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The El Niño-Southern Oscillation (ENSO) spring persistence barrier (SPB)

describes the feature in which the predictive skills of ENSO decrease

significantly in the boreal spring. This paper investigates an index constructed

using sea surface temperature (SST), namely SSTH, which is based on tropical

Pacific Ocean Heat Content (OHC) in crossing ENSO SPB. Inspired by the

dynamical relationship between the tropical Pacific OHC and eastern Pacific

SST anomalies, SSTH is constructed by SST anomalies (i.e., Niño3.4 index) to

represent OHC. We show that this index leads ENSO SST anomalies by about 10

months, making it effective in crossing ENSO SPB. Particularly, among the 50

ENSO events from 1950 to 2022, 27 years were identified to be caused by SSTH
signals. Compared with warmwater volume (WWV) or the west of WWV (WWVw),

this index is more stable and effective after the 21st century because the effective

region of subsurface OHC changed dramatically afterward. However, SSTH
avoids this problem as it is constructed by SST anomalies alone. Finally, as SST

data is reliable before 1980, SSTH is utilized to study the interdecadal lead-lag

relationship between subsurface OHC and ENSO SST.

KEYWORDS

spring persistence barrier, ENSO, prediction, sea surface temperature, Ocean
Heat Content
1 Introduction

El Niño-Southern Oscillation (ENSO) is the most significant interannual signal on

earth, which impacts global climate, extreme weather, and the environment through

teleconnection (McPhaden et al., 2006). Therefore, forecasting ENSO events has garnered

great attention for decades (Balmaseda et al., 1995; Barnston et al., 2012). One striking

feature in ENSO prediction studies is the spring persistence barrier (SPB) or associated

spring predictability barrier (Torrence and Webster, 1998; Ren et al., 2016). This SPB can

be mainly noticed in the observation of tropical Pacific sea surface temperature (SST)

anomalies variability (e.g., Niño3.4; 5°S-5°N, 170°W-120°W; blue box in Figure 1). It shows
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that ENSO predictability, as estimated by the autocorrelation

function (ACF) of SST anomaly, tends to drop substantially

during the boreal spring, regardless of different initial months

(Liu et al., 2019; Jin et al., 2020).

Currently, many studies have proposed various indices to help

predict ENSO across SPB. Seleznev and Mukhin (2023) proposed a

joint SST-OHC model using Bayesian optimization schemes and

revealed a substantial reduction in the seasonal predictability barrier

of ENSO and winter barrier for the OHC index. Nigam and Sengupta

(2021) proposed an SST index based on regressions of four

spatiotemporal modes that better capture ENSO variability and

related hydroclimate impact (relative to Nino 3.4 index) at multiple

seasonal leads. Planton et al. (2018) proposed the western Pacific

OHC as a better predictor of La Niña events. Zhu et al. (2014) in fact

proposed that sea surface salinity variability plays an active role in

ENSO evolution and is important for forecasting El Niño events. In

addition, the Victoria Mode and South Pacific Quadrapole may affect

ENSO events approximately 10 months later through the Seasonal

Footprint Mechanism or the TradeWind Charging (Ding et al., 2015;

Shi et al., 2022). The warming of the Tropical North Atlantic is

believed to stimulate the westward propagation of the equatorial

Rossby wave train, which is beneficial for the formation of La Niña

after 9 months (Ham et al., 2013). In addition, Chen et al. (2022)

found that there is a significant negative correlation between spring

SST anomalies in the Tropical Western Atlantic and subsequent

winter ENSO variability, which can predict ENSO 10 months in

advance. Chen et al. (2020) constructed a multiple linear regression

model based on tropical dynamics, ocean-atmosphere feedback, and

temperate atmospheric forcing to increase the predictability of ENSO.

Previous studies have shown that the slow evolution of the

upper ocean in the tropical Pacific is a major source of predictability

for ENSO (Meinen and McPhaden, 2000; Anderson, 2007). Wyrtiki

(1985) suggested that accumulated warm water flows eastward in

the form of Kelvin waves, leading to the occurrence of El Niño

events. According to the recharge oscillator theory of ENSO, Jin

(1997) indicated that anomalies in the tropical Pacific Ocean Heat

Content (OHC) reach their maximum magnitude before the

development of the largest magnitude SST anomalies. Based on

that, the index named warm water volume (WWV; 5°S-5°N, 120°E-

80°W; gray box in Figure 1; McPhaden, 2003) is widely used in

ENSO forecasting, especially for crossing ENSO SPB (Yu and Kao,

2007; Bunge and Clarke, 2014). Recently, the west of warm water

volume (WWVw; 5°S-5°N, 120°E-155°W; red box in Figure 1) has
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been argued to be important for ENSO longer time scale (more than

9 months) forecasting (Izumo et al., 2019).

The lead-lag relationship between OHC and ENSO has not been

directly established before 1980 due to the unavailability of reliable

subsurface ocean data. Therefore, sea level datasets have been used

to investigate the relationship between OHC and ENSO for a longer

time range (Wyrtki, 1985). Jin (1997) attempted to demonstrate the

effectiveness of the recharge oscillator theory using sea level data.

Bunge and Clarke (2014) constructed a sea level-basedWWV proxy

dating back to 1955 and suggested a small lead time before 1973.

However, to the best of our knowledge, no test of this lead-lag

relationship has been conducted using SST data.

Reliable SST data has been available since 1950, so we are

inspired to explore the lead-lag relationship between OHC and

ENSO for a longer time range using an index constructed by SST

anomalies. Specifically, according to the recharge oscillator theory,

the relationship between SST and OHC anomalies is described (eq.

2.2; Stein et al., 2010; Levine and McPhaden, 2015). According to

this relationship, we propose an index (namely SSTH; more details

will be described in Section 2.1) to represent OHC as a predictor for

ENSO forecasts. This allows us to examine the lead-lag relationship

only using SST datasets. Moreover, this index captures the major

features of the ocean subsurface, making it effective for crossing

ENSO SPB. Compared with WWV (McPhaden, 2012) or WWVw,

this is more stable as a predictor on the interdecadal time scale. The

method we employ to produce SSTH and the reanalysis data will be

presented in Section 2. The comparison between SSTH and WWV/

WWVw is shown in Section 3. In Section 4 we will explore the

interdecadal change in the lead-lag relationship between SSTH and

ENSO SST anomalies. Finally, a summary and discussion will be

given in Section 5.
2 Method and data

2.1 An SST-constructed index to represent
tropical Pacific Ocean Heat Content

The recharge oscillator model (Jin 1997) describes the dynamic

relationship between the equatorial Pacific thermocline depth (or

OHC) anomaly (H) and the eastern SST anomaly (T) and can be

written as (Levine and McPhaden, 2015):

dT
dt

= −lT + w0H + sx (2:1)

dH
dt

= −w0T (2:2)

where l is the damping rate, w0 is the ENSO linear frequency, x
is white noise (stochastic forcing) and s is the noise amplitude. Eq.

(2.1) indicates the combined effects of the relaxation of SST

anomaly (negative feedback), advection, Ekman upwelling,

thermocline positive feedback, and noise forcing on the SST

anomaly. Eq. (2.2) suggests a description of the basin-wide

equatorial oceanic adjustment. Note that the damping term of

OHC is neglected here. This is because, on seasonal and longer
FIGURE 1

The region of Niño3.4 (5°S~5°N, 170°W~120°W; blue box), WWV (5°
S~5°N, 120°E~80°W; gray box) and WWVw (5°S~5°N, 120°E~155°W;
red box).
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time scales, changes in OHC are mainly governed by the

geostrophic response to the wind stress forcing rather than by the

damping itself (Burgers et al., 2005). Here, wind stress can be

linearly represented by T and eq. (2.2) is obtained consequently.

According to eq. (2.2), there is a phase lag between H and T,

suggesting that H can be a predictor for SST at large lead times.

Meanwhile, SST can also be a predictor of H changes (see

also Figure 2).

Unlike H in eq. (2.2) (WWV or WWVW), the reliable SST data

is longer. This encourages us to construct a new predictor using SST

data to represent H. Therefore, mathematically motivated by eq.

(2.2) and for prediction purposes, H can be calculated as follows:

H(t) = −∫tt0w0Tdt ≈ −w0∫
t
t0Tdt

≈ −w0 ∫t−1t0 Tdt + (T(t) + T(t − 1))=2
� �

(2:3)

H(t)≈w0SSTH(t) and w0 does not change dramatically with time

compared with SST anomalies, the lead-lag correlation between H

and T (r(t)) can be obtained as follows:

r(t) =
〈H(t), T (t) 〉ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〈H(t),H(t) 〉 * 〈T(t),T(t) 〉
p

=
w0 〈 SSTH(t), T (t) 〉

w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈 SSTH(t), SSTH(t) 〉 * 〈T(t),T(t) 〉

p

=
〈 SSTH(t), T (t) 〉ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〈 SSTH(t), SSTH(t) 〉 * 〈T(t),T(t) 〉
p (2:4)

According to eq. (2.4), r(t) is independent of w0. As the

correlation relationship between H and T is independent of w0,
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the SST-constructed index SSTH which approximately represents

OHC, can be written as:

SSTH(t) = SSTH(t − 1) −
T(t) + T(t − 1)

2

= − T(2) +⋯+T(t − 1) +
T(1) + T(t)

2

� �
(2:5)

It can be simply called a temporally lagged SST index. For initial

time t = 1, SSTH(1)=T(1). We will show that this index is a predictor

of ENSO SST anomalies, especially after the 21st century.
2.2 Data

Two datasets are used in this study. One is the monthly Simple

Ocean Data Assimilation (SODA; 0.5°×0.5°; Carton and Giese, 2008).

The SODA 3.12.2 data (from 1981 to 2017) is integrated to interpolate

the depth of the 20°C isotherm (Z20), which is used to calculate Z20This

depth of Z20 is determined by interpolating the gridded subsurface

temperature. The other one is the Extended Reconstructed Sea Surface

Temperature, version 5 (ERSSTv5; 2°×2°; Huang et al., 2017) from

1980 to 2022, which is used to construct SSTH. All monthly data are

used after removing the climatological seasonal cycle and linear trends.

The indexes of WWV (warm water volume above 20°C isotherm

between 5°S~5°N, 120°E~80°W; gray box in Figure 1) and WWVw

(warm water volume above 20°C isotherm between 5°S~5°N, 120°

E~155°W; Red box in Figure 1) from 1980-2022 are directly

downloaded from the website https://www.pmel.noaa.gov/elnino/

upper-ocean-heat-content-and-enso. Following Bretherton et al.
B C

A

FIGURE 2

Numerical solution of the recharge oscillation model (eqs.2.1-2.2). l = 0:15*½1   +   1:8sin( p6 t)�month−1, w0 = 2p
30 month−1 (A) Time series of T, H and

SSTH. (B) The lead-lag cross correlation between T and H (blue line), SSTH (red line). (C) The seasonal cross-correlation of T and H.
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(1999), the effective sample size, which takes into account the serial

autocorrelation at lag one, has been used in the Student’s t-test. The

effective sample size (Ne) is defined as Ne=N×(1–rx×ry)/(1+rx×ry),

where N is the length of time series and rx(ry) is the lag-one

autocorrelation coefficient of the time series for variable x (y).

To further demonstrate the role of SSTH on ENSO prediction,

we also analyze the monthly data of 36 CMIP6 in historical

simulations from 1900 to 2014 (Table 1; Eyring et al., 2016). All

monthly mean data are used after removing the climatological

seasonal cycle and quadratically trends.
3 The relationship between SSTH
and ENSO in the simple model,
observation, and CMIP6

3.1 The relationship in the recharge
oscillator model

The role of tropical Pacific OHC in ENSO predictability is

illustrated in Figure 2. According to the numerical solution of the

simplest recharge oscillator model (Figure 2A; Burgers et al., 2005),

OHC leads SST anomalies by about 6-9 months (Figure 2B), especially

during the early calendar months of the year (Figure 2C), which is

consistent with McPhaden (2003) using the observation data.

In recharge oscillator model, SSTH is in phase with H, as

indicated by a correlation coefficient close to 1 (red line vs. blue

line in Figure 2A). SSTH leads SST anomalies by about 6-9 months,

which is also the same with H (Figure 2B). This suggests that SSTH
can effectively represent H in this simple recharge oscillator model.
3.2 The relationship between observation
and CMIP6 models

SSTH, WWV, and WWVw are predictors of SST anomalies.

Firstly, WWV or WWVw leads SST anomalies by several months
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(blue or green line vs. black line in Figure 3A). For example, WWV

orWWVw peaks before the SST anomalies reach their maximum in

1982. This point can be further found in Figure 3B. Consistent with

Izumo et al. (2019), WWV leads SST by half a year, while WWVw

has a longer lead time, especially for crossing the SPB (blue and

green lines in Figure 3B). Meanwhile, the correlation coefficient

between SSTH and WWV is 0.5 (significant at a 95% confidence

level), which indicates that SSTH can also be a precursor for SST

anomalies. The increase of SSTH in early spring suggests a recharge

state in the tropical Pacific and the El Niño event may occur in the

future (red and black lines in Figure 3A). SSTH always leads Niño3.4

SST by about 10 months (red line in Figure 3B). Among the 50

ENSO events from 1950 to 2022, 27 years were identified to be

caused by SSTH signals. This finding is expected as SSTH is based on

the subsurface temperature information. According to the recharge

oscillator theory of ENSO, the time when OHC anomalies reach

their maximum precedes the development of SST anomalies. For a

longer lead time, the correlation between SSTH and the Niño3.4

index is higher than that of WWV. As shown in Figure 4, SSTH from

January to March is a predictor for the following winter ENSO SST

anomalies. Particularly, T = a*SSTH+b, where T indicates winter

SST anomalies and SSTH indicates the value of SSTH from January

to March. Here, a=0.0402 and b=0.017 are trained by using

observational data. The prediction skill of anomaly correlation

coefficient (ACC) is 0.46, which is significant at a 99% confidence

level. By using this index, the spring predictability barrier

is weakened.

The role of SSTH in ENSO prediction is also identified in the

CMIP6 datasets. In 36 CMIP6 models, SSTH consistently leads

Niño3.4 SST by about 6-16 months (gray lines in Figure 3C). The

highest correlation is about 0.7. The multi-model ensemble (MME)

mean of the 36 CMIP6 models shows that SSTH leads Niño3.4 SST

by 10 months with the highest correlation (0.34; purple line in

Figure 3C). This implies that SSTH can also act as a precursor for

ENSO events in CMIP6 models, consistent with observation.

SSTH is effective in crossing ENSO SPB. The primary

characteristic of the ENSO SPB is the occurrence of a band with

the maximum decline of monthly autocorrelation in spring. This is
TABLE 1 The CMIP6 models.

CMIP6 Models Name

ACCESS-CM2 ACCESS-ESM1-5 BCC-CSM2-MR CAS-ESM2-0

CESM2-WACCM CIESM CMCC-CM2-SR5 CMCC-ESM2

CNRM-CM6-1 CNRM-CM6-1-HR CNRM-ESM2-1 CanESM5

E3SM-1-1 EC-Earth3 EC-Earth3-CC EC-Earth3-Veg

EC-Earth3-Veg-LR FGOALS-f3-L FGOALS-g3 FIO-ESM-2-0

GFDL-CM4 GFDL-ESM4 GISS-E2-1-G HadGEM3-GC31-LL

HadGEM3-GC31-MM INM-CM4-8 INM-CM5-0 IPSL-CM6A-LR

KIOST-ESM MCM-UA-1-0 MIROC6 MPI-ESM1-2-HR

MPI-ESM1-2-LR MRI-ESM2-0 NESM3 UKESM1-0-LL
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evident from the monthly autocorrelation of SST anomaly

variability and its lag gradient. It indicates that ENSO forecasting

experiences the most rapid loss of predictability in spring

(Figure 5A). Subsequently, persistent SST anomalies show higher

skills for winter SST anomalies. However, SSTH still suggests a

higher skill in the early spring (Figure 5B). When SSTH leads

Niño3.4 SST anomaly about 10~16 months, their correlation is

higher. Particularly, the cross-correlation between winter SST and

12 months earlier of SSTH is about 0.5, indicating that it is a superior

predictor for crossing ENSO SPB compared to Niño 3.4 itself.

Compared with SSTH, spring WWV exhibits a higher correlation

with winter Niño3.4 (Figure 5C). This lead correlation coefficient is
Frontiers in Marine Science 05
about 0.6, suggesting that WWV cannot be reflected entirely by

SSTH. According to eq. (2.2), our index only reflects the low

frequency of WWV. SSTH index is derived by eq. (2.2), which is

the simplest relationship between T andWWV. Only by this simple

relationship, we can use SST data to represent WWV. In fact, WWV

is related to T and the damping of thermocline depth itself although

the damping term is small (Burgers et al., 2005). As such, the WWV

exhibits a higher correlation magnitude compared with SSTH. Note

here although the WWV index is more effective in crossing ENSO

SPB, our index can be utilized to identify the role of low frequency

component of the subsurface in the tropical Pacific in ENSO

prediction before 1980. Additionally, WWVw exhibits a longer

lead time in ENSO prediction compared to WWV, which is

consistent with Izumo et al. (2019) (Figure 5D).
4 The interdecadal modulation of the
effectiveness of SSTH in ENSO
prediction and possible mechanism

4.1 The interdecadal modulation of the
effectiveness of in ENSO prediction

As mentioned in the previous sections, SSTH is a predictor for

ENSO events, indicating the role of subsurface temperature in

ENSO development and prediction. SSTH consistently leads SST

anomalies by about 10 months, allowing it to cross ENSO SPB.

The effective role of the subsurface tropical Pacific, represented by

SSTH, in ENSO development and prediction before 1980 is evident in

Figure 6. SSTH has been a predictor since 1950 (red line in Figure 6A).
B C

A

FIGURE 3

(A) Time series of SSTH (red line), WWV (blue line), WWVw (green line) and Niño3.4 index (black line) from 1980 to 2022. The gray shading means the
Niño3.4 index exceeds ±0.5°C. (B) The autocorrelation of Niño3.4 SST anomalies and the cross-correlation between the Niño3.4 SST anomalies and
WWV (blue line), WWVw (green line) and SSTH (red line) respectively for 1980–2017. (C) The cross correlation between the Niño3.4 SST anomalies
and SSTH of 36 CMIP6 models (purple line and thin gray lines indicate the ensemble mean and each model results).
FIGURE 4

The observational averaged sea surface temperature anomalies in
Niño3.4 area from December(0) to February(1) (gray bar), Predicted
sea surface temperature anomalies by using SSTH from January(0)
to March(0) (red Line).
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For example, SSTH reached its maximum before an El Niño event

occurred in 1958. This point can be further observed in Figure 6B.

Since 1950, SSTH always leads SST anomalies by about 10 months

(the correlation coefficient is about 0.4) so that can cross the SPB.

The effectiveness of SSTH remains relatively stable on the

interdecadal time scale. The correlation between the Niño3.4

index and SSTH, WWV exhibits an interdecadal change

(Figures 6C, D). The correlation coefficient is higher when WWV

leads Niño3.4 by about 4~8 months before 2000 (Figure 6C).

However, the lead time of WWV in relation to Niño3.4 shortens

to 0~4 months after 2000, indicating a weakened role of WWV in

ENSO prediction, consistent with the previous study (McPhaden,

2012). For SSTH, the lead time roughly maintains at 10 months

since 1985 (Figure 6D), suggesting that it is a relatively stable index

for the lead time.

SSTH is more effective in predicting ENSO with a lead time of

about 10 months compared with WWV and WWVw after the 21st

century (Figure 7). We divide the time period into two periods:

1980-1999 and 2000-2022. Before 2000, SSTH leads Niño3.4 SST

anomalies by about 10 months (the correlation coefficient is about

0.6; Ne=28), while after 2000, the same lead time exhibits a lower

correlation (the correlation coefficient is about 0.4; Ne=31). During

the 1980-1999 period, WWV led Niño3.4 SST anomalies by about 6

months (the correlation coefficient is about 0.7; Ne=41). However,

after 2000, this lead time is shortened to about 3 months, and the

correlation decreases (lower than SSTH for lead time > 6 months;
Frontiers in Marine Science 06
blue lines in Figure 7; Ne=63). Furthermore, the cross-correlation

for WWVw decreases dramatically from 0.5 in 1980-1999 (Ne=41)

to 0.15 in 2000-2022 (Ne=43), indicating reduced effectiveness of

WWVw after 2000 (green lines in Figure 7). On the other hand,

SSTH suggests a relatively smaller modulation compared to WWV

and WWVw for crossing the SPB (red line in Figure 7).

SSTH is also more effective in crossing ENSO SPB after 2000.

Before 2000, WWV was a predictor in the spring (Figure 8C).

Although the in-phase relationship betweenWWV and SST is small

(close to 0), spring WWV anomalies lead winter SST anomalies by

8-12 months (the correlation coefficient is about 0.7), indicating

that it is a superior predictor for crossing ENSO SPB compared to

Niño 3.4 itself (Figure 8A vs Figure 8C). Following spring, persistent

SST anomalies exhibit higher skills in predicting winter SST

anomalies (Figure 8A). Therefore, WWV is a constraint for

forecasts starting early in the calendar year. Both SSTH and

WWVw suggests a similar role in ENSO prediction, displaying

higher skills for winter and following spring SST anomalies

(Figures 8B, D). In the 21st century, the SPB becomes more

pronounced (Figure 8E). Spring WWV shows a smaller skill in

predicting winter SST anomalies, and the lead time is notably

shortened (Figure 8G), which is consistent with the findings of

McPhaden (2012). WWVw also exhibits a dramatic drop in

effectiveness (Figure 8H). While SSTH suggests a slightly lower

skill in the early spring (Figure 8F), and the lead time remains

consistent with that before 2000. The cross correlation between
B

C D

A

FIGURE 5

The autocorrelation map of (A) Niño3.4 index, the cross-correlation between the Niño3.4 index, and (B) SSTH, (C) WWV, (D) WWVw from 1980-
2022. The vertical axis indicates the initial month. Dots indicate a significant correlation at a 90% confidence level.
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winter SST and 12 months earlier of SSTH is about 0.5, indicating

that it is an effective predictor for crossing the SPB.
4.2 Possible mechanisms to explain the
effectiveness of , WWV and WWVw after
the 21st century

In this section, we will explain why SSTH becomes more

effective after the 21st century. Mathematically, if we assume the

time series of T in the simplest case: T = sin(w0t) , according to eq.

(2.2), the time series of H can be derived as H = cos(w0t). The lead-

lag correlation (rH,T(t), t>0 indicates H leads T for t months)

between H and T is:

rH,T (t) = sin(w0t) (4:1)

According to eq. (4.1), the maximum cross-correlation occurs

when t equals 1/4 ENSO period (ENSO period is 2p
w0
). When the

ENSO period shortens, the lead time becomes smaller. The lead-lag

cross-correlation relationship is controlled by the ENSO period

(black lines in Figure 7), which can be theoretically derived from the

recharge oscillator (Jin et al., 2021; their eq. (3.8)). A shortened

ENSO period can lead to a decreased lead-lagged correlation. Note

here other factors (e.g., the damping term of the WWV) can also
Frontiers in Marine Science 07
lead to this lead-lag correlation as this theoretical solution is derived

by the simplest recharge oscillator. Therefore, due to this model

may be too simple, the relationship between lead-lag correlation

and ENSO cycle is consistent with the observation before 2000 but

not after 2000.

The shortened ENSO period after the 21st century may

contribute to the reduced effectiveness of WWV and WWVw.

According to recharge oscillator theory, under the effect of

westerly wind forcing, the accumulated warm water in the

western Pacific flows eastward, finally affecting SST anomalies in

the eastern Pacific (e.g., an El Niño event). At the same time, the

zonally integrated Sverdrup transport, caused by wind stress,

reduces the thermocline depth in the western Pacific (Wyrtki,

1985; Jin, 1997). During the period of 1980-1999, the positive

correlation coefficient between thermocline depth and winter SST

anomalies in the eastern Pacific can reach the west of 140°E with a

lead time of 12 months (Figure 9A), indicating that the western

Pacific is still “recharging” 12 months before an El Niño event

happens. During this period, the region of OHC (e.g., WWV, 120°

E~80°W) has a reasonable lead time of about 9 months since the

major area of the Pacific exhibits positive correlation coefficients.

However, the situation is different in the 21st century. A negative

correlation occurs in the western Pacific with a lead time of about 12

months (Figure 9B), indicating that the western Pacific is
B C

D

A

FIGURE 6

(A) Time series of SSTH (red line) and Niño3.4 index (black line) from 1950 to 2022. (B) The cross-correlation between SSTH and Niño3.4 SST
anomalies (blue line) for 1950–2022. (C) Cross-correlation between the WWV and Niño3.4 indices as a function of WWV leads month (y-axis) and
year (x-axis) within a 10‐year running window from 1985-2015. (D) Cross-correlation between the SSTH and Niño3.4 indices as a function of SSTH
leads month (y-axis) and year (x-axis) within a 10‐year running window from 1955-2015. Dots represent a significant 10-year sliding correlation at a
90% confidence level.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1248844
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Meng et al. 10.3389/fmars.2023.1248844
“discharging” at 12 months before an El Niño event occurs. This

means that the OHC in the western Pacific is building up for a La

Niña event at that lead time. It shows an accelerated recharge/

discharge rate (a shortened ENSO period) after the 21st century.

The correlation coefficient of the west (east) of the dateline is

negative (positive) at about 9 months lead, indicating that the area

of WWV or WWVw is not appropriate. On the other hand, SSTH
does not need to consider this situation as it is constructed using

SST anomalies. The Niño3.4 area is able to represent the major

feature of ENSO activity. This is why SSTH is more effective than

WWV after the 21st century.

It should be noted that SSTH, WWV and WWVw are all less

effective after the 21st century (dashed vs. solid lines in Figure 7).
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According to eq. (4.1), the lead time is directly related to the ENSO

period. As the ENSO period is longer during 1980-1999

(McPhaden, 2012), the OHC-based indexes are more effective,

meaning that ENSO predictability is higher. In this section, we

have shown that due to the accelerated recharge/discharge after the

21st century, WWV and WWVw have become less effective.

However, as SSTH is constructed by SST anomalies, it remains

relatively effective compared to WWV and WWVw after the

21st century.
5 Summary and discussion

This paper aims to investigate an SST-constructed index that

utilizes SST data to represent subsurface OHC in the tropical Pacific

for crossing ENSO SPB. According to the relationship between

tropical Pacific OHC and eastern SST anomalies (eq. (2.2)),

subsurface OHC can be represented by Niño3.4 SST anomalies.

This index leads winter SST anomalies by about 10 months,

indicating that it is a constraint in crossing ENSO SPB.

Compared to WWV or WWVw, this index remains stable and

more effective after the 21st century. Due to the accelerated

recharge/discharge rate (ENSO period is shortened) after the

2000s, the effectiveness of the OHC region of OHC (WWV or

WWVw) for winter SST anomalies at large lead times is diminished.

On the other hand, since SSTH is constructed only by SST anomalies

and the Niño3.4 region can represent the major features of ENSO

activities, SSTH still leads winter SST anomalies by 10 months.

Additionally, even though ocean subsurface data (e.g., WWV) is not

reliable before 1980, SSTH can be employed to explore the

interdecadal modulation of the relationship between subsurface

and SST anomalies.

The SSTH is able to identify the effectiveness of the subsurface

information in the tropical Pacific in crossing ENSO SPB. Reliable

subsurface information is not available before 1980, and some
FIGURE 7

The autocorrelation of Niño3.4 SST anomalies (black lines) and the
cross-correlation between the Niño3.4 SST anomalies and WWV
(blue lines), WWVw (green lines), and SSTH (red lines) respectively for
1980-1999 and 2000-2022. Dark gray dashed and solid lines
represent the critical correlations at 90% confidence levels
respectively for 1980-1999 and 2000-2022.
B C D
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A

FIGURE 8

(A–D), (E–H) are the same as Figure 5, except for 1980-1999 and 2000-2022, respectively. Dots indicate a significant correlation at a 90%
confidence level.
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climate models (e.g., CMIP6) lack output data for the ocean

subsurface. Therefore, we can use this index to explore the lead-

lag relationship between ocean subsurface information and ENSO

SST anomalies. Moreover, SSTH may also play a role in the ENSO

forecast after the 21st century. The lead correlation between SSTH
and the Niño3.4 index is higher than that between WWV and the

Niño3.4 index for longer lead times (> 10 months). In summary,

SSTH can be used to estimate the oceanic subsurface temperature to

predict ENSO. Moreover, we find this index is more stable in

predicting ENSO events.

This study provides an explanation as to why using SST data

alone can lead to success in understanding ENSO and its

predictability. We suggest that SST data contains information

about the subsurface in the tropical Pacific. For example, a linear

inverse model (LIM) using tropical SSTs can investigate many

features of observed seasonal tropical SST variability and

predictability (Penland and Sardeshmukh, 1995). It should be

noted here that the relationship between OHC and SST indicated

by eq. (2.2) is not so realistic. Eq. (2.2) suggests that the vertically

averaged heat transport into and out of the equatorial region is

accomplished via Sverdrup transport. It assumes that the

anomalous off-equatorial wind stress curl responsible for the

Sverdrup transport is proportional to the zonal equatorial wind

stress anomaly (Stein et al., 2010). Here, we neglect the damping

term of OHC itself, which is a relatively small term according to

Burgers et al. (2005). In addition, because SSTH is not very sensitive

to the ENSO period, its correlation with ENSO has better stability,

which is an advantage of SSTH. However, it also makes SSTH less

suitable for predicting every ENSO event.
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FIGURE 9

The lead-lag correlation between the Z20 and winter (January) Niño3.4 index. Lead time > 0 indicates Z20 leads winter Niño3.4 index from (A) 1980-
1999 and (B) 2000-2017. The dashed line indicates the correlation coefficient between Z20 and Niño3.4 index exceeding 95% confidence level.
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