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Monsoon-driven seasonal
hypoxia along the northern
coast of Oman
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and Matthew K. Howard1†

1Department of Oceanography, Texas A&M University, College Station, TX, United States, 2Geochemical
and Environmental Research Group, Texas A&M University, College Station, TX, United States, 3National
Centers for Environmental Information, National Oceanic and Atmospheric Administration (NOAA), Silver
Spring, MD, United States, 4Marine Science and Fisheries Centre, Ministry of Agriculture and Fisheries
Wealth, Muscat, Oman, 5Fugro, Houston, TX, United States
Dissolved oxygen and current observations from a cabled ocean observatory in

the Sea of Oman show that the annual recurrence of coastal hypoxia, defined as

dissolved oxygen concentrations ≤63 mM, is associated with the seasonal cycle of

local monsoon winds. The observations represent the first long-term (5+ years)

continuous moored observations off the northern Omani coast. During the

summer/fall southwest (SW) monsoon season (Jun-Nov), winds in the Sea of

Oman generate ocean currents that result in coastal upwelling of subsurface

waters with low dissolved oxygen concentrations. The source of the poorly

oxygenated water is the oxygen minimum zone (OMZ) in the Arabian Sea, a layer

approximately 1000-m thick within the 100 to 1200 m depth range, where

dissolved oxygen values approach anoxia. During the winter monsoon season

(Dec-Feb), the Sea of Oman winds are from the northwest, forcing strong and

persistent southeast currents. These winds generate oceanic downwelling

conditions along the coastal ocean that ventilate waters at depth. Possible

impacts of the monsoon-driven seasonal hypoxia on local fisheries and

implications due to climate change are also discussed in this study.

KEYWORDS

hypoxia, dissolved oxygen, monsoonal winds, upwelling and downwelling, Sea of
Oman, cabled mooring array
1 Introduction

Hypoxic zones have now been reported in more than 700 systems globally and their

number is thought to have doubled each decade since the 1960s (Diaz and Rosenberg, 2008;

Breitburg et al., 2018; Laffoley and Baxter, 2019). Upwelling of low oxygen water from

oxygen minimum zones (OMZ), where oxygen concentrations are naturally low, to coastal

regions has been reported along many of the world’s coasts, especially in eastern boundary
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currents, e.g., the northeast Pacific Ocean (Grantham et al., 2004;

Chan et al., 2008), Chile (Sobarzo et al., 2007), western and

southwest India (Banse, 1968; Naqvi et al., 2000), and the

Benguela System (Chapman and Shannon, 1985). The Arabian

Sea OMZ (including the Sea of Oman as this region is just a

western extension of the Arabian Sea) is the second-most intense

OMZ in the world tropical oceans (Kamykowski and Zentara,

1990), occupying a large volume between approximately 100- and

1200-m water depths (Herring et al., 1998). The Arabian Sea OMZ

results from the balance between an oxygen sink due to

remineralization of the high surface productivity of the Arabian

Sea and subsurface oxygen supply due primarily to northward

spreading of oxygenated water from the Southern Hemisphere.

There is also a small contribution of oxygen from Persian/Arabian

Gulf water in the northern Arabian Sea (McCreary et al., 2013;

Wang et al., 2013a). It is thought that OMZs globally have the

potential to expand into coastal waters (Helly and Levin, 2004);

previous work has shown that the western shelves of India may

already be experiencing OMZ expansion (Naqvi et al., 2000) and

this has also been shown for the Oregon and Washington shelf

along the U.S. west coast (Kämpf and Chapman, 2016).

Massive fish kills in the Sea of Oman have been reported for

more than two decades (Thangaraja et al., 2007; Al-Gheilani et al.,

2011). Initial investigations suggested that the possible cause is

associated with large phytoplankton blooms and toxic effects of

harmful algal blooms (HABs) (Al-Gheilani et al., 2011; Gomes et al.,

2014), although the depletion of dissolved oxygen levels by organic

decomposition is also suspected (Claereboudt et al., 2001;

Piontkovski et al., 2012). There has, however, been little direct

evidence to conclusively attribute fish mortality to this mechanism

due to the lack of continuous long-term systematic observations.

In this manuscript, we will first report observations of

seasonally recurrent hypoxic/anoxic conditions found in the Sea

of Oman over the region of the northern continental shelf and slope

of Oman using five continuous years of hourly current velocity and

dissolved oxygen measurements from a cabled observing system

(DiMarco et al., 2012; Ingle et al., 2012). We then examine the

causes of the seasonal hypoxia in relation to monsoonal driven

seasonal upwelling/downwelling and the seasonal extension of the

OMZ into the coastal regions. We also investigate the seasonal

patterns of the fish kill events and discuss whether a possible

relationship exists between them. There is strong evidence that

the deoxygenation of upwelling zones (Smith and Bottero, 1977; Lee

et al., 2000; Shi et al., 2000; Kämpf and Chapman, 2016) along

coastal margins is increasing with the prediction that global

fisheries are at risk (Falkowski et al., 2011). Long-term moored

oceanographic time-series are rare in the world’s oceans; this

manuscript reports the first such time-series of oceanic dissolved

oxygen concentration in the northwest Indian Ocean.

Atmospheric conditions over the Arabian Sea and the Sea of

Oman (Figure 1A) are dominated by the monsoonal wind systems

that reverse direction semiannually (Reynolds, 1993; Shi et al.,

2000). The boreal summer monsoon, commonly referred to as the

southwest (SW) monsoon, has a dominant southwesterly

component (over the Arabian Sea) and energetic winds that occur

generally from June to November. The intensity and duration of the
Frontiers in Marine Science 02
SW monsoon, however, are not uniform from year to year

(Morrison et al., 1998). In contrast, the boreal winter monsoon,

known as the northeast (NE) monsoon, has a dominant

northeasterly component (over the Arabian Sea) and relatively

weaker winds that occur from December to February (Weller

et al., 1998). Inter-monsoon periods with greatly reduced wind

stress occur during March-May and October-November

(depending on how long the SW monsoon lasts). In the Sea of

Oman, because of the prevailing topography of the northern Omani

coast (Figure 1), the winds are actually northwesterly during the

summer monsoon and southeasterly during the winter monsoon.

The regional oceanography of the northwestern Arabian Sea

and the Sea of Oman consists of a complex system of currents and

mesoscale eddies with significant seasonal variability (Savidge et al.,

1990; Smith et al., 1991; Esenkov et al., 2003; Pous et al., 2004b;

Richardson et al., 2006; Wang et al., 2013a). Along the southern

coast of Oman, south of Ras al Hadd, intense coastal upwelling is

driven by the steady and energetic winds of the SW monsoon (Lee

et al., 2000), while the upwelling is more intense when the strength

of the SW monsoonal wind is at its peak in July (Rao et al., 2005).

The winds force surface waters to move offshore by Ekman

transport, and because of the proximity to the coast, cooler, less

saline and nutrient-rich deep water is upwelled to the surface to

replace the offshore-moving waters at the surface (Smith and

Bottero, 1977); these Ekman-driven upwellings along the Omani

coasts have been confirmed by various investigators (Schott, 1983;

Quraishee, 1984; Kindle and Arnone, 2001; Prasad et al., 2005;

Wang et al., 2013a).

The areal extent of the upwelling is about 400-km wide and runs

1000 km along the southern Omani coast from Ras Fartak in the

west to Ras al Hadd at the entrance of the Sea of Oman in the east

(Böhm et al., 1999; Morrison et al., 1999; Thoppil and Hogan,

2009). Although the regional circulation in the Sea of Oman is not

well understood, it is believed that frequent mesoscale (~50 km

scale) eddy features occupy the Sea of Oman and are connected with

the broader scale circulation from the Persian Gulf, through the

Strait of Hormuz (Pous et al., 2004a), and into the Arabian Sea

(Owens et al., 1993; Pous et al., 2004b; Wang et al., 2013a). Currents

tend to flow cyclonically (counterclockwise) around the basin.

Wang et al. (2013a) showed periodic southerly spreading of high

salinity water from the Persian Gulf along the northern coast of

Oman in a two-year period following the passage of Cyclone Gonu

in June 2007 (Wang et al., 2012). However, the presence of eddies

and the complex transfer of water in and out of the region adds

significantly to the complexity of the circulation pattern (Pous et al.,

2004b). Even less is known about the temporal variability of the

ocean dynamics of the northern Oman coast (Johns et al., 2000); the

results presented below are the first description of the seasonal

variability of direct observations of moored currents in that region.

The seasonal variability of circulation and related oxygen

dynamics have important implications for phytoplankton blooms

(Gomes et al., 2014) and local fisheries (McIlwain et al., 2011;

Piontkovski and Al-Oufi, 2014; Wang et al., 2014; Piontkovski and

Al-Oufi, 2015). The intense SW monsoon-driven upwelling along

the Omani coast of the Arabian Sea results in rich regional

biological production (Morrison and Olson, 1992; Madhupratap
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et al., 1996; Codispoti et al., 2001; Levin, 2003; Smith and

Madhupratap, 2005; Gomes et al., 2014). In addition, short period

(3-5 days) upwelling has also been observed in the region following

the passage of intense tropical storms (Wang et al., 2012).

Monsoon-driven upwellings are capable of exporting cool water,

rich in nutrients, hundreds of kilometers (km) offshore (Morrison,

1997; Brink et al., 1998). Coastal surface water is replaced by water
Frontiers in Marine Science 03
that wells up from below, which originates from the well-developed

OMZ with dissolved oxygen concentrations less than 22 mM
(1 mM = 10-6 mol per liter; Wyrtki, 1971; Sarmiento et al., 1988;

Morrison and Olson, 1992; Olson et al., 1993; Morrison et al., 1998).

The OMZ is a permanent feature in the Arabian Sea and has been

found to have substantial impacts on abundance and distribution of

pelagic organisms and fishes (Wang et al., 2014; Rixen et al., 2020).
FIGURE 1

(A) Locations of stations and geographic features in the Sea of Oman. Approximate contours of the 100-, 200-, 500-, 1000-, 2000-, and 3000-m
isobaths, based on a 1-minute resolution, global topography v9.1 from https://topex.ucsd.edu, are given. (B) Mooring schematic for the LORI I
cabled array. Shown are instrument depths (m), names and approximate distance (nm) from shore.
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It extends into the Sea of Oman and is found near the continental

slope (Olson et al., 1993; Morrison et al., 1998) and impinges on the

shelf (Herring et al., 1998). The presence of this water at the shelf

break predisposes the waters over the continental shelf to develop

hypoxic conditions (Gomes et al., 2014; Queste et al., 2018),

typically defined as dissolved oxygen concentrations less than 63

mM (equivalent to 2.0 mg/L or 1.4 mL/L; see Zhang et al., 2010 and

references therein), especially when oxygen-depleted water from the

OMZ migrates into the shallow depths during the late monsoon.

Piontkovski and Queste (2016) have suggested that the OMZ in this

region has shoaled into the upper mixed layer (above 30 m depth)

during the past 30 years, although Queste et al. (2018) suspect that

observed changes are actually caused by seasonal variability.
2 Methods

Deployed in summer 2005 in the Sea of Oman off the northern

coast of Abu Bakara, Sultanate of Oman between the 65- and 1050-

m isobaths (Figure 1A), the Lighthouse Ocean Research Initiative

(LORI) system, designed and operated by Lighthouse R&D

Enterprises, Inc (DiMarco et al., 2012; Ingle et al., 2012; Wang

et al., 2013b), provided real-time measurements of currents,

temperature, salinity, pressure, dissolved oxygen, and turbidity.

The LORI system was the first cabled seabed observatory in the

study region. The goal of the project was to prove the capability of

an in situ, cabled ocean observatory to provide high-quality

scientific data on a real-time basis over an extended period. The

Sea of Oman was selected as an ideal test location due to the

dynamic nature of the waters in the region and their relatively

uncharacterized nature. In Oman, the project was coordinated

alongside the Ministry of Agriculture and Fisheries Wealth

through the Marine Science and Fisheries Centre. Planned to be a

sustained observing system, it was designed to provide real-time

monitoring of water-column properties to allow shareholders and

users to make informed decisions, as well as to study a range of

oceanic phenomena, including potential impacts of climate change,

characterization of the general dynamical patterns of the region,

and quantification of seasonal variability of water-column

properties (DiMarco et al., 2012; Wang et al., 2012; Wang et al.,

2013a; Wang et al., 2014). One key objective was to support the

Omani Ministry in its efforts to develop and manage the Sultanate’s

important fisheries resources within the country’s EEZ (exclusive

economic zone). The Oman cabled ocean observatory project ended

in early 2014; however only data from 2005 to 2010 are described in

this study.

The cabled array consisted of four stations (Figure 1B)

connected via a 65-km fiber optic trunk line to a shore station

that provided continuous power and two-way open communication

for data retrieval and system monitoring (Figure 1B). The stations

were named M1-M4, with the station number (1 - 4) increasing

from onshore to offshore. The instruments on each mooring were

named M##, with the first number indicating station number and

the second number showing the location from bottom to top. For

example, M21 is the bottom-most instrument on M2 station. Each

station had an Aanderaa Recording Doppler Current Profiler
Frontiers in Marine Science 04
600kHz (RDCP600) instrument contained in a sensor array base

assembly at the seafloor that connected the station to the cable

system. A trawl-resistant cage to protect the sensors from fishing

damage surrounded the base of each station. The three deep stations

had additional RDCP600s tethered to the base assembly with

flotation, mooring lines, and hardware (locations and depths are

shown in Figure 1B). Data from this real-time system were received

hourly at the Lighthouse office in Houston, Texas, USA, via satellite

telecommunication during the project.

The RDCP600 is a medium range (35 to 50 m) Doppler current

profiler with the acoustic center frequency of 606 kHz. It measures

speed within the range of 0 to 500 cm s-1, with a horizontal accuracy

of 0.5 cm s-1. It uses the Doppler shift of acoustic signal returns to

measure currents in selected bin intervals up to 50 m above the

instrument. The bin interval is 2-m with bins overlapping by 1 m,

i.e., a 50% overlap. The data were collected hourly for both current

sensor and additional water property sensors.
2.1 Current meter data processing

Low-pass filtering was performed with a Lanczos cosine filter

(Emery and Thomson, 2001) with quarter-power (-6dB) cutoff at five

days (120 hours) to remove tidal and inertial period variability

(DiMarco and Reid, 1998). Unfiltered (i.e., raw) and low-pass filtered

versions of the current velocity data were analyzed. Velocity data were

initially oriented to geographic coordinates, i.e., north-south and east-

west. For analyses presented in Section 3.1, current velocity data were

transformed to an across-shelf and along-shelf coordinate system by

rotating them 45 degree clockwise to be consistent with shelf and

monsoon winds direction. Although vertical velocities were measured

by RDCPs, no reliable upwelling/downwelling signals could be derived

from the current measurements due to the large variability in the

vertical velocity data and contamination by vertical migration of

organisms (Wang et al., 2014).

The RDCPs were configured with additional sensors for

temperature, conductivity (salinity), pressure, dissolved oxygen,

and/or turbidity. Unlike the current sensor, all additional sensors

provided single-point measurements at the depths of the

instruments as shown by numbers in Figure 1B. Table 1 gives

specifications for the additional sensors deployed on RDCP600s,

including model number, sensor type, measurement range, sensor

resolution, response time and accuracy. The instruments were

calibrated by the manufacturer before deployment; calibration

coefficients were used to convert sensor voltages and counts to

engineering units prior to analysis. The temperature sensors were

configured for the expected temperature range for the instrument

deployment depth based on historical data (Wyrtki, 1971).

Dissolved oxygen concentration was measured with Aanderaa

Optode optical sensors. The Optodes were set for an expected

range of 0-500 mM (micromolar), with a resolution of < 1 µM and

an accuracy of better than 8 mM or 5%, whichever is greater. All

moored data went through extensive quality control protocols

(DiMarco et al., 2001; Bender and DiMarco, 2010) to identify

outliers and other quality related issues prior to analysis. The

percentages of “good” data passed all the quality control steps
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were > 89.7% for all the parameters except for the salinity data,

which was > 84.1%.

Several maintenance services were performed on the array

following its initial installation in August 2005. The LORI system

was serviced by remotely operated underwater vehicles (ROV) in

June 2006 and January 2009. The M2 array node was replaced in

June 2006 and the entire mooring system was refurbished and

replaced with new instrumentation on 27 January 2007 and 22

September 2010. During the first two years of operations, moored

data were compared against CTD casts during the mooring

maintenance and servicing cruises and were found to be within

acceptable tolerances for both temperature and salinity. The

temperature differences were found to be always less than 0.5°C

for all moored instruments and salinity differences were all less

than 0.3.
2.2 Dissolved oxygen and salinity
data processing

No significant sensor drift was noticed in the dissolved oxygen

data during the five years deployment (linear drift of less than 3

mM/year and not statistically significant). Part of the reason is due

to the prominent seasonal cycle in dissolved oxygen, which makes

the relatively small sensor shift negligible in our analysis.

A salinity (conductivity) drift (< 0.51/year) was seen by

comparing the data before and after replacing the conductivity

sensor. A linear fit was applied to remove the small salinity trend

that was present. Salinity estimates were derived from conductivity

observations using the Practical Salinity Scale (Millero et al., 2008);

following the convention of McDougall and Barker (2011). Salinity

estimates were represented as unitless in figures.
2.3 Wind data processing

Hourly wind speed and direction observations were collected at

the Port of Sohar wind station (24.4°N, 56.63°E), at Sohar Majis,

Oman (Figure 1A), for the time period 1989 – 2010. Raw wind data

were quality controlled prior to analysis. Wind data were range

checked against historical and climatological limits; statistical

outliers were removed from the database prior to analysis. When

appropriate, the winds were rotated 45° clockwise to form the cross-

shelf and along-shelf velocity components. Low-pass filtering of
Frontiers in Marine Science 05
wind data was accomplished using cosine-Lanczos filter weights

with cut-off at five days (Emery and Thomson, 2001).
3 Results and discussion

3.1 Meteorological and physical
oceanographic conditions

The 5-year time series (July 2005-July 2010) of low-pass filtered

along-shelf winds at Sohar Majis, Oman, show a pronounced

annual signal, with winds from the northwest during the NE

monsoon and from the southeast during the SW monsoon

(Figure 2, blue line). Inter-monsoonal winds at Sohar have

decreased speed, consistent with known seasonal monsoonal

variability in the region (Reynolds, 1993; Morrison et al., 1998).

Along the northern coast of Oman between 22.5°N and 25.5°N,

northwest winds (i.e., winds from the northwest) are downwelling

favorable as the integrated surface Ekman transport is directed

shoreward; southeast winds are upwelling favorable. Note the wind

directions are different from the traditional monsoon wind

directions (SW/NE), since in the Sea of Oman they are almost

parallel to the Omani coastline.

The seasonal pattern of the northern Oman coastal currents and

monsoonal wind variability correlate well with a lag of about one to

two months (Figure 2). In late boreal winter and spring, i.e., the

transition to the NE monsoon and downwelling favorable winds,

the along-shelf currents at the bottom instrument (207-m depth) at

the M2 location approach 60 cm s-1 and are directed to the

southeast (Figure 2, top panel). During upwelling favorable

conditions of fall and early winter, current velocities are smallest

(<10 cm s-1). Superimposed on the general annual pattern of

currents are variations with periods of 5-10 days. The cross-shelf

currents were small throughout the year, typically less than 10 cm

s-1 (not shown).
3.2 Seasonal cycle of dissolved
oxygen concentrations

The strongest seasonal variability in any record at the LORI

cabled observatory is that seen in the dissolved oxygen data. The

seasonal pattern is characterized by an abrupt transition from

hypoxic (concentrations less than 60 mM; here generally <10 mM)
TABLE 1 Specifications for Sensors on the RDCP600s.

Parameter Model Sensor Type Range Resolution Response Time Accuracy

Temperature 3621 Thermistor (Fenwall) Selected Range
Wide: -0.64 to 32.87°C

0.1% of range 12 sec ± 0.05°C

Conductivity 4019B Inductive 0-7.5 S/m 0.0002 S/m < 3 sec ± 0.0018 S/m

Pressure 3187B
3187H
3187S

Quartz B: 0-700kPa
H: 0-3500kPa
S: 0-7000kPa

± 0.02% of full scale
(20 bit)

± 0.04% of full scale

Dissolved Oxygen 3830 Optode 0-500µM < 1 µM < 25 sec < 8 µM or 5% whichever is greater
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to more saturated values, i.e., greater than 100 mM (Figure 2, red

line, 120h low-pass filtered). The transition occurs in early to mid-

winter (Figure 3) and coincides with the transition to downwelling

favorable winds and the southeast currents (Figure 2). Following the

steep increase in oxygen, there is a gradual and steady decreasing

trend until the fall (Figure 3). At the M4 location, the dissolved

oxygen concentrations at the two deepest instruments (541- and

1046-m below surface) were consistently anoxic. At the shallowest

M4 instrument (235 m below surface), the temporal pattern of

dissolved oxygen is similar to that found at the shallow inshore

locations, but the maximum concentration was considerably less

than that found at M1 and M2 (Figure 3). The instruments at M43

are positioned close to the OMZ boundary and the low oxygen

extends thru December and into January as a result.

There is short-term variability (days to weeks) superimposed

over this seasonal cycle at the deepwater (>400m) locations (M31,

M32 and M43) that indicates that hypoxic and anoxic conditions

can occur near the shelf edge at any time of the year (Figure 3).
Frontiers in Marine Science 06
However, the persistence, that is the prolonged duration of the low-

oxygen conditions, is longer (order of 2-4 weeks) in late summer

and fall, while non-fall hypoxic events tend to be shorter (order

of 1-8 days).

The rate of oxygen decline for the period defined by the abrupt

winter transition (peak oxygen values) and the fall hypoxic period

was estimated for the years 2005-2009 using a least-squares linear

regression of the raw (unfiltered) oxygen time-series for Stations

M11 and M21 (Figure 4). Generally, the oxygen decline rate is

nearly constant for each location and water depth between February

and September (e.g. M11 and M21, Figure 4) and the magnitude of

the decline rate increases between September to mid-November. At

M11, the average oxygen decline rate of years 2006-2009 is

approximately -11 mM/month between February and September;

the rate becomes approximately -28 mM/month between September

and November in most years 2005-2009 except for 2008

(Figure 4A). At M21, the average rate of years 2006-2009 is

approximately -13 mM/month between February and September
FIGURE 2

Low-pass filtered (120-h) along-shelf winds at Sohar Majis (blue) and unfiltered along-shelf currents (U’, black; positive to southeast) and dissolved
oxygen (red) at the bottom instrument on node M2 (M21). Both winds and currents have been transformed to an along-shelf and cross-shelf
coordinate system by rotating them 45 degree clockwise.
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FIGURE 4

The rate of oxygen decline for the time periods defined by the abrupt winter transition (peak oxygen values, approximately February), the September
breakpoint and the fall hypoxic period for the years 2005-2009 using a least-squares linear regression of the unfiltered oxygen time-series for
Stations (A) M11 and (B) M21.
FIGURE 3

Unfiltered (raw) dissolved oxygen (m Mol) measurements by the LORI mooring system between 2005 and 2010. The station name and sensor depth
(Figure 1B) are shown at the top-left corner of each panel. The left three panels show oxygen from the top sensors of M2-M4 nodes; while the right
panels are measurements from bottom sensors of M1-M4 nodes. Gray vertical bars indicate the time period of 15 October - 15 December.
Frontiers in Marine Science frontiersin.org07
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and increases to about -25 mM/month between September and mid-

November (Figure 4B). The 2005 records only cover the September-

November time period, when the rate appears to be somewhat

higher (~25 µM/month).

The other locations do not show a consistent gradual oxygen

decline during the year. We note that M11 and M21 (see Figure 1B

for locations) are the bottom instruments and are positioned above

the permanent oxycline that marks the oxygen minimum zone in

the Indian Ocean. The bottom instrument at M31 is near the top of

the OMZ and M41 is well within the OMZ. The instruments at

M22, M32, and M43 are in the interior of the water-column

(Figure 1B). The reason why the oxygen decline rates speed up

between September and November is unclear and needs more

investigation. It might be associated with the decomposition of

algal blooms that occurred in the summer (Harrison et al., 2017). It

is tempting to conclude that the relatively constant rate of oxygen

decline during the year (Figure 4) suggests steady rates of Ekman

pumping that continuously bring low oxygen water towards the

surface. However, other processes, such as local respiration and

episodic wind events (i.e., weather) are also most certainly involved.

The observed variability around the annual rate of decline in all

years, and short-term increases in oxygen concentration are

evidence of additional unresolved processes in play. Further work

is needed to quantify the relative importance of physical and

biological processes and their effects.

The five-year long temperature records show prominent

temperature increases starting in November until February at M1,

M2 and the top sensor of M3 stations (Figure 5, vertical gray bars

indicate the time period of 15 October - 15 December), which is the
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same period of the winter monsoon. The temperature increase is

likely caused by the downwelling generated by NE monsoon winds.

The downwelling drives the upper warm water deeper and causes

the temperature increase at the depth of the mooring sensors in the

winter. At the same time, atmospheric-derived dissolved oxygen

from the surface is mixed into the deep water and elevates the

oxygen content from hypoxic levels to more saturated values.

The highest value of dissolved oxygen occurs about a month after

the temperature increase suggesting that it takes about a month

for the high oxygen water near the sea surface to reach the sensor

depth by downwelling. The calculated dissolved oxygen saturations

(not shown) suggest the water is under saturated throughout the

year at all depths and locations, except in February at M11 when

the oxygen concentration is the highest (~200 µM). M11 is the

shallowest station and the oxygen-saturated water measured at 66 m

in February is likely brought down from the surface by the NE

monsoon driven downwelling. Periodic temperature decreases are

found in the 5-year temperature data during the summer monsoon

at the three onshore moorings. For example, in July 2007, there are

persistent temperature decreases at all top sensors (Figure 5).

During the same period, low oxygen water is seen at all top

sensors (Figure 3). This is a good indicator of the upwelling

caused by the persistent summer monsoon.

A scatterplot of current velocity (Figure 6A) shows that the

strong southeast current flow is associated with high oxygen

concentrations at M21. Currents are largely quiescent (<10 cm/s)

the rest of the year, with the low current velocities generally being

associated with low dissolved oxygen concentrations (highlighted in

red in Figure 6A). The correlation coefficient between the along-
FIGURE 5

Time-series of unfiltered temperature (°C) observations by the LORI mooring system between 2005 and 2010. Similar notation is used as in Figure 3.
Gray vertical bars indicate the time period of 15 October - 15 December, i.e., the period of sustained low oxygen concentration observations.
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shelf current velocity and oxygen records at M21 (shown in

Figure 2) is r = 0.71 (p-value < 0.01).

Examination of the temperature records at M21 indicates

that the low-oxygen water is associated with a drop in ocean

temperature (Figure 6B). As previous work has shown (Olson

et al., 1993), this indicates that upwelling processes that uplift

waters already low in dissolved oxygen content are more likely

responsible for the variability than in situ respiration (water column

or benthic). The occurrence of relatively warm temperatures is

coincident with waters relatively high in dissolved oxygen content

(Figure 6B). This occurs during the NE monsoon, when the

southeast currents associated with the downwelling are generated.

The Persian Gulf outflow is also associated with high dissolved

oxygen (e.g., Wang et al., 2012; Wang et al., 2013a), which might

contribute to the short-period (2-10 days) variations in the

dissolved oxygen time series in the study region. Given the high

salinity and density of the Persian Gulf outflow, and the fact that it

sinks to a depth of 150-350 m as it enters the Sea of Oman and flows

south along the shelf edge, ventilating the layer between s0 26.0-
26.8 kg m-3 (Olson et al., 1993; Wang et al., 2013a; Al-Yamani and

Naqvi, 2019; Lachkar et al., 2019), it might be thought that this

could adversely affect the oxygen content. However, this water is

essentially saturated with oxygen as the Persian Gulf is very shallow,

and will contain more dissolved oxygen during winter, when the

outflow is stronger and denser than in summer (Bower et al., 2000;

Swift and Bower, 2003). There is also considerable oxygenation of

the dense outflow through tidal mixing within the Strait of Hormuz

(Bower et al., 2000). According to Banse (1997), the incoming

Persian Gulf water can add about 5 µM of oxygen to the water in the

Sea of Oman, and also reduces denitrification. The incoming water

stays close to the shelf edge in winter, but spreads across the Sea of

Oman in summer, which can result in changes in the depth of the

oxycline and affect fisheries (Queste et al., 2018). A good example of

this was seen in the WOCE line (I-07) in July-August 2005 between

23° and 24°N, which showed an intrusion of relatively high oxygen

water (20-50 µM) within the OMZ at depths between 80 and 300 m
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associated with a bolus of high salinity water (36.6-37.3) from the

Persian Gulf at stations 843-848 (Talley, 2014).

Our interpretation of the moored data is that the downwelling

conditions prevalent during winter abruptly move the OMZ front

seaward while ventilating the inshore and shallow waters of the

shelf. In the late summer and fall, upwelling conditions persist and

allow the OMZ to gradually push shoreward. Thus, the seasonal

wind pattern sets up an oscillation of the OMZ front along the north

Omani coast, which regularly ventilates the shelf. Peak ventilation

occurs in February/March and peak hypoxic conditions occur in

November and December (Figures 3, 4). This is borne out also by

the climatology of the offshore region in the Sea of Oman (see

Figure 7), which shows oxygen data, taken from the World Ocean

Atlas (Garcia et al., 2019), from degree squares centered at 24.5°N,

57.5°E and 25.5°N, 57.5°E. At both latitudes, maximum ventilation

to below 300m depth is apparent in the March-May period, while

hypoxic conditions are at their most severe and reach closest to the

surface (~50 m) during October-December.
3.3 Impacts on fisheries

Claereboudt et al. (2001) and Thangaraja et al. (2007) have

shown the presence of fish mortality along the northern Oman

coast. There is suspicion and some circumstantial evidence that low

dissolved oxygen concentration is a possible cause of at least some

of the fish mortality in the northern Arabian Sea (Claereboudt et al.,

2001; Piontkovski et al., 2012; Harrison et al., 2017). A bimodal

pattern of fish kill events is seen; with fish kills being prevalent

during winter/early spring (February-April) and late summer/fall

(August-November) and with no fish kill events observed in May

through July (Table 2). Unfortunately, there are few direct

observations of oxygen concentration that demonstrate

conclusively that low oxygen levels are responsible for the fish kill

events, and there is also no obvious relationship between the

available fish kill survey data and the moored observations
BA

FIGURE 6

Data from bottom sensors at the M2 location showing (A) currents with hypoxia highlighted (dissolved oxygen < 60 m Mol) and (B) temperature
versus dissolved oxygen with color-coded months. Currents in (A) are in a geographic frame (x-axis: east-west/y-axis: north-south component).
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(Table 2). However, based on the limited data, a larger numbers of

fish kills occur in late summer and fall when the dissolved oxygen

concentrations are lowest and dissolved oxygen less than 60 mM
frequently reaches depths as shallow as 66 m (Table 2; see also

Figure 7). The likelihood of a fish kill event occurring in any month

is greatest (46–75%) in this period, correlates with the period during

which the OMZ impinges on the shelf and slope during the SW

Monsoon (Figures 2-4). Although the summer/fall fish kill and low

oxygen are coincident in time, this does not constitute a direct

causal relationship. However, this can direct future investigation

and we recommend a more targeted observational study to more

fully determine whether a direct mechanism exists.

In spring, however, fish kills are only moderately likely (11–

40%) and appear unrelated to changes in the depth of the <60 mM
oxygen surface. At this time, fish kills occur when oxygen values are

high due to the SE currents that ventilate the lower waters and are

thus not attributable to low oxygen. We therefore speculate that

they may be associated with Harmful Algae Bloom (HAB, Harrison

et al., 2017) or other phytoplankton bloom events (Claereboudt

et al., 2001; Al-Gheilani et al., 2011; and Gomes et al., 2014).

Increases in chlorophyll a concentrations in the Sea of Oman are

found in August-September and January-February at the end of the

monsoon periods (Al-Azri et al., 2010). While these authors state,

based on fortnightly sampling from two coastal locations, that

concentrations at the end of the SW monsoon are generally higher,

peak concentrations can occur at almost any time. More widespread

studies of Moderate Resolution Imaging Spectroradiometer (MODIS)

data by Abuelgasim and Alhosani (2014); Bakhtiar et al. (2020), and

Piontkovski and Al-Oufi (2014) that cover the whole Sea of Oman

showed highest concentrations in February-March, which Abuelgasim
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and Alhosani (2014) attributed to the outflow of nutrient-rich water

from the Persian Gulf. Such increased nutrient inputs could support

more frequent HAB outbreaks. Again, more targeted studies are

required to confirm or disprove this speculation.

Recent fish assemblage surveys using video techniques to

characterize the habitat and fish abundance and diversity along the

continental shelf margin (77~164 m) near Muscat, Oman (within

180 km from the cabled array) found species diversity increased by

96% in March 2006 compared to November 2005, a pattern consistent

at all three types of habitats: sand, reef and megabenthos (McIlwain

et al., 2011). McIlwain et al. (2011) also found all observed fish prefer

demersal habitats along the Omani continental shelf. They suspect that

the seasonal changes in fish assemblage are likely caused by the

monsoon-generated upwelling events (Smith and Bottero, 1977; Lee

et al., 2000; Shi et al., 2000), yet no hydrographic data were measured

during their surveys to examine this. The seasonal hypoxia shown in this

study provides strong evidence to support their hypothesis. As shown in

Figures 3, 4, the lowest oxygen level is measured in November, while

oxygen is typically not hypoxic inMarch on the Oman continental shelf.

Because most fish prefer demersal habitats, the deoxygenation of the

near-bottom water will displace the fish community along the coast

when hypoxia is formed and cause the reduction of both abundance and

diversity of coastal fish as shown in McIlwain et al. (2011).
3.4 Implications of future climate change

Although the interannual variability of the date of onset of

monsoons, ventilation of the deep shelf, or the rate of decline of

oxygen during 2005-2010 are limited, ongoing and future climate
FIGURE 7

Oxygen climatology from degree squares centered at 24.5°N, 57.5°E and 25.5°N, 57.5°E (data from World Ocean Atlas, Garcia et al., 2019).
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change could lead to changes in the timing and rates that are

observed. For example, the relationship between dissolved oxygen

concentration and fisheries underscores the impact that large-scale

atmospheric patterns can have on coastal ecosystems (IPCC, 2021).

Changes to atmospheric forcing of the northern Indian Ocean may

alter monsoonal wind patterns and could lead to changes in

duration of the upwelling/downwelling seasons of the Sea of

Oman (Goes et al., 2005). The systematic decrease in spring snow

and its persistence over large parts of southwest Asia and the

Himalayan-Tibetan Plateau region in recent years has enhanced

the land-sea pressure gradient, which in turn has strengthened

southwest monsoonal winds resulting in intensified wind-driven

coastal upwelling in the Sea of Oman during summer and fall (Goes

et al., 2005). This could potentially lead to a longer hypoxic season,

which may further threaten fisheries of the region.

Increased global warming is likely to increase the buoyancy of the

incoming Persian Gulf water, thus reducing the ventilation and oxygen

concentration within the northern Sea of Oman (Queste et al., 2018;

Lachkar et al., 2019; Naqvi, 2021), although the former is counteracted

to some extent by increasing salinity in the outflow as freshwater flow

into the Persian Gulf is reduced (Al-Yamani and Naqvi, 2019).

Decreasing ventilation will lead to increased denitrification in the Sea

of Oman, thus reducing its oxygen concentration. Thus, the Omani

coast may be doubly susceptible to large-scale atmospheric and

oceanographic change. Indeed, the development of hypoxia along the

Oregon coast (Grantham et al., 2004; Adams et al., 2016) may already

be the evidence of similar change on the US west coast. Sustained

ocean-monitoring systems such as the one described here are necessary
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to fully characterize the long-term response of oceanographic systems

to climate variability (IOC/UNESCO, 2009; Falkowski et al., 2011).
4 Conclusions

The variability of dissolved oxygen concentrations in the Sea of Oman

is seasonal and correlated with monsoonal winds. Highest concentrations

>150 mMoccur in late winter (Figures 2; 3). Concentrations then decrease

steadily to minimum values of <60 mM in fall. The waters are then

ventilated abruptly with the onset of the NE Monsoon.

The seasonal variability of dissolved oxygen is probably related to

the encroachment of the OMZ in the Sea of Oman onto the shelf and

slope off the coast of northern Oman. The proposed explanation is

shown schematically in Figure 8. During winter and spring, the NE

Monsoon sets up a relatively energetic southeast-flowing current system

(Figure 2), which indicates the coastal ocean response to downwelling-

favorable winds. The temperature time-series observed at M1 and M2

shows a noteworthy temperature increase in December and January,

which we attribute to the downwelling conditions. The NE-Monsoon-

generated downwelling then moves the OMZ front seaward (Figure 8,

left) and brings high-oxygen water into the study region. In contrast,

the pattern in late summer and fall is of slower currents during

upwelling favorable conditions that allow the low-oxygen waters to

penetrate shoreward onto the shelf and the upper waters over the slope

(Figure 8, right). Thus, the seasonal dissolved oxygen cycle is phased

with the arrival of the NE Monsoon that is downwelling favorable and

the summer-fall season that is upwelling favorable.
TABLE 2 Statistical evaluation of fish kills off the northern coast of Oman from 1976 through 2009.

Month Fish Kill Surveys, 1976 through 2009 Frequency of Occurrence
of Dissolved Oxygen Con-
centrations O2 <60 mM

during 2007 through 2009

Number of
Surveys

With Fish Kills
Observed

With No Fish Kills
Observed

Likelihood of Fish Kill
by Month (%)

66-m
depth (M11)

207-m
depth (M21)

January 9 1 8 11 0.14 0.25

February 12 4 8 33 0.03 0.00

March 12 4 8 33 0.00 0.00

April 14 6 8 43 0.06 0.00

May 1 0 1 0 0.08 0.00

June 2 0 2 0 0.29 0.01

July 4 0 4 0 0.36 0.25

August 10 6 4 60 0.45 0.28

September 13 6 7 46 0.84 0.63

October 6 4 2 67 1.00 0.99

November 4 3 1 75 1.00 1.00

December 5 2 3 40 0.66 0.92

Total 92 36 56
Surveys were conducted by the Oman Ministry of Agriculture and Fisheries Wealth. Sampling is monthly along the northern coast of Oman and is mostly in response to reports of fish kill and
HAB events. There are 3-6 surveys per year.
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In conclusion, using observations from a unique, cabled ocean

observatory, we find recurrent hypoxia in the Sea of Oman over the

northern shelf and slope of Oman that appears to be driven by the

seasonal monsoon winds. Future work in the region should involve a

strategy to test the hypothesis that fish kill during the fall season is

causally related to carbon cycling and the dissolved oxygen variability

of the coastal ocean. Because of the marked seasonal variability, we

further recommend that future studies involve subseasonal

investigations to quantify the frequency, duration, and persistence of

intraseasonal and episodic events (atmospheric and oceanographic)

on coastal hydrography and their impacts on fisheries resources.
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FIGURE 8

Schematic of seasonal pattern of dissolved oxygen concentrations along the northern Oman coastline. Left: Downwelling winter pattern. Right: Upwelling
late-summer/fall pattern. Purple color indicates high dissolved oxygen concentrations; yellow color indicates low oxygen associated with oxygen minimum
zone (OMZ). Blue arrow indicates movement of the OMZ front. Teal arrows indicate vertical movement and exchange of surface waters.
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Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.
B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (New
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