynamics (Bonjean and Lagerloef, 2002; ESR, 2022). It is

freely available through the NASA Physical Oceanography

Distributed Active Archive Center (PO.DAAC) and covers the

period from 1993 to 2021. We use the same period from 1980

(1993 for ocean currents) to 2014 and the same spatial resolution

of 0.5° x 0.5° for these datasets. For simplicity, we refer to

these datasets as observations. Unless otherwise specified, the

variables are averaged over the SCTR region from 5°S to 10°S and

50°E to 80°E and the seasons refer to that of the Northern

Hemisphere. The data consisted of monthly means, and we

calculated monthly anomalies by subtracting the original data to

the 1980-2014 monthly climatology.
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2.2 Methodology

We define the model bias for respective variables as model

minus observation. We used the temperature from the SODA3.4.2

dataset to reference the D20 and SST observations. Previous studies

have used the SODA dataset for a similar purpose for calculating

D20 bias (e.g., Cai and Cowan, 2013; Nagura et al., 2013; Li et al.,

2015a; Li et al., 2015b; Zheng et al., 2016) and is physically

consistent with the observation in generating surface current

dynamics in the northern Indian Ocean (Vitale et al., 2017). We

defined the multi-model ensemble (MME) mean as the simple

mean of 27 CMIP6 models. The thermocline depth was determined

by the 20°C isothermal depth, following the previous studies of
Frontiers in Marine Science 04
Yokoi et al. (2008); Nagura et al. (2013), and Zheng et al. (2016).

The shallowest of this annual mean depth in the 5°S-10°S

meridional band is referred as the thermocline dome (Yokoi

et al., 2009; Nagura et al., 2013). To evaluate the performance of

CMIP6 models, we calculated the annual mean of D20 bias

averaged over the SCTR region. To assess the skill of CMIP6 to

simulate the thermocline depth, we use the Willmott index of

agreement (d). This descriptive evaluation allows for comparisons

to be made across different models (Willmott, 1981; Willmott,

1982). The d ranges from 0 to 1, and when the d is closer to 1,

we conclude that the respective model agrees more with the

observations. In this study, we used the original form of d,

defined as:
TABLE 1 Descriptions of the CMIP6 models used in this study.

No. Model Institute, Country Grid (lon,lat) Levels References

1 ACCESS-CM2 CSIRO-ARCCSS, Australia 360,300 40 Bi et al. (2020)

2 BCC-CSM2-MR BCC, China 360,232 40 Wu et al. (2019)

3 BCC-ESM1 BCC, China 360,232 40 Wu et al. (2020)

4 CAMS-CSM1-0 CAMS, China 360,200 50 Rong et al. (2021)

5 CanESM5 CCCMA, Canada 360,291 45 Swart et al. (2019)

6 CESM2 NCAR, USA 320,384 60 Danabasoglu et al. (2020)

7 CESM2-FV2 NCAR, USA 320,384 60 Danabasoglu et al. (2020)

8 CESM2-WACCM NCAR, USA 320,384 60 Danabasoglu et al. (2020)

9 CESM2-WACCM-FV2 NCAR, USA 320,384 60 Danabasoglu et al. (2020)

10 E3SM-1-1-ECA E3SM-Project 360,180 60 Golaz et al. (2019)

11 E3SM-1-1 E3SM-Project 360,180 60 Golaz et al. (2019)

12 E3SM-1-0 E3SM-Project 360,180 60 Golaz et al. (2019)

13 EC-Earth3 EC-Earth-Consortium 362,292 75 Döscher et al. (2022)

14 FGOALS-g3 CAS, China 360,218 30 Li et al. (2020)

15 FIO-ESM-2-0 FIO, China 320,384 60 Bao et al. (2020)

16 GFDL-CM4 NOAA-GFDL, USA 720,576 35 Held et al. (2019)

17 GFDL-ESM4 NOAA-GFDL, USA 720,576 35 Dunne et al. (2020)

18 GISS-E2-1-G NASA-GISS, USA 288,180 40 Kelley et al. (2020)

19 GISS-E2-1-G-CC NASA-GISS, USA 360,180 33 Kelley et al. (2020)

20 KIOST-ESM KIOST, South Korea 360,200 52 Pak et al. (2021)

21 MIROC6 MIROC, Japan 360,256 63 Tatebe et al. (2019)

22 MPI-ESM-1-2-HAM MPI-M, Germany 256,220 40 Mauritsen et al. (2019)

23 MPI-ESM1-2-HR MPI-M, Germany 802,404 40 Müller et al. (2018)

24 MPI-ESM1-2-LR MPI-M, Germany 256,220 40 Mauritsen et al. (2019)

25 MRI-ESM2-0 MRI, Japan 360,364 61 Yukimoto et al. (2019)

26 SAM0-UNICON SNU, South Korea 320,384 60 Park et al. (2019)

27 TaiESM1 RCEC, Taiwan 320,384 60 Lee et al. (2020)
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d = 1 − on
i=1(Mi−Oi)

2

on
i=1( Mi − �Oj j + Oi − �Oj j)2 (1)

where Oi and Mi are the observation and model values,

respectively;�O and �M are the mean values for the observation and

model, respectively. We also determined three models that show a

high Willmott index (HWI) and three models that show low

Willmott index (LWI).

We calculated the Ekman pumping velocity based on the

variation of the surface wind in the SCTR region after

determining the HWI and LWI. Previous studies have shown that

the easterly wind bias in the CMIP5 models in the equatorial Indian

Ocean is likely to produce a weak Ekman pumping. The weakened

Ekman pumping produces a positive bias of the thermocline depth

in the SCTR region (deeper than observed) (Yokoi et al., 2008;

Yokoi et al., 2009; Cai and Cowan, 2013; Nagura et al., 2013; Li et al.,

2015a; Zheng et al., 2016). Therefore, we attempted to calculate the

Ekman pumping velocity using the CMIP6 dataset and compared it

with the observed data.

Ekman pumping can be induced by vorticity (z), known as

vorticity gradient-induced Ekman pumping. The total Ekman

pumping equation modified by vorticity is follow (Stern, 1965;

Gaube et al., 2015):

W totj j = 1
ro

∇� t
(f + z )

� �����
���� (2)

=
∇� t

ro(f + z )

����
���� + btx

ro(f + z )2
+

1

ro(f + z )2
tx

∂ z
∂ y

− ty
∂ z
∂ x

� �
(3)

=  Wc +Wb +Wz (4)

where ro is the density of seawater (1025 kg/m3), f is the Coriolis

parameter, b is the meridional gradient of the Coriolis term, and t is
surface wind stress, consisting of the zonal and meridional

component tx and ty respectively. The first term in the right-

hand side of Equation (3) is the Ekman pumping induced by local

wind stress curl (Wc) and the second term in the right-hand side is

the Ekman pumping that arise from zonal wind stress and planetary

beta effect (Wb). The third term in the right-hand side of Equation

(3) is related to the vorticity gradient-induced Ekman pumping or

Wz. However, our calculations based on OSCAR data indicate that

the vorticity over SCTR region (order of ~10-7 s-1) is relatively

smaller in comparison to the Coriolis parameter (f, order of ~10-5 s-1)

and theWz(order of ~10
-8 m/s) is smaller when compared to theWc

and Wb(order of ~10
-6 m/s). Therefore, the vorticity-related term

was excluded from the total Ekman pumping calculation.

Thus, the total Ekman pumping equation can be written as

described in Tozuka et al. (2002) and Yokoi et al. (2008); Yokoi et al.

(2009):

W totj j = 1
ro

∇� t
f

� �����
���� = ∇� t

rof

����
���� + btx

rof 2
(5)

The first term on the right-hand side is proportional to the wind

stress curl (hereinafter the curl term), consisting of the meridional

variation of zonal wind stress and zonal variation of meridional
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wind stress. The second term on the right-hand side is proportional

to the zonal wind stress (hereinafter the beta term).
3 Results

3.1 Thermocline depth bias in the SCTR
region simulated by CMIP6 models

Figure 1 shows the thermocline depth bias from 27 CMIP6

models, represented by the difference of D20 between the models

and the SODA 3.4.2 dataset. The EN4.2.1 dataset also exhibits

similar results (Supplementary Figures S1, S2). Most CMIP6 models

display positive D20 biases in the SCTR region, with 23 models

showing positive biases and four showing negative biases. These

results indicate that the thermocline depths in most CMIP6 models

are deeper than observed. Specifically, out of the 27 CMIP6 models,

14 models show positive thermocline depth bias, three show

negative bias, and ten models exhibit varying spatial patterns of

thermocline depth bias, for example the E3SM ensemble models

that demonstrate positive bias only in the SCTR region and

southeastern Madagascar Island. The bias is even more

prominent in certain regions than in the SCTR region. Some

CMIP6 models also exhibit a strong negative D20 bias in the

southern part of the Indian Ocean, near the latitude of 30°S (e.g.,

MPI-ESM-1-2-HAM, MPI-ESM1-2-LR, FIO-ESM-2-0, and SAM0-

UNICON). The shallower-than-observed D20 in the Southern

Ocean is likely caused by the overestimation of westerly wind

simulation in CMIP6 climate models (Goyal et al., 2021; Deng

et al., 2022), which potentially induces a relatively larger Ekman

pumping velocity and shallows the thermocline depth. It is

important to note that while our findings demonstrate biases in

the thermocline depth across the Indian Ocean, our specific focus

was on the D20 bias in the SCTR region.

To obtain more robust results, we calculate the D20 averaged

over the SCTR region. Figure 2A shows that most CMIP6 models

simulate a deeper thermocline depth compared to observations in

the SCTR region. The range of simulated D20 values in the models

varies from 72 m to 139 m, whereas the observed annual mean D20

in the SCTR region is around 86 m. Statistical analysis using

Welch’s two-sample t-test confirms that the mean D20 in CMIP6

models significantly differs from the observation (p-value< 0.001).

The three best models simulating the D20 in the SCTR region

among CMIP6 models (models that show D20 bias close to zero)

were simulated by E3SM-1-1, E3SM-1-0, and E3SM-1-1-ECA. The

three most significant models simulating positive D20 bias in the

SCTR region: MRI-ESM2-0, CESM-WACCM-FV2, and FGOALS-

g3. Furthermore, the models that simulate deeper thermocline

depth compared with observation have a small Willmott index of

agreement value (d). Based on d, the best realistic and most

unrealistic model that simulates D20 in the SCTR region is

GFDL-CM4 (d = 0.61) and MRI-ESM2-0 (d = 0.23), respectively.

We select GFDL-CM4, E3SM-1-0, and E3SM-1-1-ECA as the HWI.

Although E3SM-1-1 (~92 m) simulates D20 slightly shallower

close to observation (~86 m) compared to the GFDL-CM4 model
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(~94.5 m), the GFDL-CM4 (0.61) shows better d than E3SM-1-1

(0.53). We also select MRI-ESM2-0, CESM-WACCM-FV2, and

FGOALS-g3 as LWI. Although the d of CESM2-FV2 (0.27) is

slightly worse compared to CESM-WACCM-FV2 (0.28), the

CESM-WACCM-FV2 (~130 m) simulates deeper D20 compared

with CESM2-FV2 (~118 m) and thus, we select the CESM-

WACCM-FV2 model as a part of LWI. The results were similar

(figure not shown) when we selected E3SM-1-1 and CESM2-FV2 as

included in HWI and LWI, respectively, indicating that the results

are not sensitive to these changes.

Figure 2B presents the longitudinal variation of D20 for

observation, the MME mean of CMIP6 models, HWI, and LWI.

In the SCTR region, the MME mean of D20 in CMIP6 models

consistently indicates a significantly deeper thermocline depth

compared to the observed D20 values. Furthermore, the LWI

simulations also show a notable deepening of D20, surpassing

even the depth indicated by the MME. Conversely, the HWI

simulations exhibit D20 values that are generally in line with

observed D20, although there are slight deviations such as a slight

deepening in the western SCTR (50°E-65°E) and a slight shallowing

in the eastern SCTR (65°E-80°E). In contrast, in the eastern Indian

Ocean (80°E-100°E), both the MME and LWI align well with the
Frontiers in Marine Science 06
observed D20, indicating a good agreement. However, the HWI in

this region portray a significant shallowing of D20 compared to the

observed values. Overall, these findings are in agreement withWang

et al. (2021) which show a bias in the thermocline tilt across the

Indian Ocean within the CMIP6 models, where D20 tends to be

shallower in the eastern Indian Ocean when compared to the

western part.

Figure 3A displays the observed spatial variation of D20,

revealing a shallow thermocline depth (less than 100 m) in the

SCTR region between approximately 40°E and 90°E. However, the

MME mean of D20 from the CMIP6 models indicates a deeper

thermocline depth over the SCTR region, along with an eastward

shift (Figure 3B). Notably, the area of shallow D20, less than 100 m,

shows a more significant reduction in size compared to

observations. Additionally, a substantial positive bias in D20 is

evident, extending from the western Indian Ocean, including the

SCTR region, to the southeastern Indian Ocean near the west coast

of Australia (Figure 3C). Positive D20 deep bias is also prominent in

the Arabian Sea and the Mozambique Channel. In the eastern

Indian Ocean, the MME mean simulates a shallow D20 bias

compared to observations, extending from the South Sumatra/

Southern Java Sea coast to 90°E.
FIGURE 1

The annual mean of thermocline depth bias (m) from 27 CMIP6 models. Bias is calculated by model minus observation. The red color indicates
positive bias, the modeled thermocline depth is deeper than observation (overestimation), and the blue color indicates negative bias, the modeled
thermocline depth is shallower than observation (underestimation). The black box indicates the SCTR region from 5°S to 10°S and 50°E to 80°E.
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Similarly, models that exhibit a positive D20 bias or LWI show a

shifted and deeper thermocline depth, extending eastward across

the entire Indian Ocean (Figures 3D, E). This bias exceeds the MME

mean state, while a less apparent negative D20 bias is observed in

the eastern Indian Ocean. On the other hand, the HWI show that

the shallow thermocline extends from the SCTR region towards the

east, indicating an underestimation of thermocline depth near the

Sumatra coast (Figure 3F). Significant positive (negative) D20 bias is

observed in the western (eastern) Indian Ocean (Figure 3G). It can

be noted that the positive D20 bias in the western Indian Ocean in

the MME mean is primarily contributed by models that simulate a

deeper thermocline depth bias or LWI, while the negative D20 bias

in the eastern Indian Ocean in the MME mean is influenced by

models that better simulate D20 in the SCTR region (HWI). These
Frontiers in Marine Science 07
interpretations of D20 bias using the MME mean are consistent

with the earlier findings in Figures 1, 2.
3.2 The possible source of SCTR D20 bias
in CMIP6 models from local forcing

To investigate the potential mechanisms behind the

thermocline depth bias, we compared models that exhibit deeper

D20 bias (LWI) with models that simulate small D20 bias (HWI)

over the SCTR region. We also examined the MME mean biases,

which represent the behavior of the CMIP6 models used in this

study. Previous studies has indicated that upwelling in the SCTR

region primarily occurs through local Ekman pumping, driven by
A

B

FIGURE 2

(A) Annual mean of D20 averaged over the SCTR region (from 5°S to 10°S and from 50°E to 80°E) from 1980 to 2014. The two light-shaded bars
indicate the observed D20 from EN4.2.1 and SODA3.4.2. The blue and red dots indicate the three models that show high Willmott index (HWI) and
low Willmott index (LWI), respectively. The values above the bar indicate the Willmott index of agreement (d) for the respective CMIP6 models.
(B) Longitudinal variation of an annual mean of D20 averaged in 5°S to 10°S latitude band. The black and gray solid lines indicate the observation
from SODA3.4.2 and multi-model ensembles (MME) mean from 27 CMIP6 models, respectively. The blue and red dash lines indicate the HWI and
LWI models, respectively. In (B), the yellow shading represents one standard deviation of temporal variability from SODA3.4.2, while the gray shading
represents one standard deviation of inter-model variability from CMIP6 models.
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the divergence of wind stress curl between the southeasterly trade

winds in the south and westerlies in the north of the SCTR region

(Xie et al., 2002; Hermes and Reason, 2008; Yokoi et al., 2008;

Hermes and Reason, 2009; Schott et al., 2009). Figures 4A, B display

the annual Ekman pumping velocity from ERA5 reanalysis data and

the CMIP6 MME mean from 1980 to 2014, respectively. To assess

the difference between the CMIP6 models and the ERA5 dataset, we

calculated the Ekman pumping velocity bias and wind bias by

subtracting the ERA5 values from the CMIP6 models (model minus

observation). The Ekman pumping velocity bias and wind bias were
Frontiers in Marine Science 08
averaged from 1980 to 2014 across 24 MME CMIP6 models,

excluding BCC-CSM2-MR, BCC-ESM1, and CAMS-CSM1-0. The

MME mean demonstrates a good reproduction of the spatial

pattern of Ekman pumping velocity in both the southern and

northern regions of the Indian Ocean (Figure 4B). In the south-

equatorial region, approximately 5°S to 10°S, the Ekman pumping

velocity shows positive values, consistent with the observations.

The CMIP6 models successfully simulate the upwelling region

along the southwestern coast of Java and Sumatra. The upwelling in

the southern Bay of Bengal is also captured, although it is relatively
A

B

D E

F G

C

FIGURE 3

Spatial variation of D20 from (A) SODA3.4.2, (B) MME mean of 27 CMIP6 models, and (C) their difference/bias. (D, E) Same as (B, C) but for the
models that show low Willmott index (LWI) (MRI-ESM2-0, CESM-WACCM-FV2, and FGOALS-g3). (F, G) Same as (B, C) but for the models that show
high Willmott index (HWI) (GFDL-CM4, E3SM-1-0, and E3SM-1-1-ECA). The D20 bias for MME CMIP6, LWI, and HWI was calculated by subtracting
the respective models from the SODA3.4.2 dataset. The hatched area indicates the D20 bias was statistically significant at a 95% confidence level
based on Student’s t-test. The study period is from 1980 to 2014, and the black box denotes the SCTR region (50°E-80°E, 5°S-10°S).
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weaker compared to observations. Additionally, Figure 4C

illustrates the Ekman pumping velocity bias and surface wind bias

between the CMIP6 MME mean and the ERA5 dataset. In the

northern Indian Ocean, the negative bias in Ekman pumping

velocity varies significantly across different regions, particularly in

the Arabian Sea and the southern Bay of Bengal, where

northeasterly/easterly wind biases are observed. In the SCTR
Frontiers in Marine Science 09
region, the CMIP6 models exhibit a notable negative bias in

Ekman pumping velocity, particularly in the eastern part. This

negative bias extends to almost the entire southern Indian Ocean,

excluding the upwelling zones along the southwestern coast of Java

and Sumatra and the west coast of Australia in the eastern Indian

Ocean, where positive Ekman pumping velocity bias is observed.

The negative bias in Ekman pumping velocity in the southern
A

B

D E

F G

C

FIGURE 4

Annual mean of Ekman pumping velocity (color shade) and surface wind (vector) based on (A) ERA5 dataset, (B) 24 CMIP6 MME mean and (C) their
difference/bias. (D, E) Same as Figure 4b and 4c but for the models that show low Willmott index (LWI) (MRI-ESM2- 0, CESM-WACCM-FV2, and
FGOALS-g3). (F, G) Same as Figure 4b and 4c but for the models that show high Willmott index (HWI) (GFDL-CM4, E3SM-1-0, and E3SM-1-1-ECA).
The Ekman pumping velocity and surface wind bias for MME CMIP6, LWI, and HWI were calculated by subtracting the respective models from ERA5
dataset. The hatched area indicates the Ekman pumping velocity bias was statistically significant at a 95% confidence level based on Student's t-test.
The study period is from 1980 to 2014 for CMIP6, and the black box denotes the SCTR region (50oE-80oE, 5oS-10oS). Note that the wind vector
scale in (B, D, F) is twice larger than in (C, E, G), and wind biases below 1 m/s have been masked out.
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Indian Ocean is likely caused by the easterly wind bias prevalent in

most parts of the Indian Ocean. Although the annual mean surface

wind pattern is similar between the CMIP6 MME mean and the

ERA5 data in the southern Indian Ocean, a distinct difference in

surface wind direction is observed in the equatorial region, roughly

between 4°N and 4°S (Figures 4A, B). The ERA5 data shows

prominent westerlies in the east-equatorial region, whereas the

CMIP6 models exhibit southwesterly winds. In the west-central

equatorial region, the CMIP6 models show a tendency towards

northward/westward movement, while southeasterly winds are

observed. These discrepancies indicate the presence of easterly

wind bias in the CMIP6 models (Figure 4C). The easterly wind

bias is particularly pronounced in the equatorial region, leading to a

reduction in the annual mean equatorial westerly winds.

Additionally, it strengthens the southeasterly trade winds south of

the SCTR region. The weakened equatorial westerly winds and

enhanced southeasterly trade winds result in increased wind stress

curl in the SCTR region (Supplementary Figure S3).

In the models with deeper D20 biases (LWI), the mean state of

Ekman pumping velocity (Figure 4D) is relatively similar to that in

the MME. The wind pattern in the southern Indian Ocean also

shows similarities to the ERA5 dataset. However, a stronger

easterly/southeasterly wind bias is present in the equatorial

region, and a stronger northeasterly wind bias is observed in the

northern Arabian Sea (Figure 4E). Figure 4E also demonstrates that

the negative Ekman pumping velocity biases are widespread in the

Indian Ocean, except in northern Madagascar. The negative Ekman

pumping velocity bias in the LWI over the SCTR region is more

pronounced compared to the MME mean. This stronger negative

bias in Ekman pumping velocity in the LWI is attributed to the

more significant easterly wind bias in the equatorial region, which is

also more prominent in the LWI (Figure 4E) compared to the MME

mean bias (Figure 4C). In the models with smaller D20 biases

(HWI), the mean state of Ekman pumping velocity and surface

wind pattern is relatively similar to observations (Figure 4F). The

Ekman pumping velocity bias is smaller compared to the MME

mean and LWI in the SCTR region (Figure 4G). Additionally, a

relatively smaller easterly wind bias is observed in the equatorial

Indian Ocean region compared to the LWI. This indicates that the

models with smaller D20 biases in the SCTR region better simulate

the annual mean of Ekman pumping velocity and surface wind

compared to the LWI. However, negative Ekman pumping velocity

and easterly wind bias still exists in the HWI. These results suggest

that the negative Ekman pumping velocity bias in the CMIP6

models is likely caused by the easterly wind bias affecting the

equatorial westerly wind and southeasterly trade wind in the

southern Indian Ocean.

The seasonal variation of Ekman pumping velocity and the

propagation of Rossby wave from the east are key factors in

understanding the seasonal variability of thermocline depth

(Tozuka et al., 2010; George et al., 2013; Nyadjro et al., 2017;

George et al., 2018; Ma et al., 2022). In this subsection, we will focus

on the role of local forcing and the role of remote forcing will be

discussed in the Subsection 3.4. In order to investigate the origin of

D20 biases in CMIP6 models, we analyzed the seasonal variation of

Ekman pumping velocity in the SCTR region. The Ekman pumping
Frontiers in Marine Science 10
velocity is derived from local wind and in this study, we separated it

into two components: the curl term and the beta term (Tozuka et al.,

2010; Yokoi et al., 2012; Nagura et al., 2013). The curl term is

represented by the first term on the right-hand side of Equation (5)

and largely influenced by the meridional variation of zonal wind

stress (hereinafter zonal term) over the SCTR region rather than

zonal variation of meridional wind stress (hereinafter meridional

term) (Yokoi et al., 2008). Figure 5 shows the seasonal variation of

curl term, zonal term, and meridional term and compared to

observation data. The observed curl term exhibits a strong annual

cycle with strong upwelling during summer and fall. The curl term

also largely dominated by zonal term rather than meridional term

means that the meridional gradient of zonal wind stress is more

dominant than the zonal gradient of meridional wind stress

(Figure 5A). In the MME (Figure 5B), the zonal term is larger

compared with the observation, especially during early summer to

late fall. The zonal term positive bias contributes largely to the total

curl term positive bias (the respective bias was shown by red solid

line in the Figure 5). In contrary, the meridional term show small

negative bias with largest negative bias is in June. In the LWI

(Figure 5C), the zonal term bias shows positive bias, while the

meridional term bias shows negative bias. These produce positive

total curl term bias throughout the year with close-to-zero bias

occurred in October. In the HWI (Figure 5D), the positive bias of

zonal term is the largest occurred during March and November, the

largest compared with MME bias and LWI bias. The meridional

term also shows negative bias, similar to the MME and LWI bias.

The total curl term bias shows positive bias throughout the year

except in March that shows small negative bias. According to these

findings, it is evident that the bias in the curl term is predominantly

influenced by the zonal term bias, resulting in a positive bias. This

positive bias contributes to the enhancement of Ekman pumping.

On the other hand, the beta term is influenced by the seasonal

changes in local wind patterns associated with the Indian monsoon.

It is observed from Figure 6A (dotted line) that a minimum negative

beta term (downwelling) occurs in August, contributed by the

summer monsoon that generates brief but stronger winds. This

finding is consistent with the study by Yokoi et al. (2009), which

suggests that the summer monsoon winds are intense but occur for

a shorter duration, while the winter monsoon winds are weaker but

last longer. In the MME of CMIP6 models (Figure 6B), the Ekman

pumping velocity is underestimated from early summer in June to

winter in December (shown by the negative Ekman pumping

velocity bias (red solid line). The most significant deviation from

observations is observed during the fall season in October, whereas

relatively good agreement is found during late winter to spring with

a small bias. These seasonal biases are primarily attributed to the

bias in the beta term, which exhibits a larger negative bias

(downwelling) compared to the positive bias (upwelling) in the

curl term. In models that produce deeper D20 biases (Figure 6C),

the Ekman pumping velocity is overestimated from January to May,

while underestimation is observed for the remainder of the year.

The LWI exhibits the strongest negative bias of Ekman

pumping velocity during the fall season, which might be due to

an excessively large negative bias in the minimum beta term

(downwelling), which suppresses the positive bias in the curl term
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(upwelling). The seasonal variation of Ekman pumping velocity bias

in the LWI is similar to that in the MME mean because the CMIP6

models are dominated by models that simulate a negative Ekman

pumping velocity bias and a positive D20 bias (deeper thermocline

depth bias). In HWI (Figure 6D), the Ekman pumping velocity

exhibits a similar seasonal variation compared to the LWI and

MME mean. Negative biases are observed for most of the months,

except in April and May. Negative biases are particularly prominent

during early summer in June and July, as well as early fall in

September and October. The Ekman pumping bias in LWI and

HWI follows a similar seasonal pattern. However, when considering

the annual mean of D20 bias, HWI exhibits smaller bias compared

to LWI. This suggests that factors other than Ekman pumping

contribute to the deepening of D20 bias in LWI. Another important

consideration is the westward propagation of Rossby waves, which

will be discussed in the Subsection 3.4.

The HWI also successfully simulates the annual cycle of the curl

term, which is largely contributed by the meridional gradient of

zonal wind stress and exhibits strong upwelling during the summer

and fall seasons. The curl and beta terms, when analyzed separately,

exhibit a strong annual cycle (Yokoi et al., 2008; Yokoi et al., 2009).

However, when combined to calculate Ekman pumping velocity, a

semiannual variation with two peaks per year is observed, one in
Frontiers in Marine Science 11
spring and one in fall (Figure 5A). The SCTR region, characterized

by the dominance of southeasterly trade winds in the south and the

Indian monsoon in the north, leads to a nearly constant curl term

from June to October (Yokoi et al., 2008; Yokoi et al., 2009). In the

CMIP6, the curl term remains relatively constant for seven months,

specifically from May through November, despite variations in the

zonal wind stress that occurs during the summer and fall seasons

(Yokoi et al., 2008). Interestingly, we find that models that simulate

a shallow thermocline depth compared to observations (D20

negative bias: MPI-ESM1-2-LR, MPI-ESM1-2-HR, MPI-ESM-1-2-

HAM, and CanESM5) demonstrate better performance in

simulating Ekman pumping velocity or exhibit smaller biases

(Supplementary Figure S4). These results indicate that the

negative Ekman pumping velocity bias is significant across all

models that simulate a deeper thermocline bias, with the largest

bias observed during the fall season.

To further understand the negative Ekman pumping velocity

bias in the SCTR region, which is likely induced by the easterly wind

bias present in most of the Indian Ocean region (Figure 4), we

analyze the MME mean of seasonal zonal wind bias from CMIP6

models to examine the evolution of the Ekman pumping velocity

bias in the SCTR region (Figure 7). In the equatorial region, the

easterly wind bias is noticeable in all months except January,
A B

DC

FIGURE 5

Monthly climatology of the curl term (solid line), zonal term ( − 1
rof

∂ tx
dy ,   dashed line), and meridional term ( 1

rof
∂ ty
dx  , dotted line) for (A) the ERA5,

(B) 24 CMIP6 MME mean, (C) LWI, and (D) HWI averaged over SCTR region (50°E-80°E, 5°S-10°S). Red lines in (B–D) show the difference of
respective variables from the observation that was shown in (A). The period of study is from 1980 to 2014.
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February, and May. In the south of SCTR region (10°S-20°S), the

wind bias is dominant from May to November. This bias is

associated with the absence of westerly winds in the equatorial

region. These easterly wind biases increase the meridional shear of

zonal wind stress around the SCTR region and result in an

increased curl term compared to observations (Figures 6B–D).

However, the easterly wind biases in the southern SCTR region

also enhanced the negative the beta term due to the prevalence of

stronger southeasterly trade winds compared to observations

(Figures 6B–D). Consequently, a prominent negative bias in the

Ekman pumping velocity is observed from June to November

(Figure 7), contributing to the overall weak annual mean of

Ekman pumping (negative bias) (Figure 4C). This weak annual

Ekman pumping is a possible cause for simulating a deeper annual

mean thermocline depth in the SCTR region (Figure 3C). These

results demonstrate that the CMIP6 models MME mean simulate a

weak annual Ekman pumping in the SCTR region as a result of the

easterly wind bias in the equatorial to the 20°S of Indian Ocean

(Figures 4C; 7).

The hypothesis that the deepening of D20 in the CMIP6 models

is due to a bias in equatorial easterly winds is further supported by

inter-model statistics. Figure 8A shows the connection between

November-December thermocline depth and October-November

Ekman pumping velocity among the CMIP6 models, which is
Frontiers in Marine Science 12
when the negative Ekman pumping velocity bias is most significant

(as indicated in Figure 6). The linear regression fitting reveals a

negative correlation between thermocline depth and Ekman pumping

velocity among the CMIP6 models (correlation coefficient is about

-0.69 and a p-value< 0.001). This indicates that models with deeper

annual mean of thermocline depth tend to exhibit weaker Ekman

pumping. Additionally, Ekman pumping velocity shows a positive

correlation with equatorial zonal wind in October-November

(Figure 8B). Models that show westerlies or positive equatorial

zonal winds are accompanied by larger positive Ekman pumping

velocity in the SCTR region (correlation coefficient is around 0.85 and

a p-value< 0.001). Conversely, models that show equatorial easterly

winds simulate smaller Ekman pumping velocity or even negative

Ekman pumping velocity (e.g. MRI-ESM2-0). Furthermore, models

with positive Ekman pumping velocity (upwelling) correspond to

negative wind stress curl significantly (figure not shown). The CMIP6

models also simulate larger negative wind stress curls compared to

observations (Supplementary Figure S3). Equatorial zonal wind also

exhibits a negative correlation with thermocline depth in the SCTR

region (Figure 8C), further supporting the idea that the weaker

Ekman pumping is caused by the presence of easterly wind bias in

the equator, consequently deepening the thermocline depth in the

SCTR region. The correlation coefficient of -0.46 in Figure 8C exceeds

the 95% confidence level (p-value< 0.05).
A B

DC

FIGURE 6

Monthly climatology of Ekman pumping velocity (solid line), the curl term (dashed line) and the beta term (dotted line) for (A) the ERA5, (B) 24 CMIP6
MME mean, (C) LWI, and (D) HWI averaged over SCTR region (50°E-80°E, 5°S-10°S). Red lines in (B–D) show the difference of respective variables
from the observation that was shown in (A). The period of study is from 1980 to 2014.
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3.3 The possible source of easterly
wind bias: SST warm bias in the
western Indian Ocean

The analysis suggests that the thermocline depth bias in the

CMIP6 models is linked to the Ekman pumping velocity bias, which

is in turn caused by the easterly wind bias in the Indian Ocean. To

investigate the mechanism behind the easterly wind bias in the

CMIP6 models, previous studies examined the CMIP5 models and

proposed the possibility of an SST gradient between the western and

eastern Indian Ocean as part of the IOD mode variability, which

generates strong monsoon-induced equatorial easterly wind bias
Frontiers in Marine Science 13
during the fall season (Li and Xie, 2012; Cai and Cowan, 2013; Li

et al., 2015a; Li et al., 2015b; Fathrio et al., 2017). Figure 9 presents

the seasonal variation of SST biases based on 27 MME CMIP6

models, overlaid with mean sea level pressure biases in the Indian

Ocean region. The figure demonstrates that warmer (colder) SST

biases coincide with negative (positive) sea level pressure biases,

particularly in the equatorial and southern Indian Ocean. The

western equatorial Indian Ocean exhibits much warmer SST

biases than the eastern region, especially during the summer and

fall seasons, and the warm biases extend to the middle basin from

winter to spring. The difference in SST biases between the eastern

and western Indian Ocean during the summer and fall is
FIGURE 7

Monthly climatology of Ekman pumping velocity bias (color shade) and surface wind bias (vector) from MME mean of 24 CMIP6 models. Wind biases
below 1 m/s have been masked out. The period of study is from 1980 to 2014 for CMIP6 models. Stippling indicates that the Ekman pumping
velocity bias was significant at a 95% confidence level based on Student’s t-test.
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accompanied by a difference in mean sea level pressure biases. In

the southern Indian Ocean, there is a positive mean sea level

pressure bias throughout the year, accompanied by a dominant

negative SST bias, particularly from summer to fall. In the

equatorial region, a relatively warmer SST bias appears from

winter to spring, accompanied by a similar negative sea level

pressure bias between the east and west. Furthermore, the

development of easterly (southeasterly) wind biases over the

equatorial (southern) Indian Ocean from summer to fall

coincides with the appearance of warmer SST bias in the western

Indian Ocean. This suggests that the warmer SST bias, particularly

in the western Indian Ocean, is likely to contribute to the deeper

thermocline bias in the SCTR region through a stronger SST-

thermocline feedback mechanism (Cai and Cowan, 2013; Li et al.,

2015a). These findings support previous studies and indicate that

the easterly wind bias persists in the CMIP6 models, most likely

caused by the warmer SST bias in the western Indian Ocean.

Inter-model statistics further support our hypothesis that the

easterly wind bias in the equator originates from the difference in

SST biases between the eastern and western Indian Ocean in CMIP6

models. In Figure 10A, a positive relationship is observed between

the equatorial zonal wind in October-November and the east-
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minus-west SST difference from July-August. The models that

simulate smaller positive SST difference (or even negative SST

difference bias) correspond to a weakening of the zonal wind in

the equator, resulting in the easterly wind bias. A significant

correlation is found between equatorial zonal wind and SST

difference, with a coefficient correlation is around 0.68 (p-

value<0.001). Moreover, the SST difference is negatively

correlated with thermocline depth, indicating that models with

smaller SST differences tend to exhibit deeper thermoclines

(positive D20 bias). This negative correlation is evident in

Figure 10B, with a coefficient of around -0.58 (p-value<0.01).

Additionally, the SST difference is positively correlated with

Ekman pumping velocity (Figure 10C), suggesting that weaker

SST differences correspond to weaker Ekman pumping.

Therefore, the easterly wind bias induced by the SST bias

difference contributes to the weakening of Ekman pumping in the

SCTR region, eventually resulting in the deepening of the

thermocline. Previous studies have similarly suggested that the

common equatorial easterly wind bias in CMIP5 models induces

excessively deep thermocline depths in the SCTR region and

weakens the influence of subsurface variability on SST (Li et al.,

2015a; Fathrio et al., 2017). Furthermore, the SST bias difference
A B

C

FIGURE 8

Scatterplot of October-November Ekman pumping velocity versus (A) November-December thermocline depth and (B) October-November
equatorial zonal wind (50°E-90°E, 5°S-5°N) averaged among the 24 CMIP6 models. The scatterplot of equatorial zonal wind versus thermocline
depth was also shown in (C). The Ekman pumping velocity and thermocline depth were averaged over the SCTR region (50°E-80°E, 5°S-10°S). The
black dot indicates the observation from SODA3.4.2 and ERA5 dataset. The solid lines illustrate the linear regression computed by the least square
method. The correlation coefficient was based on a Student’s t-test with a 95% confidence level and was shown in each panel.
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contributes to higher IOD peak-season amplitudes compared to

observations and a slight shift towards an earlier peak in September

(Cai and Cowan, 2013; McKenna et al., 2020).

Although our study does not specifically focus on the source of

the SST warming bias in the western Indian Ocean, we explore

possible explanations based on previous research. Fathrio et al.

(2017) conducted a study using 21 historical runs of CMIP5 models

and proposed that the warmer SST biases in the MME CMIP5

models in the western Indian Ocean could be attributed to the

advection of warm water by the East African Coastal Current

(EACC). Based on their findings, we calculate the temperature

advection caused by the surface ocean current using data from 25
Frontiers in Marine Science 15
available CMIP6 models (excluding GFDL-ESM4 and MIROC6).

This analysis aims to provide insights into the potential

mechanisms contributing to the simulated SST warming bias in

the western Indian Ocean. The advection term can be decomposed

into the zonal advection term and meridional advection term (Ng

et al., 2015; Fathrio et al., 2017) as follows:

− VH · ∇TH = − u
∂T
∂ x

+ v
∂T
∂ y

� �
(6)

where the subscript H indicates the horizontal direction of SST

(T) and ocean current (V) consisting of the zonal and meridional

current u and v respectively. Figure 11 presents the scatter plot
FIGURE 9

Monthly climatology of SST bias (colors) and mean sea level pressure bias (contours) from MME mean of 27 CMIP6 models. The contour interval for
mean sea level pressure is 20 Pa and negative (positive) bias was shown by a solid (dash) line. The period of study is from 1980 to 2014 for CMIP6
models. Stippling indicates that the SST bias was significant at a 95% confidence level based on Student’s t-test. The MME mean of mean sea level
pressure excluded the GFDL-CM4 model.
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between the August-September SST bias in the western Indian

Ocean to the temperature advection term. The correlation analysis

reveals a positive relationship between the horizontal advection

term in June-July and the western Indian Ocean SST bias in August-

September (Figure 11A). This indicates that models exhibiting a

positive SST bias tend to simulate a more pronounced horizontal

advection term. Although the correlation coefficient falls outside the

significance level, it is noteworthy that the positive association

suggests that the warming SST bias could be attributed to a

weakened negative horizontal advection term, indicating a

cooling tendency.

Moreover, the positive correlation between SST bias and the

SST tendency is predominantly driven by the zonal advection term

(Figure 11B). This implies that the mechanisms contributing to the

warm SST bias during August-September in the western equatorial

Indian Ocean involve the presence of zonal advection, with

relatively warm SST biases transported over the central equatorial

Indian Ocean by anomalous westward surface currents.

Additionally, the EACC, flowing northeastward, facilitates the

horizontal transport of relatively warm SST biases across the

southwestern equatorial Indian Ocean (Schott and McCreary,

2001; Schott et al., 2009; Fathrio et al., 2017). It is worth noting
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that a segment of the EACC transports somewhat warm SST biases

towards the Arabian Sea (Fathrio et al., 2017), leading to a negative

correlation in the north-south transport of SST biases (Figure 11C).

These findings point to potential mechanisms that contribute to the

warm SST bias in the western equatorial Indian Ocean during the

summer to fall period, partially attributed to the influence of the

ocean current system.
3.4 The role of remote forcing:
westward propagating Rossby
wave during IOD events

The interannual variability of the SCTR in the southwestern

Indian Ocean is significantly influenced by the presence of Rossby

waves originating from the east, particularly during El Niño-

Southern Oscillation (ENSO) and IOD events (Masumoto and

Meyers, 1998; Xie et al., 2002; Nyadjro et al., 2017; Chen et al.,

2022; Lee et al., 2022). For the sake of convenience, we focus solely

on IOD events and compute the composite of the D20 anomaly

based on both positive and negative IOD occurrences. The IOD is

one of the prominent climate teleconnection patterns in the Indian
A B

C

FIGURE 10

Scatterplot of east-minus-west SST in July-August versus (A) October-November equatorial zonal wind (50°E-90°E, 5°S-5°N), (B) November-
December thermocline depth, and (C) October-November Ekman pumping velocity averaged among the 24 CMIP6 models. The western and
eastern Indian Ocean was defined by 50°E-55°E and 90°E-95°E in the band of 10°S-10°N latitudes, respectively. The Ekman pumping velocity and
thermocline depth were averaged over the SCTR region (50°E-80°E, 5°S-10°S). The black dot indicates the observation from SODA3.4.2 and ERA5
dataset. The solid lines illustrate the linear regression computed by the least square method. The correlation coefficient was based on a Student’s
t-test with a 95% confidence level and was shown in each panel.
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Ocean, exerting considerable influence on climate variability in

surrounding regions (Saji et al., 1999; Jayakumar and Gnanaseelan,

2012; Ng et al., 2014; Ng et al., 2015; Nyadjro et al., 2017; Phillips

et al., 2021; Mubarrok and Jang, 2022; Sajidh and Chatterjee, 2023).

In this subsection, we investigate the role of westward-propagating

Rossby waves during positive and negative IOD events in the

CMIP6 models, comparing them with observed data. We

determine positive and negative IOD phases using the Dipole

Mode Index (DMI), which measures the anomalous SST gradient

between the western equatorial Indian Ocean (50°E-70°E and 10°S-

10°N) and the southeastern equatorial Indian Ocean (90°E-110°E

and 10°S-0°N). In this study, we define the positive (negative) IOD

phase when the DMI exceeds (falls below) 0.5°C for at least of three

months. Composite means of variables during IOD event years are

denoted as year (0), while those in the years immediately following

the event are labeled as year (+1). Noted that the occurrence of

positive and negative IOD events in the CMIP6 models does not

align with those observed in observation. As a result, we have

chosen to select only the 5 corresponding years with the highest

(lowest) values of positive (negative) DMI for each CMIP6 model in

order to calculate composites for positive (negative) IOD events.

Figure 12 show the composite mean of D20 anomalies during

positive IOD events. During positive IOD events, the observed
Frontiers in Marine Science 17
positive D20 anomaly initially appears around 90°E in September

(0). These positive D20 anomalies then propagate westward to the

SCTR region and reach their peak from November (0) to January

(+1) around 75°E. The deepened D20 anomalies persist in the

western part of the SCTR until the end of the year (+1)

(Figure 12A). The initiation of westward propagating Rossby

wave is related to the anomalous easterly winds that are observed

in the southeastern tropical Indian Ocean during July (0)

(Supplementary Figure S5A). These easterly wind anomalies peak

during September (0) to November (0) in the SCTR region, lead to

anticyclonic wind stress curl and associated to negative Ekman

pumping anomalies (downwelling) (Supplementary Figure S6A),

resulting in the deepening of the thermocline east of SCTR region

and further propagate to the SCTR region. These results are

consistent with previous studies of Lee et al. (2022) and Nyadjro

et al. (2017).

In the CMIP6 models, the D20 anomalies are smaller compared

to the D20 anomalies from SODA3.4.2, and this pattern is observed

in both the MME mean, LWI, and HWI models. The positive D20

anomalies range from approximately 10 to 20 m in the CMIP6

models, while in SODA3.4.2, they can reach up to 30 m. The D20

anomalies (around 10 m) begin to appear around 75°E in

November (0) in the MME (Figure 12B) and LWI (Figure 12C)
A B

C

FIGURE 11

Scatterplot of August-September SST bias averaged over the western equatorial Indian Ocean (45°E-60°E, 10°S-10°N) among the CMIP6 models used in
this study (excluding E3SM-1-0, GFDL-ESM4, and MIROC6) versus (A) temperature tendency due to horizontal advection (total advection), (B) zonal
advection term, and (C) meridional advection term. The regression computations exclude two outliers: MPI-ESM-1-2-HAM and MPI-ESM1-2-LR. The
solid lines illustrate the linear regression computed by the least square method. The correlation coefficient was based on a Student’s t-test with.
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and propagate westward through the SCTR region, reaching the

western Indian Ocean (around 40°E) by May of the following year

(+1). In the LWI models (Figure 12D), the D20 anomalies start to

emerge east of the SCTR (around 90°E) in November (0) and

gradually propagate into the SCTR region by January of the

following year (+1). The D20 anomalies peak during December

(0) to March (+1) around 65°E, which is slightly shifted westward

compared to the observed D20 anomalies peak location. The speed

of the propagation of positive D20 anomalies in the CMIP6 models

is approximately 0.15 m/s for MME, 0.18 m/s for LWI, and 0.20 m/s

for HWI, while it is about 0.12 m/s in SODA 3.4.2. The smaller

amplitude of positive D20 anomalies is likely correlated with the

weakened positive wind stress curl in the eastern Indian Ocean

(Supplementary Figure S5B). During November (0), the wind

stress was predominantly northeasterly around 90°E and extended

to 60°E. This weakened positive curl is also associated with the

reduction in negative Ekman pumping (Supplementary Figure S6B),

contributing to the smaller-amplitude positive D20 anomalies

compared to observations. These patterns of wind stress curl and

Ekman pumping were relatively similar among MME, LWI, and

HWI, although LWI extended further to the western side of SCTR.
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Figure 13 illustrates the composite mean of D20 anomalies

during negative IOD events. These events typically begin with the

emergence of negative D20 anomalies around 90°E in June (0).

Subsequently, these negative D20 anomalies propagate westward

and peak from November (0) to January (+1) around 75°E. The

shallow D20 anomalies persist in the western part of the SCTR until

May to June of the following year (+1) (Figure 13A). The initiation

of westward-propagating Rossby waves is closely linked to

anomalous westerly winds observed in the southeastern tropical

Indian Ocean during July (0) (Supplementary Figure S7A). These

westerly wind anomalies reach their peak from September (0) to

November (0), resulting in negative wind stress curl anomaly and

positive Ekman pumping anomalies (upwelling) (Supplementary

Figure S8A). These atmospheric conditions lead to the shallowing of

the thermocline east of the SCTR region, further propagating

westward into the SCTR region.

The negative D20 anomalies from CMIP6 models exhibit

smaller magnitudes when compared to the D20 anomalies

observed in SODA3.4.2 for the MME mean and HWI models.

The negative D20 anomalies in the MME mean and HWI models is

approximately -10 m, whereas in SODA3.4.2, it can reach depths of
A B
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FIGURE 12

Composite means of D20 anomalies during IOD positive events based on (A) SODA3.4.2, (B) 27 MME CMIP6 models, (C) LWI, and (D) HWI averaged
over 5°S-10°S latitudinal band. The positive events were classified using Dipole Mode Index (DMI), the anomalous SST gradient between the western
equatorial Indian Ocean (50oE-70oE and 10oS-10oN) and the southeastern equatorial Indian Ocean (90°E-110°E and 10°S-0°N). The IOD events
during the period of 1980−2014 based on DMI were used. The climatology used to compute the monthly anomalies represents the 1980−2014 base
period. The positive IOD events are characterized by a positive DMI, larger than or equal to +0.5°C. IOD event years (year 0) and the year following
the IOD events (year +1) are shown. Composite calculations were based on the five strongest positive IOD events.
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up to -20 m. The negative D20 anomalies in LWI is larger compared

to the MME and HWI (~ -20 m) and extend to the western SCTR in

the May (+1). The onset of D20 anomalies (approximately -10 m) is

observed around 85°E in both the MME (Figure 13B) and LWI

(Figure 13C) models during September (0). These anomalies then

propagate westward through the SCTR region, reaching the western

Indian Ocean (around 50°E) by May of the subsequent year (+1). In

the HWI models (Figure 13D), the emergence of D20 anomalies

initiates to the east of the SCTR (around 90°E) in September (0) and

gradually progresses into the SCTR region (around 60°E) by March

of the following year (+1). The peak of D20 anomalies occurs during

the period from December (0) to March (+1) around 65°E, with a

slight westward shift compared to the observed peak locations.

The speed of propagation of negative D20 anomalies in the

CMIP6 models is estimated to be around 0.21 m/s for MME,

0.16 m/s for LWI, and 0.22 m/s for HWI, whereas it measures

approximately 0.11 m/s in SODA 3.4.2. The reduced amplitude of

negative D20 anomalies in the CMIP6 models is likely associated

with existence of wind stress curl in the eastern Indian Ocean

(Supplementary Figure S7B). Specifically, in August (0) to

November (0), the wind stress is predominantly southwesterly

around 90°E, extending to 70°E. This weakened negative curl is
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further correlated with a decrease in positive Ekman pumping

(Supplementary Figure S8B), contributing to the smaller

amplitudes of negative D20 anomalies compared to the

observations. These patterns of wind stress curl exhibit relative

similarity among MME, LWI, and HWI, although LWI extends

further to the eastern side of the SCTR (60°E). The Ekman pumping

patterns also show a positive bias around 90°E in the July (0) and

reach to the 50°E and 60°E for LWI and MME, respectively, in the

November (0).

To characterize the westward propagating Rossby wave patterns

in the CMIP6 models, we computed the skewness of D20 anomalies

and SST anomalies spatially averaged over the SCTR region

(Supplementary Figure S11). In the observations, the D20

anomalies exhibited positive skewness, indicating that the SCTR

region were predominantly influenced by positive anomalies, likely

associated with positive IOD events. This aligns with the earlier

findings in Figures 12A; 13A, which showed that observed positive

D20 anomalies during positive IOD events had larger amplitudes

compared to observed negative D20 anomalies during negative IOD

events. However, in contrast to the observations, most CMIP6

models displayed smaller skewness and were characterized by

negative skewness (20 out of 27 models) (Supplementary Figure
A B

DC

FIGURE 13

Composite means of D20 anomalies during IOD negative events based on (A) SODA3.4.2, (B) 27 MME CMIP6 models, (C) LWI, and (D) HWI averaged
over 5°S-10°S latitudinal band. The negative events were classified using Dipole Mode Index (DMI), the anomalous SST gradient between the western
equatorial Indian Ocean (50oE-70oE and 10oS-10oN) and the southeastern equatorial Indian Ocean (90°E-110°E and 10°S-0°N). The IOD events
during the period of 1980−2014 based on DMI were used. The climatology used to compute the monthly anomalies represents the 1980−2014 base
period. The negative IOD events are characterized by a negative DMI, smaller than or equal to −0.5°C. IOD event years (year 0) and the year
following the IOD events (year +1) are shown. Composite calculations were based on the five strongest negative IOD events.
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S11A). This implies that in the CMIP6 models, D20 anomalies were

primarily driven by negative anomalies rather than positive ones.

Additionally, we examined the skewness of SST anomalies as shown

in Supplementary Figure S11B. In the observations, SST anomalies

exhibited positive skewness, indicating that warm anomalies in the

SCTR region were more pronounced than cold anomalies. This

pattern may be attributed to strong positive IOD events, which are

indicated by warm SST anomalies in the western Indian Ocean

compared to cold SST anomalies during negative IOD events,

driven by the asymmetry of the positive Bjerknes feedback

mechanism (Ng et al., 2014; Ng and Cai, 2016; McKenna et al.,

2020; An et al., 2023). In contrast, in the CMIP6 models, the

majority of models showed negative skewness in SST bias (23 out of

27 models). This suggests that the distribution of SST anomalies in

these models was largely influenced by contributions from cold SST

anomalies rather than warm ones. This finding is consistent with

Supplementary Figure S11A, which indicated that skewness of D20

anomalies in the CMIP6 models were also predominantly

influenced by negative D20 anomalies (associated with

upwelling), resulting in the prevalence of cold SST anomalies.
4 Discussion

Previous studies have demonstrated that the SCTR is primarily

influenced by local Ekman pumping velocity, driven by a

combination of southeasterly trade winds and westerly winds near

the equator, resulting in a negative wind stress curl (Xie et al., 2002;

Hermes and Reason, 2008; Yokoi et al., 2008). The climate

teleconnection patterns, such as IOD, also can trigger oceanic

Rossby wave from the east and travel westward, controlling the

interannual variability in the SCTR region (Xie et al., 2002; Schott

et al., 2009; Jayakumar and Gnanaseelan, 2012; Ma et al., 2022). Due

to its shallow thermocline depth, the SCTR region is known for

strong sea-air interaction (Klein et al., 1999; Tozuka et al., 2010) and

is considered a crucial area for IOD prediction (Luo et al., 2008).

Additionally, previous studies utilizing observational and reanalysis

data have emphasized the SCTR region is essential in shaping

climate variations in the Indian Ocean (McPhaden et al., 2009;

Vailard et al., 2009). While attempts have been made to assess the

dynamics of the SCTR region using available CGCMs, it has been

observed that these models still inadequately simulate the SCTR

dynamics. Consequently, improving the simulation of the SCTR

region in state-of-the-art CGCMs has become crucial. In this study,

our aim is to evaluate the capability of CMIP6 models in simulating

the thermocline depth and its variability over the SCTR region by

comparing them with observational data. By analyzing output from

the CMIP6 models, we have investigated potential factors

contributing to the thermocline depth variations in the SCTR

region in the southwestern Indian Ocean.

Similar to the findings of Yokoi et al. (2009) and Li et al.

(2015a), our analysis reveals that the CMIP6 models simulate a

deeper thermocline depth in the SCTR region compared to

observations. The Ekman pumping over the SCTR region is

weaker in the CMIP6 models than in the observational data. The

largest bias in Ekman pumping velocity occurs during the fall
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season and is primarily driven by the beta term, which is

proportional to the strength in zonal wind stress bias above the

SCTR region. Notably, the CMIP6 models exhibit a significant

easterly wind bias in the equatorial and southern Indian Ocean

during summer and fall. This easterly wind bias likely contributes to

the strengthening of the curl term, which is largely proportional to

the meridional changes in zonal wind stress (resulting in upwelling

and a positive bias in Ekman pumping velocity). However, the

easterly wind bias also reinforces the negative beta term (resulting in

downwelling and a negative bias in Ekman pumping velocity),

which surpasses the curl term and leads to an overall negative bias

in the total Ekman pumping velocity (smaller than observed). The

easterly wind bias is likely induced by the SST difference (east-

minus-west) between the eastern and western Indian Ocean, with

positive (negative) SST biases present over the western (eastern)

Indian Ocean, consequently reducing the SST difference compared

to observations.

Specifically, the positive SST bias observed over the western

Indian Ocean is likely a result of the horizontal transport of

relatively warm SST biases by ocean currents across the

southwestern equatorial Indian Ocean, facilitated by the EACC.

This finding is consistent with the results of Fathrio et al. (2017),

which emphasized the significance of ocean currents in the

development of SST biases in the western equatorial Indian

Ocean. Additionally, the warm SST bias in the western Indian

Ocean may be attributed to the weakened South Asian summer

monsoon in the western basin during summer, as highlighted by

Boos and Hurley (2013); Li et al. (2015b), and Li and Xie (2012).

The CMIP5 models indicate that the southwest summer monsoon is

too weak over the Arabian Sea, leading to a warm SST bias in the

western equatorial Indian Ocean (Li et al., 2015a). During fall, the

Bjerknes feedback mechanism intensifies the SST biases, resulting in

an IOD-like pattern accompanied by easterly wind bias and a

pronounced eastward shoaling of the thermocline depth over the

equatorial Indian Ocean (Li et al., 2015a). Our findings demonstrate

that the eastward shoaling is evident in most of the CMIP6 models

examined in this study (Figure 2B), and the thermocline depth bias

exhibits shallower (deeper) depths in the eastern (western) Indian

Ocean (Figure 3C), supporting the earlier conclusions of Li et al.

(2015a). Moreover, we observed a shift in the SCTR thermocline

dome towards the east. This eastward displacement of the dome is

likely a consequence of the eastward shoaling thermocline depth in

most of the CMIP6 models (Wang et al., 2021). This phenomenon

has been documented in previous research, such as Nagura et al.

(2013), who demonstrated that the eastward migration of the

thermocline dome in the CMIP5 models can be primarily

attributed to prominent easterly biases along the equator during

boreal summer and fall, consistent with the results made in the

present study. These easterly biases, particularly notable near the

equator, lead to shallower thermocline biases along the Java and

Sumatra coasts through Kelvin wave dynamics and create a

spurious upwelling dome in the region. Although further study is

required to see the Kelvin wave dynamic in the CMIP6 models, this

mechanism likely contributes to the eastward shift in the SCTR

thermocline dome observed in the CMIP6 models. These results

indicate that the bias associated with the wind system in the CMIP5
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models appears to persist as an unresolved issue in the

CMIP6 models.

Several studies have emphasized the significance of the curl

term and beta term in the Ekman pumping velocity, which

contribute to the formation of shallow thermocline depths in

CMIP models (Yokoi et al., 2009; Nagura et al., 2013). In this

study, we observed that the easterly wind bias amplifies the

meridional shear of zonal wind stress, thereby intensifying the

positive curl term. This finding differs from the conclusions of

Nagura et al. (2013), who discussed a reduction in the curl term due

to a decrease in meridional shear of zonal wind stress caused by

easterly wind bias. This apparent contradiction can be attributed to

two reasons. Firstly, our study defines the SCTR region as located

from 50°E to 80°E and from 5°S to 10°S, whereas Nagura et al.

(2013) focused on a slightly different geographical range, ranging

from 60°E to 90°E and from 5°S to 12°S. This variation in the chosen

study area boundaries can impact the sensitivity of thermocline

depth variability observed. Furthermore, previous studies, such as

those conducted by Praveen Kumar et al. (2014) and Trenary and

Han (2012), have indicated that the semi-annual variability in this

region significantly increases to the west of 70–80°E and north of

10°S. Conversely, in the southern part of the region, specifically

between 8°S and 12°S, the dominant pattern is characterized by an

annual cycle. These regional variations underscore the importance

of defining the specific boundaries when studying the SCTR

region’s thermocline depth variability. Secondly, our findings

indicate a prominent easterly wind bias during summer to fall,

extending from the equator to around 15°S in the southern part of

the SCTR region. In contrast, Nagura et al. (2013) highlighted the

existence of a westerly wind bias at 15°S latitude. This discrepancy

possibly reflects differences in the characteristics of easterly wind

bias between CMIP5 and CMIP6 models, which could serve as an

intriguing topic for future research. Nevertheless, our present study

demonstrates that the beta term counteracts the curl term, leading

to a negative bias in the Ekman pumping velocity. Consequently,

this deepens the thermocline depth in the SCTR region, supporting

with the findings of previous studies.

This study identifies the existence of the positive bias in

thermocline depth in the SCTR region of the southwestern

tropical Indian Ocean in CMIP6 models, which is consistent with

previous generations of CMIPs, namely CMIP3 (Yokoi et al., 2009)

and CMIP5 (Nagura et al., 2013; Zheng et al., 2016). To provide a

brief comparison, we also calculated the D20 bias for 25 CMIP5

models, as portrayed in Supplementary Figure S9. Similar to CMIP6

models, the previous CMIP5 models also exhibit an overestimation

of thermocline depth compared to observations, with 22 out of 25

models showing positive biases. However, in contrast to the CMIP6

models that generally exhibit positive thermocline biases across the

entire Indian Ocean region, the spatial variation of D20 bias in

CMIP5 models differs from model to model. For example, some

CMIP5 models demonstrate strong negative biases in the southern

part of the Indian Ocean, near the latitude of 30°S (e.g., CSIRO-

Mk3-6-0, IPSL-CM5A, MIROC-ESM). This negative bias in

thermocline depth is also evident in some CMIP6 models, such as

MPI-ESM-1-2-HAM, MPI-ESM1-2-LR, FIO-ESM-2-0, and SAM0-
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UNICON (Figure 1). The shallower-than-observed D20 in the

Southern Ocean is likely caused by the overestimation of westerly

wind simulation in CMIP6 climate models (Goyal et al., 2021; Deng

et al., 2022), which potentially induces relatively larger Ekman

pumping velocities and consequently shallows the thermocline

depth. Another notable D20 bias is observed in the northern

Indian Ocean, particularly in the Arabian Sea, for both CMIP5

(e.g., CanESM2, CCSM4, GFDL-ESM2M) and CMIP6 models (e.g.,

CESM2, FGOALS-g3, KIOST-ESM) that show an overestimation of

D20 bias. Furthermore, the MME mean of D20 bias in CMIP6

models is slightly deeper compared to CMIP5 models

(Supplementary Figure S10). The Welch’s two-sample t-test

indicates that the mean D20 bias does not exhibit a statistically

significant difference between CMIP6 and CMIP5 (p-value=0.83).

However, the inter-model variability, as measured by the MME

standard deviation of D20 bias in CMIP models, is smaller in

CMIP6 models compared to CMIP5 models (with standard

deviations of approximately 18.81 m and 20.77 m, respectively).

These findings suggest that although CMIP6 models have shown

improved inter-model variability in D20 bias, they are not

substantially better in simulating thermocline depth compared to

CMIP5 models.

In this study, we focus on examining the bias in thermocline

depth attributed to local forcing, particularly the bias in Ekman

pumping velocity driven by easterly wind bias. It is worth noting

that the variability observed in the SCTR region may also be subject

to remote forcing factors. For instance, the propagation of westward

Rossby waves could play a significant role in influencing the SCTR

region’s characteristics. We observed that the propagation of D20

anomalies during IOD events in the CMIP6 models is relatively

limited compared to what is seen in observations. Additionally, the

Rossby waves in the models tend to travel at a faster speed from the

eastern to the western Indian Ocean. Li et al. (2015a) identified the

westward-propagating downwelling Rossby wave in the southern

Indian Ocean as a significant factor contributing to the excessively

deep thermocline depth bias over the SCTR region in CMIP5

models. The Rossby wave in the tropical southern Indian Ocean

was induced by easterly wind bias in the equatorial region, similar to

the equatorial easterly wind anomalies during El Niño that induce a

southern Indian Ocean Rossby wave. The present study reveals that

the persistent equatorial easterly wind bias in CMIP6 models is a

primary factor driving the excessively deep thermocline depth bias.

However, our study demonstrates that the influence of Rossby

waves on thermocline depth bias is not as significant as the local

forcing caused by Ekman pumping induced by local winds,

even though the CMIP6 models can successfully reproduce the

eastward propagation of Rossby waves. The time-longitude

section of thermocline depth bias reveals that the positive bias

predominantly occurs during the winter season in the region

around 50°E to 80°E, rather than originating from the eastern

part (Supplementary Figure S12). There is also a possibility that

the signal of the Rossby wave from the east has been mixed by

its interaction with the local processes (Xie et al., 2002; Hermes

and Reason, 2008). Additionally, the westward-propagating

downwelling (upwelling) Rossby waves originating from the east
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during positive (negative) IOD events play a role in the surface

layer, inducing warm (cool) SST anomalies (Ng et al., 2015). In

observations, the SST warming in the western part during positive

IOD events is more pronounced compared to the SST cooling

during negative IOD events (indicated by positive SST anomaly

skewness and positive D20 anomaly skewness). However, in most

CMIP6 models, we observe negative SST anomaly skewness and

negative D20 anomaly skewness. One plausible explanation for this

is the significant influence of the nonlinear positive Bjerknes

feedback on D20 anomalies and SST anomaly skewness. During

positive IOD events, the thermocline-induced warming is relatively

weak. This is because, in response to anomalous easterlies, further

deepening of the already deep climatological mean thermocline

depth has little impact on surface SST. Consequently, a deep mean

thermocline allows cold SST anomalies to develop more strongly,

while the growth of warm SST anomalies is weaker. These

conditions result in negative skewness of SST anomalies,

indicating that the cold SST anomaly signal is more prominent in

the context of the warmer climatological mean SST (Ng et al., 2014;

Ng and Cai, 2016).

In addition, the configuration of individual models, such as

vertical mixing schemes (Yuchao et al., 2020) and spatio-temporal

resolutions (Nagura et al., 2013), used in this study may have

influenced the magnitude of thermocline depth bias in the CMIP6

models. Previous study by Feng et al. (2023) showed that, in addition

to the easterly wind bias, the vertical mixing and vertical shear in

current was contributed to the subsurface temperature bias in the

tropical Indian Ocean. The increasing trend in the freshwater flux in

the CMIP6 models contributes to the more stable stratification,

decreasing the vertical mixing between mixed layer and deeper

layer and, consequently, inducing a warming bias in SST (Ke-xin

and Fei, 2022). Furthermore, previous research by Nagura et al.

(2013) indicated that the spatial resolution of CMIP5 models is not a

crucial factor in simulating the thermocline depth. Additionally, they

found that model parameterizations, such as atmospheric convection

schemes and ocean-mixed layer schemes, have less impact on the

simulation of thermocline depth. However, in the present study, a

simple correlation analysis reveals some interesting findings. There is

a negative relationship between the zonal resolutions of the individual

models used in this study (Table 1) and the thermocline depth bias,

with a correlation coefficient of approximately -0.33 and a p-value of

around 0.086. This indicates that at a 90% confidence level, models

with higher zonal resolutions tend to produce smaller thermocline

depth biases. Conversely, when considering the meridional

resolutions of the models, there is no significant correlation with

the thermocline depth bias, as evidenced by a correlation coefficient

of around 0.01 and a p-value of approximately 0.93. These results

suggest that the zonal resolution plays a more critical role in shaping

the thermocline depth than the meridional resolution. Considering

the significance of accurately simulating the SCTR region, these

findings imply the need for future improvements in model

configuration, particularly with regards to enhancing spatial

resolution, to capture the characteristics of the thermocline

depth better.
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This study analyzes the thermocline depth bias over the SCTR

region by focusing on the influence of local forcing in the 27 CMIP6

models. Similar to the previous generation of CMIP models, the

CMIP6 models show that the thermocline depth over the SCTR

region is considerably deeper compared to observations. Of the 27

CMIP6 models analyzed, 23 models reproduce a deeper thermocline

depth. This deep bias is probably caused by the weakening of the

Ekman pumping in the SCTR region. The easterly wind bias is

pronounced in the equator to the southern Indian Ocean around 20°

S, weakening the westerly wind at the equator and strengthening the

southeasterly trade wind in the southern SCTR region. The

combination of these wind systems affects the two components of

the Ekman pumping velocity, the curl term and the beta term. In the

models that produce deeper thermocline depth bias over SCTR

region, the easterly wind biases are most significant during summer

to fall, increasing both the curl and beta terms. The curl term is

intensified by the positive changes in the meridional shear of zonal

wind stress while the beta term is proportional to the increase in the

zonal wind speed. The negative beta term offsets the positive curl

term, resulting in the smaller annual mean Ekman pumping velocity

compared with observation. The negative bias in the beta term is

largest in fall, coinciding with the largest negative bias of Ekman

pumping velocity while the largest positive bias of curl term occurs in

winter. This indicates that the bias in the beta term contributes largely

to the negative bias in the Ekman pumping velocity rather than the

bias in the curl term does. It is concluded that the weak annual mean

Ekman pumping in the SCTR is a consequence of the easterly wind

bias, which contributes to the unrealistic beta term simulation and is a

possible source of the deep thermocline depth bias in the

CMIP6 models.

Furthermore, the inter-model statistics show that the SST

difference between the eastern and western Indian Ocean is

correlated with the easterly wind bias. In the observation, the

annual mean state of SST over the eastern of the Indian Ocean is

warmer than that on the western side. This difference between

east and west (east-minus-west) is positive, contributing to the

annual mean westerly wind in the equatorial region. However,

warmer (colder) SST was found in the western (eastern)

equatorial Indian Ocean in the MME mean of the CMIP6

models. These SST biases reduce the east-west SST difference,

weakening the westerly wind in the equatorial Indian Ocean.

These patterns of the SST bias are similar to those of the SST

anomaly during the positive IOD (Saji et al., 1999; Ng et al., 2015),

suggesting that air-sea exchange in the equatorial region is

important in controlling the mean state. In addition, we

examined the connection between the warm SST bias in the

western Indian Ocean and the ocean current simulated by CMIP6

models. The positive SST bias in the western Indian Ocean is

probably contributed by a horizontal transport of relatively warm

SST biases through the EACC from the southwestern equatorial

Indian Ocean. Although further study is needed, the warm SST bias

appears to be triggered by a relatively weak South Asian summer
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monsoon in the western basin (Li and Xie, 2012; Boos and Hurley,

2013; Li et al., 2015b).

The present study briefly shows that the thermocline depth bias

over the SCTR region is relatively similar between CMIP6 and

CMIP5 models (Supplementary Figures S9, S10). Apart from the

impact of local forcing on shaping the bias in SCTR thermocline

depth, it is worth noting that the influence of remote forcing in

simulating the variability of the SCTR region is relatively weak,

dominated by negative D20 anomaly and play a role in causing the

thermocline depth to become shallower. Rossby waves are a crucial

component in understanding the dynamics of thermocline depth

and SST anomalies during IOD events in the SCTR region. While

CMIP6 models capture some aspects of Rossby wave propagation,

the local processes associated with wind-driven Ekman pumping

seem to have a more dominant influence on thermocline depth

biases in these models. In conclusion, this study highlights a

considerably deeper thermocline depth bias in the CMIP6 model

compared to observation data. This bias is associated with

weakening of the Ekman pumping, which is caused by an easterly

wind bias in the equatorial region. The easterly wind bias leads to an

increased negative bias of the beta term and a positive bias of the

curl term, resulting in a compromised representation of the Ekman

pumping process. Given the crucial role of ocean-atmosphere

interactions and their impact on climate variability in the Indian

Ocean, it is essential to improve the beta term by reducing the

easterly wind bias in the Indian Ocean region through the

development of state-of-the-art climate models. By addressing

these biases, a more accurate simulation of the thermocline depth

in the SCTR region can lead to a better understanding of future

projections on the Indian Ocean climate dynamics and its potential

impacts on the surrounding countries.
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