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Collagens are abundant structural proteins found in connective tissues such as

bones, swim bladder, skin, blood vessels, intestines, and cartilage. They make up

around 30% of the total protein. The purpose of this paper is to provide a

summary of the current knowledge about collagen isolated from marine

organisms and its possible applications. Collagen is widely used in

pharmaceuticals, food, biomedical and cosmetic industries due to its cell

adhesion, biocompatibility, and safety properties. This review discusses various

methods for extracting collagen from marine vertebrates and its

physicochemical properties. Enzymatic extractions might be a more effective

at extracting collagen than acidic extractions. Peptides derived from collagen

hydrolysates have biological activity that promotes health and relieves symptoms

caused by chronic diseases. Aquaculture can help with collagen availability but

an integrated technology for processing rawmaterials is necessary to address the

negative effects of production waste. Marine collagen has many benefits over

terrestrial sources including its versatility in healing skin damage and slowing

down the aging process. The advantages of marine collagen over terrestrial

sources are discussed along with its potential biotherapeutic applications in bone

and skin injuries. The development of effective cosmetic products can become a

strategic direction for technological development.
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GRAPHICAL ABSTRACT
Introduction

Collagens are proteins that provide structural support to

connective tissues like bone, skin, and cartilage. There are 29

types of collagen present in the human body and they account for

about 30% of the total protein in the body (Di Lullo et al., 2002;

Rossert and de Crombrugghe, 2002; Müller, 2003). Type I is the

most common and can be found in various tissues such as bone,

heart, and skin. It is used extensively in pharmaceuticals, food,

biomedical products, and cosmetics due to its cell adhesion

properties, biocompatibility, safety, low antigenicity, and

biodegradability (Aruta et al., 2009; Yamada et al., 2014; Pal et al.,

2015; Wang, 2021). Type III is the second most common type

present in connective tissues like organs, skin, and lungs. Collagen

types V and XI are less abundant but can be found along with types

I and II in cartilage, bone, and other tissues (Daboor et al., 2010).

Breakdown of interstitial collagens is important for biological

processes like wound healing and tissue remodeling (Brett, 2008).

Collagen hydrolysates are used to produce liquid matrices while

controlled rate freezing methods are used for tissue engineering

purposes like skin regeneration or bone reconstruction (Dai et al.,

2013). Collagen plays a role in various pathologies such as tumor

cell spreading or periodontal disease (Khan and Khan, 2013). As we

age, collagen synthesis in our bodies decreases. This puts more

strain on our bones, hair tissue, and skin. However, collagen is

considered a promising anti-aging material with rejuvenating

properties (Kapuler et al., 2015; Xu et al., 2021).

The commercial collagen available now is typically derived from

the skins and bones of calves and pigs. Unfortunately, there have

been outbreaks of animal diseases such as spongiform

encephalopathy and foot-and-mouth disease that have affected

these sources of collagen and their derived products (Pal et al.,

2015). Additionally, some countries prohibit the use of bovine/
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porcine collagen due to religious beliefs. Because purifying this type

of protein is difficult and poses a risk for transmissible diseases,

mammalian collagen has become less popular compared to marine

collagen (Yemisken et al., 2023). Marine organisms like fish,

jellyfish, sponges, and other invertebrates are a great source of

bioavailable collagen that lack religious constraints and animal

pathogens (Coppola et al., 2020b). Although marine collagen is

both safe and easy to obtain, it does have a lower denaturation

temperature than other sources which can limit its beneficial effects

(Barzkar et al., 2018; Rajabimashhadi et al., 2023).

Even though, studies have shown that marine-origin

collagenous materials are biocompatible and have good potential

for tissue engineering applications compared to terrestrial

organisms-derived collagen (Lim et al., 2019; Martins et al., 2022;

Rajabimashhadi et al., 2023). This makes it an ideal ingredient for

not only wound healing devices but also cosmeceuticals, dietary

supplements and nutraceuticals (Martins et al., 2023; Rigogliuso

et al., 2023). Further studies demonstrated that type I collagen

matrix from tilapia scales has similar light scatter and transmission

to the human cornea, as well as good biocompatibility in various

animal models. BioCornea, a fish-scale-derived collagen matrix, is

currently undergoing phase I clinical trials (van Essen et al., 2013;

Rajabimashhadi et al., 2023). Additionally, type II collagen from the

cartilage of the Peru jumbo flying squid Dosidicus gigas has shown

promise in reducing pro-inflammatory mediators and relieving

symptoms of osteoarthritis (Dai et al., 2018).

This review provides brief information about properties of

marine collagen and its potential applications due to its

importance. The review’s strengths are that it demonstrates that

marine sources of collagen have numerous advantages over

terrestrial and other sources. Marine collagen is widely available,

does not have any religious restriction, and there have been only few

reports on its toxicity (van Essen et al., 2013). In addition to what
frontiersin.org
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we have discussed so far, the use of marine collagen is

environmentally friendly and safe. Furthermore, collagen has

many applications in many fields, such as drug delivery, wound

healing, skin aging, and tissue regeneration. Marine collagen has

been reported to be more susceptible to hydrolysis than mammalian

collagen, making it suitable for further processing into peptide

derivatives (Dai et al., 2018). Collagen has been shown to have

structural and functional properties that make it a natural substrate

for cell adhesion, cell growth, and differentiation (Li et al., 2020).

However, it should be noted that marine collagen has less residual

proline and hydrochloroproline than bovine collagen and has not

been shown to have less thermal stability than bovine collagen

(Diogo et al., 2021). Moreover, most studies involve examining the

effects of marine collagen in vitro or in animal models. However,

further studies investigating the efficacy and possible side effects of

marine collagen in humans should be mentioned.

In Russia, due to sanctions by the European Union, the U.S.,

and other allies, imports of marine raw materials and products have

been significantly reduced. Therefore, it is relevant to search for

replacement of foreign rawmaterials with domestic ones. According

to the authors (Chen et al., 2022), collagen can be derived from

byproducts and wastes generated during the deep processing of

marine organisms. The use of such sources contributes to

environmental protection and meets the principles of resource

conservation and innovation in technological solutions. The

maximum and rational use of marine organisms is supported by

the Government of the Russian Federation, which indicates the

relevance and urgency of such research (Liu et al., 2010).

There are three main methods of collagen extraction: neutral

salt solubilized collagen, acid solubilized collagen, and pepsin

solubilized collagen (Barzideh et al., 2014; Li et al., 2020). Loosely

cross-linked collagen molecules are extracted with neutral salt

solutions (Attaran Fariman et al., 2016). The extracted material is

purified by dialysis, sedimentation, and centrifugation. Dilute acidic

solvents such as citrate buffer, 0.5 M acetic acid, or hydrochloric

acid (pH 2-3) are more effective than neutral salt solutions. Collagen

from bone, cartilage, or material from aged organisms contains a

higher percentage of keto-imine bonds and has lower solubility in

dilute acidic solvents (Blanco et al., 2017).

Significantly higher yields compared to acid extraction can be

achieved by taking advantage of the fact that the triple helix of

collagen is relatively resistant to the action of proteases, i.e., pepsin

or chymotrypsin, below approximately 20°C (Mizuta et al., 1994).

Figure 1 shows a flow chart of collagen extraction from

marine sources.
Marine sources of collagen

To date, collagen has been found in the varied range of marine

organisms. Marine sources of collagen are presented in Table 1.

Figure 2 presents technical function flowsheet for producing soluble

collagen. A significant number of commercial and aquaculture fish

species, as well as non-fish species, are used as a source of marine

collagen. Among them the following can be noted (Lin et al., 2019;

Ahmed et al., 2020a; Coppola et al., 2020a; Han et al., 2021):
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- Ray-finned fishes: Priacanthidae Günther, Sciaenidae Cuvier,

Latidae Jordan, Lutjanidae Gill, Nemipteridae Regan, Sparidae

Rafinesque, Acropomatiformes, Aulopiformes, Gonorynchiformes,

Tetraodontiformes, Syngnathiformes, Pleuronectiformes,

Cypriniformes, Osmeriformes, Salmoniformes, Perciformes,

Acipenseriformes, Clupeiformes, Scombriformes, Siluriformes,

Carangiformes, Gadiformes, Anguilliformes, Cichliformes, Esociformes;
- Chondrichthyes: Orectolobiformes, Carcharhiniformes,

Heterodontiformes, Rajiformes;

- Mammals: representatives of the Cetartiodactyla order;

- Reptiles: representatives of the alligator family (Alligatoridae

Gray);

- Cephalopods: Oegopsida, Octopoda, Sepiida;

- Bivalvia: representatives of the Pectinida order;

- Starfishes: representatives of the Comatulida order.
Physicochemical properties of marine
collagen

Different methods for collagen extraction from marine

organisms result in varying yields and physiochemical properties

of the extracted collagens. Two common methods are acid soluble

collagen (ASC) extraction and pepsin-solubilized (PSC) extraction

(Mizuta et al., 1994; Liu et al., 2010; Barzideh et al., 2014; Attaran

Fariman et al., 2016; Blanco et al., 2017; Li et al., 2020; Diogo et al.,

2021; Chen et al., 2022). The acid-collagen reaction utilized in ASC

extraction increases collagen extraction efficiency by breaking

crosslinks in the collagen helix and increasing repulsion among

tropocollagen molecules (Niu et al., 2016). PSC, also known as

atelo-collagen, shows increased purity and reduced antigenicity

compared to ASC due to pepsin treatment that removes

telopeptide regions and related non-collagenous proteins (Kim

et al., 2013). Enzymatic treatment using pepsin in combination

with the acids has been shown by researchers to improve the yield of

extracted collagen in multiple studies (Kim et al., 2013; Niu et al.,

2016; Hadfi and Sarbon, 2019).
Marine collagen hydrolyzed with
industrial potency

Peptides derived from collagen hydrolysates possess not only

nutritional properties, but also have biological activities and

regulatory roles that can alleviate symptoms related to chronic

diseases and promote good health. Clinical studies and drug

development have shown various peptides with hyperlipidemic,

immuno-modulatory, chelating/absorbing metals, and anti-

osteoporotic activity (Hadfi and Sarbon, 2019). Moreover, short

peptides (<5 kDa) from hydrolyzed collagen of the squid Dosidicus

gigas exhibit antioxidant and anti-inflammatory properties (Ogawa

et al., 2003). Collagen also increases fibroblast proliferation and

hyaluronic acid synthesis while detectable in human blood at molar
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concentrations after consuming collagen hydrolysate. These are

some of the positive effects of collagen on human health (Wahyu

andWidjanarko, 2018). Table 2 lists the applications for animal and

marine collagen in Europe.

Hydrolyzed collagen has various biological activities that are

useful in nutrition, food, industry, and medicine (Mizuta et al.,

1994; Morishige et al., 2011; Ahmed et al., 2020a). Additionally, it is

believed that hydrolysate can have a positive impact on treating

osteoporosis, diabetes mellitus, gastric ulceration, skin hydration,

hypertension and preservatives (Lima et al., 2011a; Santos et al.,

2013; Barzkar and Sohail, 2020). Collagen is becoming an

increasingly popular ingredient in drugs, food, drinks, cosmetics,

tissue engineering and health care products due to its wide range of

industrial applications (Liu et al., 2010; Bilek and Bayram, 2015;

Hadfi and Sarbon, 2019; Carvalho et al., 2020a). The reason for the

extensive use of collagen in medical and pharmacological industries

is due to its exceptional biological properties like hemostatic

activity, biodegradability and low antigenicity (Ogawa et al., 2003).

The purpose of the 196th study was to examine the significance

of collagen-derived peptide secondary and tertiary structure after
Frontiers in Marine Science 04
removal of fatty acids. The hydrolyzate efficiency of fish collagen

reached 70%, with peptides (8.2-9.7 kDa) produced in the form of

polyloline 2 (PP-II) at a concentration of at least 1 mg/mL and pH

levels between 7-8. Moreover, the antioxidant activity of CF-CH

increased as the ionic stability of aggregates increased, and protein

isolation led to a decrease in antioxidant activity from 84.5% to

98.9%. After six months, soybean oil shelf life was extended by five

times. Collagen’s unique charge distribution, protonation of amino

acid residues, and affinity through the fiber optic network

contribute to its high potency. Fish are high in fat energy-wise

(Porfıŕio and Fanaro, 2016).

It was observed that copper had a higher chelating activity in

intact collagen hydrolysis (Sinthusamran et al., 2013). The collagen

hydrolyzate extracted from the gastric phase showed moderate ACE

inhibitory activity with an IC50 value of 2.92 ± 0.22 mg/mL, which

significantly increased to 0.49 ± 0.02 mg/mg after intestinal

digestion (Lima et al., 2011b; Lima et al., 2015). Upon SGID, the

inhibitory activity of collagen hydrolyzate against DPP IV was

higher than that of collagen hydrolyzate trypsin (IC50 2.59 ± 0.04

mg/mL). The antioxidant activity of collagen and CTH after SGID
Crushing and mixing the crude material with

30 volumes of 0.1 M NaOH

Stirring 24 hours

Filtration (to remove non-collagenous protein)

Treatment with chilled

distilled water

Homogenization with 30 volumes of 0.5 M 

acetic acid 1 minute

Stirring 24 h

Centrifugation (3000 rpm, 20 minutes) and

supernatant collection

Re-extraction with acetic acid. The combined

supernatant is acid-soluble collagen

Homogenization of the precipitate with 30% 

formic acid 1 minute

Stirring 24 h

Addition of pepsin (enzyme/tissue 1:1000).

Stirring for 24 hours

Centrifuge (3000 rpm, 20 minutes) and collect 

the supernatant as collagen hydrolyzed by

pepsin

The addition of NaCl to a level of 10% and stirring for 24 hours. Suspending the precipitate in Tris-

glycine buffer (50 mM containing 0.2 M NaCl, pH 7.4)

Buffer dialysis (24 hours) to obtain pure collagen

FIGURE 1

Flowchart of collagen extraction from marine sources [Venkatesan, J. & Anil, Sukumaran & Kim, Se-Kwon & Shim, Min. (2017). Marine Fish Proteins
and Peptides for Cosmeceuticals: A Review. Marine Drugs. 15. 143. 10.3390/md15050143.].
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TABLE 1 Marine collagen sources.

No. Organism Parts from which collagen
is derived

Source

Vertebrates

1 Thunnus albacares Swim bladder (Andersen and Wold, 2003; Kittiphattanabawon et al., 2005)

2 Cynoscion othonopterus Swim bladder (Kaewdang et al., 2014)

3 Nibea coibor Skin, waste (Idrus et al., 2018; Cruz-López et al., 2021)

4 Protonibea diacanthus Swim bladder (Chen et al., 2019)

5 Priacanthus tayenus Skin, muscle tissue (Lin et al., 2020)

6 Saurida tumbil Scales (He et al., 2021)

7 Theragra chalcogramma Muscle tissue and internal organs (Oslan et al., 2022)

8 Pangasius sp. Skin (Jaziri et al., 2022)

9 Odonus niger Skin, bones, muscles (Yan et al., 2008)

10 Magalaspis cordyla Skin, scales (Hukmi and Sarbon, 2018)

11 Otolithes ruber Bone tissue (Hukmi and Sarbon, 2018)

12 Thunnus obesus Bones, skin, waste (Muralidharan et al., 2013; Sampath Kumar and Nazeer, 2013; Ahmed et al., 2018; Ahmed
et al., 2019; Lin et al., 2019)

13 Oreochromis niloticus Skin, by-products (Devita et al., 2021; Fu et al., 2022)

14 Chanos chanos Scales (Zeng et al., 2009; Chen et al., 2016)

15 Cynoscion othonopterus Skin, bones (Kaewdang et al., 2014)

16 Lutjanus sp. Bones, waste (Chen et al., 2016; Kusumaningtyas et al., 2019)

17 Pangasius sp. Skin (Wibawa et al., 2015; Zaelani et al., 2019; Han et al., 2021)

18 Ictalurus punctatus Skin (Hukmi and Sarbon, 2018)

19 Oncorhynchus keta Skin (Pei et al., 2010; Burkel et al., 2016; Almuqoddas et al., 2019; Zhao et al., 2020; Xue et al.,
2022)

20 Epinephelus malabaricus Skin (Tan and Chang, 2018)

21 Lateolabrax japonicus Skin (Pei et al., 2010; Hema et al., 2017)

22 Carassius auratus Skin, scales (Kim et al., 2012; Kim et al., 2013)

23 Prionace glauca Fins, bones, skin (Diogo et al., 2021)

24 Thunnus albacares Bones, skin (Lee et al., 1997; Woo et al., 2008; Nurilmala et al., 2019a; Jia et al., 2020; Nurilmala et al.,
2020; Nguyen et al., 2021)

25 Priacanthus
macracanthus

Skin, muscle tissue (Yoo et al., 2008; Nurilmala et al., 2019b)

26 Priacanthus tayenus Tissues, skin (Jongjareonrak et al., 2005; Jongjareonrak, 2006; La Noce et al., 2014; Nurilmala et al.,
2019b)

27 Pogonias cromis Skin, scales (Benjakul et al., 2010; Lin et al., 2019)

28 Archosargus
probatocephalus

Skin (Chen et al., 2019; Allouche et al., 2020)

29 Istiophorus platypterus Skin, scales (Nalinanon et al., 2007)

30 Aseraggodes umbratilis Skin, scales (Ogawa et al., 2004; Tamilmozhi et al., 2013)

31 Oreochromis niloticus Skin (Arumugam et al., 2018)

32 Saurida spp. Skin, scales, bone tissue (He et al., 2021)

33 Saurida tumbil Skin, scales, bone tissue (He et al., 2021)

34 Trachurus japonicus Skin (Viji et al., 2019)

(Continued)
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TABLE 1 Continued

No. Organism Parts from which collagen
is derived

Source

35 Mugil cephalis Bones, skin (Viji et al., 2019)

36 Cypselurus melanurus Mesogloea (Viji et al., 2019)

37 Dentex tumifrons Bones, muscle tissue (Viji et al., 2019)

38 Pogonia cromis Scales (Benjakul et al., 2010)

39 Archosargus
probatocephalus

Skin, scales (Benjakul et al., 2010)

40 Thunnus obesus Skin (Muralidharan et al., 2013)

41 Aseraggodes umbratilis Skin, scales (Tamilmozhi et al., 2013)

42 Thunnus albacares Skin, scales (Menezes et al., 2020)

43 Sciaenops ocellatus Skin, scales, waste (Minh Thuy et al., 2014; Chen et al., 2022)

44 Chanos chanos Waste, scales (Han et al., 2010; Chen et al., 2016; Chen et al., 2018a; Chen et al., 2018b)

45 Parupeneus
heptacanthus

Scales (Susanti et al., 2019)

46 Esox lucius Scales (Wahyu and Widjanarko, 2018)

47 Pagrus major Skin, scales (Matmaroh et al., 2011; Kozlowska et al., 2015)

48 Oreochromis niloticas Skin, scales, waste (Matmaroh et al., 2011)

49 Oreochromis niloticas Skin, scales, waste (Ikoma et al., 2003; Sugiura et al., 2009; Youn and Shin, 2009; Lin et al., 2020;
Rajabimashhadi et al., 2023)

50 Saurida tumbil Scales (He et al., 2021)

51 Pogonia cromis Bones, scales (Benjakul et al., 2010)

52 Archosargus
probatocephalus

Bones, skin (Benjakul et al., 2010)

53 Odonus niger Skin, bones, muscles (Youn and Shin, 2009)

54 Priacanthus tayenus Skin, bones (Sugiura et al., 2009)

55 Thunnus albacares Skin (El-Rashidy et al., 2015)

56 Thunnus obesus Skin (Muralidharan et al., 2013; Ahmed et al., 2018; Chen et al., 2018)

57 Katsuwonus pelamis Skin, bones, scales, fins (Natsir et al., 2019)

58 Odonus niger Skin, bones, muscles (Andersen and Wold, 2003)

59 Lateolabrax japonicus Skin, bones, scales, fins (Jeong et al., 2013)

60 Prionace glauca Skin, fins (Ding et al., 2019)

61 Lateolabrax japonicus Skin (Yang et al., 2022)

Invertebrates

62 Anadara broughtonii Pallium, arm (Lu et al., 2022)

63 Mactra chinensis (Lu et al., 2022)

64 Mytilus Chilensis Pallium, arm (Nagai, 2004a; Vallejos et al., 2014; Rodrıǵuez et al., 2017; Tabakaeva et al., 2018)

65 Mytilus galloprovincialis Pallium, arm (CunhaNeves et al., 2022)

66 Septifer virgatus Stroma, adjustor muscle (CunhaNeves et al., 2022)

67 Patinopecten yessoensis Muscle tissue, adjustor muscle (CunhaNeves et al., 2022)

68 Crassostrea gigas Muscle tissue, adjustor muscle (CunhaNeves et al., 2022)

69 Meretrix lusoria Muscle tissue, adjustor muscle (CunhaNeves et al., 2022)

(Continued)
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TABLE 1 Continued

No. Organism Parts from which collagen
is derived

Source

70 Coelomactra antiquata Muscles, tentacles (Rodrıǵuez et al., 2015)

71 Illex coindetii Muscles, tentacles (Mizuta et al., 2004)

72 Toradopsis eblanae Muscles, tentacles (Mizuta et al., 2004)

73 Eledone cirrhosa Muscles, tentacles (Mizuta et al., 2004)

74 Dosidicus gigas Fins, tentacles (Wu et al., 2019)

75 Dosidicus gigas Fins, tentacles (Morales et al., 2000)

76 Todarodes pacificus Pallium, skin (Ezquerra-Brauer et al., 2018)

77 Photololigo edulis Fins, pallium (Ezquerra-Brauer et al., 2018)

78 Sepioteuthis lessoniana Pallium, skin (Ezquerra-Brauer et al., 2018)

79 Sepia esculenta Larvae (Ezquerra-Brauer et al., 2018)

80 Sepia longipes Larvae (Ezquerra-Brauer et al., 2018)

81 Todaropsis eblanae Pallium, skin (Sarabia-Sainz et al., 2018)

82 Eledone cirrhosa Muscles, tentacles (Sarabia-Sainz et al., 2018)

83 Sepia officinalis Larvae (Mizuta et al., 2009)

84 Thysanoteuthis rhombus Waste (Moral et al., 2002)

85 Sepia officinalis Larvae (Bairati et al., 1987)

86 Sepia pharaonis Larvae (Nagai, 2004b)

87 Exumbrella plus
subumbrella

Mesogloea, muscles (Sivakumar et al., 2003)

88 Pelagia noctiluca Mesogloea, muscles (Sivakumar et al., 2003)

89 Aurelia aurita Mesogloea, muscles (Sivakumar et al., 2003)

90 Stomolophus nomurai Mesogloea, muscles (Krishnamoorthi et al., 2017)

91 Nemopilema nomurai Mesogloea, muscles (Addad et al., 2011)

92 Rhopilema esculentum
Kishinouye

Mesogloea, muscles (Sugahara et al., 2006)

93 Rhopilema asamushi Mesogloea, muscles (Morishige et al., 2011)

94 Acromitus hardenbergi Mesogloea, stoma (Cheng et al., 2017)

95 Rhopilema hispidum Mesogloea, muscles (Cheng et al., 2017)

96 Rhopilema esculentum Mesogloea, muscles (Cheng et al., 2017)

97 Catostylus mosaicus Mesogloea, muscles (Nagai et al., 2000)

98 Rhopilema esculentum Mesogloea, muscles (Khong et al., 2016)

99 Rhopilema esculentum Mesogloea, muscles (Zhuang et al., 2012; Hoyer et al., 2014; Pozzolini et al., 2018b; Rastian et al., 2018;
Felician et al., 2019)

100 Acromitus hardenbergi Mesogloea, stoma (Ding et al., 2011; Sewing et al., 2017)

101 Aurelia Aurita Mesogloea, muscles (Khong et al., 2018)

102 Rhizostoma pulmo Mesogloea, muscles (Hoe, 2014; Ahmed et al., 2021; Rachmawati et al., 2021)

103 Nemopilema nomurai Mesogloea, muscles (Derkus et al., 2016)

104 Stichopus japonicus Body walls (Cui et al., 2007; Dong et al., 2011; Zhu et al., 2012; Putra et al., 2014; Zhong et al., 2015;
Arslan et al., 2017; Liu et al., 2018)

(Continued)
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was measured to be 0.87 ± 0.10 and 1.27 ± 0.03 mmol TE g–1,

respectively (Lin et al., 2011; Pozzolini et al., 2018a; Zheng and

Zheng, 2019). Out of the four skin conditions linked to

inflammation or oxidative stress, dermatitis is the most common.

Research has demonstrated that fish collagen peptide (FSCP)

safeguards human keratinocyte-derived HaCaT cells against

CoCl2-induced cytotoxicity and TNF-a-induced inflammatory

responses. In HaCaT cells, key inflammatory cytokines, such as

TNF-a, IL-1b, IL-8, and iNOS, lessen cellular oxidative damage. As

a result of FSCP gene expression, caspase activity and cytochrome C

release inhibit and reduce apoptosis. When exposed to CoCl2 or

TNF-a, HaCaT cells increase Bcl-2 protein levels and ROS, MAPK

(p38/MAPK, ERK and JNK). This study has revealed how marine

collagen peptides (MCP) protect carotenoid endothelial cells

(CAVEC) in type 2 diabetes mellitus (DM2), as well as the

mechanisms behind this process. For an in vivo experiment

involving diabetic patients, four groups were created randomly: a

diabetic control group and three diabetic groups treated with MCP

(2.25 g/kg bw/day, 4.5 g/kg bw/day or 9.0 g/kg bw/day). To serve as

controls, 10 healthy mice were used. Human umbilical vein

endothelial cells (HUVEC) were subjected to normal and high

glucose levels as well as MCP (3.0, 15.0 and 3.0 mg/mL,

respectively) for 24, 48, or 72 hours in vitro experiments. With

the use of CAVEC, vascular/endocrine patterns, inflammation and

related molecular biomarkers were detected and analyzed. The
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results of the study showed that MCP treatment was able to

reduce blood glucose levels in rat coronary artery cells for four

weeks and decreased endothelial fibrosis and inflammation

(Langasco et al., 2017; Parisi et al., 2020). In vitro experiments

showed that high glucose exposure caused a significant increase in

cellular apoptosis in HUVEC while medium to high doses of MCP

(4.5 and 9.0 g/kg bw/day respectively) inhibited this high glucose-

mediated apoptosis (Ehrlich, 2010). Finally, moderate oral doses of

MCP (0.5-4.5 g/kg bw/day) inhibited apoptosis, decreased binding

factor and microbial expression, and reduced the early stages of type

2 diabetes which is a new treatment option to prevent

cardiovascular complications (Ehrlich et al., 2006; Ehrlich

et al., 2011).

A study was conducted to explore the therapeutic benefits of

marine collagen peptides (MCP) from fish hydrolysates on Chinese

patients diagnosed with type 2 diabetes mellitus (DM2). The study

involved 100 diabetic patients and 50 healthy individuals. The

diabetic patients were randomly assigned to either a treatment

group or a control group. For three months, the treatment group

received 13g of MCP every day. Blood samples were collected from

all participants before treatment, at 1.5 months, and at 3 months

after treatment to assess glucose and lipid metabolism (Heinemann

et al., 2007). The researchers also measured serum levels of highly

sensitive C-reactive protein (hs-CRP), nitric oxide (NO),

bradykinin, prostacyclin (PGI2), and lipids. Results showed that
TABLE 1 Continued

No. Organism Parts from which collagen
is derived

Source

105 Stichopus
monotuberculatus

Body walls (Putra et al., 2014)

106 Apostichopus japonicus Body walls (Dong et al., 2011; Park et al., 2012; Song et al., 2022)

107 Holothuria cinerascens Body walls (Li et al., 2020)

108 Parastichopus
californicus

Skin, connective tissue (Tian et al., 2020)

109 Acaudina leucoprocta Body walls (Wang et al., 2018)

110 Holothuria scabra Body walls (Liu et al., 2010)

111 Acaudina Molpadioides Body walls (Lin et al., 2017)

112 Stichopus vastus Skin (Saallah et al., 2021)

113 Holothuria parva Body walls (Jin et al., 2019)

114 Stichopus horrens Skin (Abedin et al., 2014)

115 Scylla serrata Intramuscular connective tissue (Adibzadeh et al., 2014)

116 Anthocidaris crassispina Tissues (Attaran Fariman et al., 2016)

117 Asthenosoma ijimai External hard coating (Sivakumar et al., 2000)

118 Paracentrotus lividus Waste (Nagai and Suzuki, 2000)

119 Asthenosoma ijimai External hard coating (Shimizu et al., 1990)

120 Actinia equina L. Muscle tissue (Benedetto et al., 2014)

121 Metridium dianthus Muscles, tentacles (Shimizu et al., 1990)

122 Prionace glauca Cartilage (Nordwig et al., 1973)
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fasting blood glucose, human glycated hemoglobin A1c (GHbA1c),

fasting insulin, triglycerides, total cholesterol, low-density

lipoprotein, and free fatty acids were all significantly lower in type

2 diabetes patients who received MCP treatment compared to those

in the control group. Additionally, insulin sensitivity index and

HDL levels improved. Interestingly, hs-CRP and NO levels

decreased significantly while bradykinin, PGI2, and adiponectin

levels were increased in MCP-treated T2DM patients compared

with baseline or control levels (p < 0.1). MCP treatment improves

glucose and lipid metabolism in diabetic patients (Lahoud, 2010).

In order to monitor the neurodegenerative effects of marine

collagen peptides (MCPs) obtained from chum salmon skin

through enzymatic hydrolysis, 20-month-old C57BL/6J mice were

given 0.22%, 0.44%, or 1.32% (1.2% w/w) MCP for a period of three

months (Pei et al., 2010). The researchers then used a step test and

the Morris water maze to evaluate negative avoidance, spatial

memory, and learning abilities in comparison to an older adult
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control group. Interestingly, there were no discernible differences

between the MCP-treated group and the same-age control group in

terms of learning and memory scores, even at doses as high as 0.44%

and 1.32%. However, the MCP-treated group did exhibit alleviation

of oxidative stress, reduced autophagy, and increased levels of

brain-derived neurotrophic factor (BDNF) and post-operative

density protein 95 (PSD95) when compared to the elderly control

group (Xue et al., 2022). Despite these positive outcomes, there was

still no significant difference between the MCP group and the same-

age control group overall. Nonetheless, these findings suggest that

MCP could be a potential functional food candidate for improving

aging-related memory loss (Zhao et al., 2020).

In order to investigate how marine collagen peptides (MCP)

derived from salmon skin (Oncorhynchus keta) impact lifespan and

spontaneous carcinogenesis, a group of Sprague-Dawley rats were

given varying concentrations of MCP mixed with their feed. There

were 40 mice in each group, maintaining an equal male to female
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Technical function flowsheet for producing soluble collagen.
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ratio. The study found that MCP had no significant effect on the

body weight or food intake of male and female rats over the course

of their lives (Burkel et al., 2016; Rajabimashhadi et al., 2023).

However, it did inhibit the age-related decrease in antioxidant

enzyme activity and lipid peroxidation in both sexes, resulting in

an increase in maximum survival time. Interestingly, the incidence

of spontaneous tumors decreased by 4.5% in males and 9% in

females who were treated with MCP. Additionally, tumor mortality

was significantly reduced compared to the control group for both

males and females who received MCP treatment. As a result, it was

concluded that MCP has a dose-dependent effect on increasing

lifespan and reducing spontaneous tumorigenesis in Sprague-

Dawley rats. The antioxidant properties of MCP may also play a

role in prolonging life and preventing tumorigenesis (Burkel et al.,

2016; Zhao et al., 2020; Xue et al., 2022).
A new approach to the use of marine
collagen: collagen hydrogels

Collagen hydrogels are prepared from collagen solutions by

polymerization at room temperature for 10-15 minutes. Gels should

become opaque after polymerization. After they become opaque,

the cup is moved to 37°C for another 45-60 minutes to complete

polymerization. After 45-60 min, 2-3 mL of medium is added and

gels are released from the walls of the cup by running the tip of a

p200 pipette around the perimeter of the cup. The mixture is gently

shaken to release the gel. The collagen gel should float in the

medium (Govindharaj et al., 2019). Collagen hydrogels are a type of

three-dimensional network that can absorb and hold large amounts

of water (Di Lullo et al., 2002). This structure has many advantages,

including biocompatibility, fluidity, and the ability to accommodate

various biotherapeutic agents. These hydrogels are suitable for cell
Frontiers in Marine Science 10
cultures, tissue engineering, drug delivery, and softgels. Marine

polymers have emerged as an excellent natural alternative for

creating new biomedical materials over the past decade (Jahromi

and Barzkar 2018 a,b; Barzkar et al., 2019; Barzkar, 2020; Barzkar et

al., 2021 a,b; Barzkar et al., 2022 a,b; Sankarapandian et al., 2022;

Barzkar et al., 2023; Sankarapandian et al., 2023). Many collagen

biopolymers can be obtained from marine by-products like fish skin

or untapped resources like jellyfish, which can add value to

biomaterials as part of circular economics strategies. Additionally,

using marine resources like collagen can help reduce the risk of

infection and boost immunity (Govindharaj et al., 2019; Venmathi

Maran et al., 2023).

The physical characteristics of collagen hydrogels are directly

influenced by certain factors such as porosity, molecular weight,

density, and cross-linking between side chains. It is important to

consider these factors when using collagen for therapeutic purposes

(Im et al., 2017; Diogo et al., 2020). To gain a better understanding

of the relationship between biopolymer structure and mechanical

properties, research is needed on natural ionic ring polymer

hydrogel formulations (Im et al., 2017).

When predicting the impact of collagen biopolymers on scaffold

mechanical properties, it’s important to consider factors such as

molecular weight and solution viscosity (Sousa et al., 2020). The

collagen biopolymer, which has a high molecular weight of

approximately 260 kDa, differs from other polymers like chitosan

and fucoidan due to the extraction process. During this process,

smaller molecules are removed while higher molecular weight ones

are retained (Gao et al., 2023). Factors such as source, extraction

method, life cycle, environment, and collection location can all

affect the chemical composition and molecular weight of collagen.

Additionally, there is growing interest in the potential health

benefits of collagen due to its antioxidant, anti-inflammatory,

antiviral, wound-healing properties and more (Liang et al., 2010).
TABLE 2 Application of animal and marine collagen in Europe.

Key players in the
market

Application Geography Collagen
type

Source

Collagen of terrestrial
animal origin

Marine-based
Collagen

Kiehls India, The Face Shop Multifunctional feed additives, food ingredients, personal care
products, and cosmetics

India and Pakistan Intact
tropocollagen

(Katzman et al., 1972)

Weishardt, Gelita AG, Darling
Ingredients Inc, Tessenderlo
Group, Koninklijke DSM N.V.

Production of peptides as meat substitutes, bone and skin
health, nutritional supplements, food and beverages,
cosmetics and personal care, medical care, cosmetic surgery,
biomaterials, and packaging

Europe (Germany,
France, UK, Russia,
Italy, Spain)

Intact
tropocollagen,
hydrolyzed
collagen

(Seixas et al., 2020)

Weishardt Group, Seagarden AS,
Vital Proteins LLC, Ashland,
Darling Ingredients Inc.

Bone, muscle and joint health,
utilization of excess and waste
from marine organisms, collagen
scaffolds, antibacterial films,
biopolymers

Pastries,
drinks,
breakfast cereal,
snacks, senior
nutrition and
therapeutic foods,
sports nutrition

North America,
Europe, Asia Pacific,
South America, Middle
East, Africa

Hydrolyzed
collagen

(Feng et al., 2023)

Gelita AG, Lapi Gelatine SpA
Unipersonal Company,
Weishardt Gelatines, Ajinomoto
Co. Inc., Tessenderlo Group

Food and beverages, nutritional
supplements, cosmetics, and
personal care

Just beginning to be
used

Africa Hydrolyzed
collagen

(Crini et al., 2020)
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In a study conducted in (Liang et al., 2011), the relationship

between the texture/composition and rheological characteristics of

hydrogels made from collagen, chitosan, and fucoidan was

investigated. Hydrogels containing various mixtures of these three

biopolymers generally exhibited better mechanical properties than

others. When comparing hydrogels made from two marine

polymers, those with a higher polymer concentration had better

mechanical properties (Liang et al., 2011). The presence of chitosan

did not significantly affect the mechanical properties of these

hydrogels, which is consistent with previous studies on two-

component hydrogels. The study confirmed that these hydrogels

have a well-structured microenvironment that can support cell

growth and stimulate cell migration because the structural pores

are larger than the size of cells (Wang et al., 2015). These marine-

based hydrogel systems have potential applications in tissue

engineering and regenerative medicine, particularly in treating

articular cartilage (Liang et al., 2014). Additionally, using marine

collagen in these hydrogel structures is considered a “green”

technology that can be scaled up without negative environmental

impacts (Hema et al., 2017). The rheological properties and relative

density of terrestrial and marine collagen-glycosaminoglycan

scaffolds were determined in a study (Hema et al., 2017). Data

from Harley et al. is presented in Table 3. Collagen’s original

purpose was to provide stability and strength to body tissues by

forming a support network for cellular structures. This function has

led to many applications, including cosmetics, due to its unique

properties such as biocompatibility, biodegradation, biomimicry,

and hemostasis (Das et al., 2021). Collagen can also form cross-

linked matrices when dissolved, similar to gelatin (Tran et al., 2020).

The use of fibrillar collagen in cosmetics is based on its functional

purpose, while types I-III and V are used for their largest functional

component and market dominance (Tran et al., 2020). The main

collagen functions are summarized in Table 4.

The extracellular matrix (ECM) is crucial for maintaining cell

integrity and aiding in cell functions like proliferation,

differentiation, migration, and adhesion (Fischer et al., 2019;

Carvalho et al., 2021). Marine organisms, such as fish, jellyfish,

sponges, and other invertebrates, offer a valuable source of collagen

that is free from religious restrictions and animal pathogens. This
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type of collagen is metabolically compatible and has clear

advantages over other sources (Oryan et al., 2018). Fish skin is a

popular choice for extracting type I collagen because it’s abundant

and not suitable for industrial use. Overall, marine sources of

collagen are a safe, convenient, and promising option. The

combination of biomaterials and single gene delivery has shown

promising potential for tissue engineering. Skin lesions can be slow

to heal and may not heal completely, but studies have found that

marine collagen from organisms like fish, jellyfish, and sponges can

promote wound healing, enhance blood circulation, and prevent

infection (Coppola et al., 2020b; Wang, 2021). In addition to these

benefits, marine collagen has anti-aging properties that have been

demonstrated in mice with osteoporosis (Wang, 2021). It can

increase bone mineral density, protect against bone loss and

osteoarthritis, induce plastic differentiation, and even improve

skin elasticity while slowing the aging process (Wang, 2021).

Finally, marine collagen is also used for immobilization and drug

delivery within the human body (Mantha et al., 2019).

Marine collagen hydroxylates, have been extracted and refined

from the Chondrosia reniformis (Pozzolini et al., 2018b). In vitro tests

were conducted using collagen peptide fragments at a concentration of

50 mg/mL, with cell examination at varying time intervals. The treated

cells displayed signs of fibroblast and keratinocyte migration and

proliferation, as well as increased wound adhesion between the skin

and infected cells compared to the control group. These results

demonstrate that marine collagen hydroxylates isolated from C.

reniformis possess promising wound healing abilities. Similarly,

hydrolyzed peptide collagen isolated from the jellyfish Rhopilema

esculentum has also shown wound healing activity in both in vitro

and in vivo experiments. In one study, collagen peptides were seen to

increase cell migration and wound closure in a dose-dependent manner

using the scratch-healing method. Additionally, a separate research on

injured mice showed that collagen peptides partially promoted wound

healing by stimulating chemokines such as b-FGF and TGF-b1, which
protect wounds from infection by attracting inflammatory cells that also

control the migration of fibroblasts and keratinocytes. Hence,

promoting wound healing (Pozzolini et al., 2018b).

The anti-aging industry widely utilizes collagen for skin

regeneration, as the aging process negatively impacts the aesthetic
TABLE 3 Rheological properties (Young’s modulus) and relative density of collagen-glycosaminoglycan scaffolds.

Collagen
samples

Pore
size,
µm

Relative
density,

%

Young’s
modulus,

Pa

Thermal
transition

temperature,
0С

Denaturation
temperature,

0С

Isoelectric
point

Source

Marine (fish
waste)

120 ± 21 0.062 ± 0.005 224 ± 48
32-34 35-37 3.56 (Liang et al., 2014; Wang

et al., 2015; Hema et al.,
2017)

Marine (waste of
molluscs,
sponges)

155 ± 34 0.064 ± 0.003 230 ± 22
31-33 30-37 3.5-5.0

(Hema et al., 2017)

Animal (cattle
waste)

99 ± 11 0.049 ± 0.003 236 ± 38
40 40 6,0 (Liang et al., 2014; Hema

et al., 2017)

Animal (poultry
waste)

113 ± 15 0.060 ± 0.003 199 ± 29
52-62 50-70 5.5

(Hema et al., 2017)
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aspects of the skin structure. Collagen and elastane fibers are

responsible for maintaining skin elasticity, mechanical strength,

and general structure (Garcıá-Quintero and Palencia, 2021). Marine

collagen is known for its antioxidant properties as it can protect skin

cells from harmful free radicals and oxidants that damage cell

membranes, DNA, and macromolecules, which contribute to skin

aging (Carvalho et al., 2020b). To prevent oxidative stress,

antioxidant enzymes such as superoxide dismutase and

glutathione peroxidase play a crucial role by inhibiting free

radicals and other dangerous oxygen species. Acid-soluble

collagen isolated by Chi et al (Balitaan et al., 2020). demonstrated

the antioxidant activity of three collagen peptides and also showed

its protective effect against other radicals. Additionally, collagen

peptides (ACH-P1, P2, P3) were studied for their effects on

oxidation and the formation of oxidative particles. The results

showed that lipid peroxidation was significantly reduced

compared to controls due to decreased uptake, which is a

measure of oxidation. Collagen peptides exhibit similar effects as

effective antioxidants in preventing oxidative damage (Balitaan

et al., 2020).

Marine collagen biopharmaceuticals have the potential to

promote cartilage regeneration, in addition to improving skin and

bone health. Osteoarthritis is a condition that lacks regenerative

ability and is characterized by joint pain and stiffness due to

cartilage degeneration. The exposure of subchondral bone further

lowers the quality of life for those with OA (Harley et al., 2008;

Sinthusamran et al., 2013). However, studies have shown that

marine collagen can induce chondrogenic differentiation and

potentially facilitate cartilage regeneration (Sionkowska et al.,

2020). Researchers like Raabe et al. have found that hydrolyzed

fish collagen and growth factor TGFB1 can stimulate protein and

collagen fiber synthesis, while fish collagen has been shown to

induce chondrogenic differentiation (Gómez-Ordóñez and

Rupérez, 2011).

Bourdon et al. conducted a study on fish skin and cartilage

chondrocytes to analyze the impact of three collagen hydrolysates

(Wang, 2021). A particular experiment revealed that concentrations

of 0.5, 50, and 100 µg/mL of collagen hydrolyzate increased collagen

I and collagen II levels. Additionally, the use of collagen resulted in

decreased expression of protein markers such as Htra1, Mmp103,

Adamts5, and Cox2. These markers are known to be associated with

OA development (Rahman, 2019). In another study by Ohnishi

et al., rabbits injected with a combination of fish collagen peptides
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and glucosamine showed protection against cartilage damage while

the control group developed OA (Townsend and Gannon, 2019).

Although glucosamine and fish collagen peptides have some

individual protective effects against OA, their combined effect

provides the greatest protection (Chen et al., 2019; Townsend and

Gannon, 2019; Geahchan et al., 2022). Collagen has also been found

to have bifunctional properties (Allouche et al., 2020). The

bifunctional properties of marine collagen are summarized

in Table 5.
Collagen in functional foods

It is essential to improve the existing technology of collagen

materials with different functions, the role of collagen in nutrition,

create original products, engage in unconventional development,

and maximize the conversion of collagen-rich resources into

functional products. A significant share of collagen proteins is

contained in subproducts of the I and II categories; the latter

have long been considered of low value and were used in food

production to a limited extent. Collagen is of particular interest and

potential in strengthening the meat industry’s raw material base,

providing animal protein, developing waste-free environmentally

friendly technologies, increasing biological value, aesthetic

appearance of products, reducing losses, and maximizing and

rational use of meat raw materials (Bourdon et al., 2021).

At the moment, collagen-containing meat products with a

variety of technical and physiological properties that stimulate the

digestive process, absorb toxins and radioactive substances, and

provide high performance, technical, and rheological properties of

food products are being produced (Bourdon et al., 2021). The ability

of collagen to bind many toxins is relevant in the field of deep

processing of collagen raw materials with separation of target

components, and theoretically justified and effective technical

solutions are still insufficient. The most important challenge

facing the food industry is to provide not only affordable food

products to all segments, but also to maximize the functionality of

these products. In this sense, functional foods should absorb and/or

inhibit negative environmental factors affecting the human body by

binding and releasing them. One of the most aggressive negative

factors is heavy metal ions and radionuclides (Ferrario et al., 2020).

In this regard, an essential condition for increasing the

functionality of food products is the inclusion of active
TABLE 4 Collagen functions.

Studied
material

Collagen functions Source

Collagen Therapeutic agents, reparative, skin healing, plastic material, for the treatment of wounds,
burns and ulcers, in combination with hyaluronic acid used for disinfection and regeneration
of the epithelium, in the treatment of periodontal disease, skin allergies, psoriasis, acne,
dandruff, dermatoses, alopecia, inflammatory processes in the joints, softens the edges of
postoperative sutures, used in the prevention of cellulite, skin stretch marks, stimulates
spontaneous platelet aggregation and is an effective hemostatic, easily forming complexes with
many drugs and biologically active substances, production of molded fish products, increased
water and fat-holding capacity, gel-forming properties, production of polyfunctional
biologically active additives.

(Nomura et al., 2005; Goldring and Otero, 2011; Zhang
et al., 2011; Farage et al., 2013; Santos et al., 2013;
Yamada et al., 2013; De Luca et al., 2016; Cicciù, 2017;
Pullar et al., 2017; Arbex et al., 2018; Brunt and Burgess,
2018; Ito et al., 2018; Tang et al., 2018; Rahman, 2019;
Veeruraj et al., 2019; Feng et al., 2020; Luo et al., 2020;
Shalaby et al., 2020; Zhao et al., 2020; Bal et al., 2021;
Melotti et al., 2021; Meng et al., 2021; Mohd Zaffarin
et al., 2021)
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components that are biologically neutral in relation to intra- and

intercellular biochemical processes of the human body while also

possessing a pronounced ability to at least sorb, and at most bind in

low or non-dissociating complexes of polyvalent metal ions and

radionuclides, demonstrating selectivity of action. To ensure the

immune and physiological state of the organism in all spheres of life

activity, including unfavorable and chronic conditions, it is

necessary to create special, preventive, therapeutic, and generally

strengthening nutrition, ingredients, biopreparations, and other

products (Zhuang et al., 2009).

When assessing the use of food additives and ingredients based

on modified collagen in meat product technology, dietary fibers and

their connective tissue are also the most logical way to enrich food

products, and the expansion of sources for their selective isolation

in the form of isolated preparations of a given functionality for

further use in the production of enriched products should be

recognized (Ferrario et al., 2020).
Collagen for skin regeneration

Tissue engineering and regenerative medicine is a rapidly

growing interdisciplinary field that integrates materials science,

biotechnology, medicine, cell biology, pharmacology, and

chemistry to repair damaged tissues and organs (Aziz et al., 2016;

Geahchan et al., 2022). The widely accepted concept of tissue

engineering and regenerative medicine includes three major

components: the selection of suitable stem cells, the identification

of signaling pathways for repair or regeneration of specific tissues or

organs (Chi et al., 2015). Biomass is a key component for the

production of scaffolds. The use of appropriate biopreparations

improves adhesion, migration, proliferation, and differentiation of

stem cells, increasing their ability to repair and regenerate damaged

tissues and organs (Caruso et al., 2020).

Among all natural polymers, collagen is one of the most studied

and widely used in clinical practice. Major biomedical applications

involving collagen include biomaterials development, tissue

engineering, absorbable surgical threads, hematopoiesis, and
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burn/wound treatment. To address societal ethical and nutritional

concerns and the risk of spreading animal diseases such as bovine

spongiform encephalopathy and foot-and-mouth disease, the

scientific community is exploring the potential of using marine

collagen as a substitute for mammalian collagen (Gauza-

Włodarczyk et al., 2017). Another important argument in favor of

using marine collagen is that collagen accounts for approximately

75% of the total weight of fish, indicating the abundance of this type

of collagen (Raabe et al., 2010). During processing, approximately

three-quarters of the fish, including skin, fins, bone system, and

head, are discarded (Ito et al., 2018). Seafood is also an important

source of valuable organic and inorganic materials used in various

industries such as nutrition, cosmetics, regenerative medicine, and

pharmaceuticals. Marine collagen applications include but are not

limited to tissue engineering, wound dressing, cosmetics, and drug

delivery (Ohnishi et al., 2013). Numerous studies have shown that

hydrolyzed fish collagen exhibits biological activities such as

regenerative, antioxidant, immunomodulatory, antibacterial, anti-

inflammatory, and angiotensin-converting enzyme inhibitor.
Collagen in cosmetics

Collagen has a wide range of applications. It is widely used in

cosmetic, pharmaceutical, medical, and food industries because of

its high biocompatibility, non-toxicity, and biodegradability (Hu

et al., 2021). Collagen is a key component of many cosmetic

formulations because of its moisturizing properties. Because the

cosmetic industry is always looking for new and effective products,

the source of collagen is an important research question

(Dhatchayani et al., 2020). The potential of marine collagen was

discovered about 70 years ago during the study of marine sponges

(Gómez-Guillén et al., 2011). The research contributed to the study

of structural and physicochemical features of collagen of

marine origin.

Skin is a tissue composed mainly of type I, III, and V collagens.

The predominant type of collagen in the skin is type I (Tang et al.,

2022). Studies have shown that this type of collagen is identical to
TABLE 5 Bifunctional properties of marine collagen.

No. Collagen properties Source

1 Bioactive Functional (Ahmed et al., 2020b; Allouche et al., 2020; Asaduzzaman et al., 2020; Haq et al.,
2020; Suarez-Jimenez et al., 2020)

2 Antimicrobial Gelling and water-binding properties

3 Antioxidant Surface charge (hydrophilicity or
hydrophobicity)

4 Antihypertensive/ACE
inhibitor activity

Film forming ability

5 Animal species
identification

Applications for microencapsulation

6 Wound-healing Rheological properties and thermostability

7 Chondroprotectors Emulsifying, foaming, colloid-stabilizing,
brightening properties
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marine collagen (Ito et al., 2018). Thus, marine collagen is the most

popular source of collagen in the cosmetic industry. Studies on

collagen from tilapia skin have shown that it has typical properties

of type I collagen, along with acid-soluble collagen (ASC) and

pepsin-soluble collagen (PSC). ASC has a dissociation temperature

of 36.1°C and PSC has a dissociation temperature of 34.4°C (Tang

et al., 2023). Acid-soluble collagen isolated from the skin of the

fathead minnow (Hypohalftalmichthys molitrix) contained type I

collagen as shown by SDS-PAGE (Mukherjee et al., 2023). Column

chromatography confirmed three chains: a1, a2 and a3. The

amount of collagen in Atlantic salmon (Salmo salar L.)

corresponds to types I and V (Caddeo et al., 2017). Circulating

dichroism (CD) raised the circulation temperature of salmon

collagen to 27°C. A study of collagen content in cod also

confirmed the presence of type I and type V collagens (Cossu

et al., 2018). Experiments on adult bigeye snapper (Priacanthus

tayenus) tissues (skin and bone) revealed two different types of a-
chains, a1 and a2 in the form of type I collagen. The electrophoretic

spectra of bigeye snapper skin and bone are very similar (La Noce

et al., 2014). Both ASC and PSC were derived from hybridized fungi

and confirmed by SDS-PAGE and FTIR. The dissociation

temperatures of ASC measured by circular dichroism (CD) and

differential scanning calorimetry (DSC) were 26.8°C and 26.5°C,

respectively. Natural immature collagen is in great demand for

cosmetic and biomedical purposes. However, since the temperature

of fish collagen is low, there is a limitation to emulsification by

heating water and oil. Hydrolyzed collagen is used in many

cosmetic products because it can be used as an emulsion with a

high emulsification temperature while maintaining the moisturizing

properties of collagen (Das et al., 2021).
Conclusion

Collagen is a type of protein that makes up 30% of the body’s

total protein and can be found in various tissues like bones, teeth,

skin, blood vessels, intestines, and cartilage. A recent study reviewed

the current knowledge about collagen isolated from marine

organisms and discussed its potential applications. Due to its

reliability, low antigenicity, and biodegradability, collagen is

commonly used in various industries such as pharmaceuticals,

food, biopharmaceuticals, and cosmetics. The article also provides

an overview of the physico-chemical properties of marine collagen

and the best methods for extracting it from marine organisms.

These methods have been found to have positive effects on health

and relieve symptoms caused by chronic diseases. If aquaculture can

find a solution to the availability of collagen, waste disposal can be

integrated into the processing of raw materials to solve production

waste problems. One potential direction for advancing marine

collagen technologies is manufacturing certified skincare products.

There are many biologically active substances found in marine

organisms that can be utilized in the pharmaceutical and cosmetic

industries. Research is currently advancing into the numerous

applications of collagen derived from these organisms. The main

source of marine collagen extractions are fish (skin, bones, scales,

swim bladders, and cartilages), mollusks (mesogloea, muscle
Frontiers in Marine Science 14
organ), marine invertebrates: jellyfish (dome, muscle tissue), sea

cucumber (body walls), sea urchin (hard cover, connective tissue),

polyps, octopus, and squid (muscle, tentacles, skin).

Marine collagen is a biomaterial that is water-soluble,

metabolized, and easily obtainable. A literature review has shown

that marine collagen is a versatile substance that can aid in treating

skin lesions of varying severity and delay the aging process.

Collagen has proven to stimulate the migration of keratinocytes

and fibromuscular tissue, as well as cutaneous angiogenesis in both

cases. Studies have also demonstrated that marine collagen and its

derivatives are useful in preventing and treating osteoporosis and

osteoarthritis, as well as other bone diseases. This is attributed to the

fact that collagen promotes bone mineral density, mineral

deposition, and inhibits the development and spread of

osteoporosis. The advantages of marine collagen over terrestrial

sources were discussed along with its potential biotherapeutic

properties for skin and bone injuries. In keeping with the growing

trend of replacing synthetic agents with more natural ones, collagen

has found new applications as emulsifiers, foaming agents, colloidal

stabilizers, hydrogels, clarifiers, biodegradable packaging materials,

microencapsulating agents, and bioactive peptides. Furthermore,

using fish processing waste to produce marine collagen for use in

cosmetics has an environmental benefit by reducing their

environmental impact as they are one of the food industry’s

strategic environmental components.

Furthermore, the functional properties of marine collagen

hydrolysates are focused on the production of bioactive peptides

with a number of biological activities (antioxidant, antibacterial,

and chondroprotective). On the other hand, the great development

of modern analytical methods allows for a deeper characterization

of marine collagen properties, and its application for species

identification may be of particular interest.
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