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Enhancing ocean environment
prediction in Yellow Sea through
targeted observation using
ocean acoustic tomography
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Ocean Acoustic Tomography (OAT) is an efficient and economical marine

acoustic observation technique. Targeted observation is an appealing

procedure to reduce the uncertainty of ocean environment prediction through

additional observation. This study aimed to assess the validity of OAT as an

observation method for targeted observation. OAT based on Niche Genetic

Algorithm was employed to extract sound speed and temperature profiles from

acoustic transmission time, utilizing data from the 2019 Yellow Sea experiment.

The inversion results were compared with measurement data, which are found

to be accurate and reliable. To further evaluate OAT as targeted observation

method, the vertical bias structure of OAT was added on synchronous

measurement data in the sensitive area of targeted observation to simulate

OAT observation in sensitive area. This simulated data was then incorporated into

a 3D-Var assimilation system to improve the short-term prediction of the target

region. Comparing the predictions derived with the measurement data at the

verification time, it shows that the simulated OAT observation improved the

quality of target region prediction, indicating that OAT can be an effective

observation method for targeted observation. An Observing System Simulation

Experiment was conducted to assess the impact of OAT characteristics on

prediction improvement. The results show that both adding observation nodes

and extending the observation duration have positive effects, while extending the

observation duration performs better.

KEYWORDS

ocean environment prediction, targeted observation, ocean acoustic tomography,
niche genetic algorithm, observation system simulation experiment
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1 Introduction

Ocean acoustic tomography (OAT) is a marine remote sensing

technique by utilizing the sound field generated from measured

properties (Worcester, 2019). This method extracts acoustic

characteristics, such as Sound Speed Profile (SSP), through the

analysis of travel time or other acoustic signals. Corresponding

marine environment characteristics is inverted through the ocean-

acoustic coupled relationship. The concept of OAT was initially

proposed by Munk and Wunsch (Munk and Wunsch, 1979; Munk

et al, 1995), aiming to investigate mesoscale phenomena such as

vortices, convection, and internal waves. An advantage of OAT over

other methods is its ability to facilitate long-term, large-area, and

cost-effective ocean monitoring, taking advantage of the

characteristics that acoustic signals transmit over long distances

and acoustic propagation is sensitive to the marine environment

(Dushaw et al, 2001).

Numerous OAT experiments have been conducted since the

1980s, showcasing the versatility and potential of this technique.

RTE83 experiment (DeFerrari and Nguyen, 1986; Howe, 1987)

validated the feasibility of flow velocity inversion using a single

source-receiver pair of acoustic nodes in a range-dependent

environment, achieving success at a distance of 300km in Atlantic

Ocean. In 1988-1989, Greenland Sea Tomography experiment (Jin

et al, 1993) became the first to employ mobile nodes to estimate the

effect of sea ice on acoustic pulses. SLICE89 experiment (Howe et al,

1991) combined acoustic tomography with ocean models to enable

ocean forecasting on a scale of 1000-2000km. AMODE experiment

(Dushaw et al, 2001) conducted in 1991 utilized mobile nodes to

measure eddy currents in Northwest Atlantic. Acoustic

Thermometry of Ocean Climate (ATOC) experiment, organized

by International Ocean Research Association (Dushaw and

Worester, 2001; Dushaw, 1999), stands out as a remarkable

achievement. This experiment incorporated vertical line arrays,

submarine receiving arrays, and US Army’s SOSUS system to

receive low-frequency acoustic signals propagating over basin

distances. Its purpose was to monitor long-term temperature

changes and global warming as indicators of climate trends. In

2001, ASIAEX experiment (Duda et al, 2004), conducted in

collaboration with various countries and organizations, focused

on the seas surrounding China. Its primary objective was to

investigate the interaction mechanism between the acoustic field

and the water bodies. It is shown that the mutual correlation

function and Green’s function of marine environmental noise

have the similarity of arrival time structure, based on which some

scholars proposed the idea of using marine environmental noise for

passive acoustic tomography, and the idea was realised by

experimental observation (Gasparini et al, 1997; Fried et al, 2013;

Li et al, 2019). The presence of mesoscale processes such as ocean

fronts/vortices in the oceans has led to the development of acoustic

tomography for horizontally varying environmental (Carrière and

Hermand, 2008; Yang et al, 2022);. In recent years, coastal acoustic

tomography technology has made significant progress, particularly

in monitoring semi-enclosed environments such as ports and bays

(Yamoaka et al, 2002; Zhu et al, 2010; Zhu et al, 2013). Additionally,

acoustic tomography has been applied to observe mesoscale
Frontiers in Marine Science 02
phenomena such as internal waves (Lynch et al, 1996; Dahl et al,

2004; Li et al, 2014) and Kuroshio current (Yuan et al, 1999;

Lebedev et al, 2003; Huang et al, 2013; Taniguchi et al, 2023).

Currently, experimental research primarily emphasizes coastal

velocity inversion, with limited studies focusing on marine

environment inversion, especially in the context of oceanic

environment prediction.

The essence of acoustic tomography lies in the recognition of

acoustic signal propagation time and structure. Several mainstream

methods are commonly used in this field, including ray travel time

tomography (Munk et al, 1995), matched-peak tomography

(Skarsoulis et al, 1996), modal travel time tomography (Shang,

1989), modal-phase tomography, and modal-horizontal-refraction

tomography (Shang et al, 2000). Ray travel time tomography, being

the most classic and widely used method, employs matching filters to

measure the travel time. Matched-peak tomography locates the

maximum peak value in the arrival pattern and analyzes the peak

structure of the signal to determine the travel time accurately. Modal

travel time tomography, on the other hand, relies on the principles of

normal mode theory to identify the arrival time. Normal wave phase

tomography and horizontal refraction tomography, which are

similar, replace the normal wave travel time with the normal wave

phase or horizontal refraction angle. These substitutions are then

substituted into algorithms to obtain the desired travel time

information. Regarding the acquisition algorithms of travel time,

two common approaches are utilized: the perturbation method

(Munk et al, 1995) and the matching field method (Taroudakis and

Markaki, 1997). The perturbation method assumes that the difference

between the theoretical calculation and measured propagation delays

is proportional to the difference in sound velocity. However, this

method tends to be less accurate in complex and non-linear marine

environments. In contrast, the matching field method aims to obtain

the optimal solution that corresponds to the measured values through

acoustic and marine models. The effectiveness of this method relies

on the accuracy of the model and the efficiency of the optimization

algorithm employed.

Targeted observation, also known as adaptive observation, is a

strategy approach aimed at reducing numerical prediction

uncertainty through employing additional observations. In this

strategy, the goal is to improve the prediction quality of a specific

area, referred to as the target region, at a designated verification

time. To achieve this, additional observations are deployed within

sensitive areas to acquire additional information. This additional

information is subsequently assimilated into the ocean model to

refine Initial Conditions (ICs) and improve the prediction accuracy

(Rabier et al, 1996; Rabier et al, 1996; Snyder, 1996; Mu, 2013).

Originally introduced in atmospheric studies, targeted observation

has undergone validation through a series of field experiments such

as FASTEX (Joly et al, 1999), NOPREX (Langland et al, 1999), and

WSRP (Szunyogh et al, 2000). Recognizing its potential, World

Meteorological Organization (WMO) proposed The Observing

System Research and Predictability Experiment (THORPEX),

which integrated targeted observation concepts into a scientific

framework for improving global high-impact weather prediction

(Parsons et al, 2017). More recently, the concept of targeted

observation has been extended to oceanic prediction studies,
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although the focus has primarily been on large-scale ocean

phenomena, such as Indian Ocean Dipole (Feng et al, 2016) and

Kuroshio (Kramer et al, 2012; Wang et al, 2013; Zhang et al, 2017).

However, there remains a scarcity of researches related to the

acoustic field within targeted observation studies.

The identification of sensitive areas, a crucial aspect of targeted

observation, relies on two types of algorithms. The first type is based

on ensemble prediction techniques, such as Ensemble Kalman Filter

(EnKF) (Hamill and Snyder, 2002) and Ensemble Transform

Kalman Filter (ETKF) (Bishop et al, 2001). These algorithms

specifically focus on calculating the reduction in forecast error

covariance resulting from different observation configurations

(Wei et al, 2008; Zhang et al, 2015; Feng et al, 2019;

Thiruvengadam et al, 2021). The second type of algorithm is

based on adjoint mode techniques, which include approaches

such as Singular Vectors (SV) (Buizza and Montani, 1999),

adjoint sensitivity (Baker and Daley, 2000), and Conditional

Nonlinear Optimal Perturbation (CNOP) (Mu et al, 2003). CNOP

extends the concept of SV to nonlinear systems, focusing on

identifying the initial perturbation that exhibits most rapid

growth in the forecast. Targeted observation based on CNOP has

demonstrated its wide applicability in high-impact weather events

prediction and air-sea coupling events prediction (Dushaw et al,

2001; Duan and Hu, 2015; Duan and Mu, 2018; Chan et al., 2022;

Liu et al, 2023).

A field experiment was conducted at Yellow Sea of China in

August 2019, comprising two main components: an OAT

experiment and a targeted observation experiment. In this study,

OAT experiment data served as the foundation for validating the

effectiveness of OAT in accurately inverting the vertical speed and

temperature structure using Niche Genetic Algorithm (NGA). To

simulate the OAT observation for targeted observation, the bias

structure was extracted and incorporated into the measurements

within the sensitive area of targeted observation. Subsequently, the

simulated observations were integrated into a 3D-Var assimilation

model to improve the short term (7 days) prediction accuracy of the

target region. Thus, considering the large-area coverage and long-

term observation capabilities characteristics of OAT, an Observing

System Simulation Experiments (OSSE) was deployed to investigate

the impact of increasing the observation area and extending the

observation time on the prediction quality.
2 Materials and methods

2.1 Ocean model

Regional Ocean Modeling System (ROMS), specifically the

Rutgers version, is employed in this study to simulate the

thermocline distribution and circulation structure of Yellow Sea.

The ROMSmodel is an open-source ocean model based on 3D non-

linear oblique pressure equations employing techniques as split-

explicit , free-surface, topography following-coordinate
Frontiers in Marine Science 03
(Shchepetkin and McWilliams, 2005). The model domain covers

geographical extent from 23.7°N to 41.3°N and 117°E to 132.5°E,

with a horizontal resolution of 1/24° and 32 vertical levels. To

initiate the model, a cold start is performed, and the integration is

carried out for 25 model years. Topography data of the model

domain is from ETOPO2 dataset. The initial temperature and

salinity data are derived from HYCOM+NCODA multiyear

averaged (1998-2018) reanalysis data. Initial current velocities and

sea surface height are set to zero. Surface forcing factors, including

wind stress, heat flux, and water exchange, are obtained from

multiyear averaged (1998–2018) ECMWF Re-Analysis-interim

data. For the open boundaries, the forcing condition of the model

is driven from the multiyear averaged monthly HYCOM +NCODA

reanalysis data. Further details on the model setup and validation

can be found in references Hu et al. (2021) and Liu et al. (2021).

In addition to the climatology run, a hindcast run is conducted

based on the results obtained. For the analysis presented in this

study, daily-averaged temperature profile data from the hindcast

run are utilized.
2.2 Acoustic tomography algorithm

Due to the nonlinearities of ocean and acoustic models, the

parsing solution of SSP may not be feasible. Therefore, SSP solution

requires the implementation of a suitable searching algorithm. In

this study, NGA (Malfoud, 1995) is employed as an effective

approach to obtain optimal search speed and prevent

premature convergence.

NGA adopts a crossover algorithm that aims to reduce the

uncertainty of individual offspring while maintaining diverse

populations. Parents and offspring are preserved and compete

with each other, leading to increased selection pressure. The

fundamental concept is to calculate Hamming distance between

every two individuals. If Hamming distance is below a specific

threshold, individual with lower fitness level is penalized, making it

more likely to be eliminated during the evolutionary process.

Consequently, individuals are dispersed in the constrained space

at a certain distance, ensuring the diversity of the population is

maintained. NGA process can be summarized as follows (Figure 1):
1) Calculate Empirical Orthogonal Function (Shen et al, 1999)

and determine the coefficient range based on Ocean-

Acoustic Coupling Model (OACM) (Da et al, 2015) and

the measured sound velocity profiles, treating them as the

sample group;

2) Generate a population ofM individuals randomly within the

range of EOF coefficients, considering the specified

operation precision;

3) Calculate the fitness of each individual as follows:
F =
1

ok½tk − t k�2
(1)
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where tk is the calculated value of the travel time of the fastest

characteristic sound rays received by each hydrophone using Bellhop

model; tk is the travel time measured during the experiment (k=1, 2,

3…, K), and K is the number of the hydrophones;
Fron
4) Sort the individuals in descending order according to their

fitness Fi , and mark the first N (N<M) individuals;

5) Apply selection, crossover, and mutation operations to the

population of M individuals;

6) Execute a niche elimination operation by combine the M

individuals obtained in Step 5 with the first N individuals

from Step 4, resulting in a new population of M+N

individuals. Calculate Hamming distance between each

pair of individuals (Xi and  Xj) in the new population

according to the following equation:
Xi − Xj

�� �� =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oK

k=1(xik − xjk)
2

q
(2)

i = 1, 2,…,M + N − 1
tiers in Marine Science 04
  j = i + 1,…,M + N

where xik represents the k-th variable of the i-th individual.

When Hamming distance is less than L, the individuals with lower

fitness in Xi and Xj are subject to a penalty function to reduce their

fitness values;
7) From the population of M + N individuals, select the firstM

individuals with higher fitness values to generate the new

population. If the termination condition has been met, the

result is considered as the final output of NGA. Otherwise,

repeat Step 3-6.
2.3 Assimilation method

The observation data from targeted observation is incorporated

into 3D-Var system to improve the ICs. Numerical simulations of

ocean circulation patterns are assimilated with data the ocean
FIGURE 1

Schematic diagram of Niche Genetic Algorithm.
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environment observed by a wide range of instruments, guided by

the statistical Bayesian conditional probability theory, to produce

new numerical results. Such assimilated numerical results for the

ocean environment contain both the extrapolation of the

thermodynamic equations of ocean dynamics and the observed

scenarios of the real state of the ocean environment. The numerical

ocean model compensates for the shortcomings of the observations,

which are always scattered and relatively sparse, and the

observations control the uncertainties brought about by the non-

linearities in the ocean dynamics and thermodynamic equations.

3D-Var aims to achieve an optimal state solution by minimizing

the cost function. The equation of the cost function is as follows:

J x½ � = 1
2
(x − xb)

TB−1(x − xb) +
1
2
L(H(x) − y0)½ �TO−1 L(H(x) − y0)½ �

(3)

where x is the analysis variable; xb is the background field; y0 is

the observation value; B is the background error covariance; O is the

observation error covariance; H is the observation operator; O−1 is

the inverse matrix of the corresponding matrix; (x − xb)
T is the

transpose of the corresponding matrix; and L is the filter operator.

In this study, “Analysis variable” refers to the vertical temperature

profile result from assimilation. “Background field” refers to the

prediction of temperature profile obtained from the ROMS model.

“Observation value” refers to the XBT measured temperature

profile. The observation update residuals are collected and

spatially filtered by the filtering operator L, and the results are fed

back to the grid point where the state x is located. L can be

calculated as follows:

Lij = W
(a, bij)

oK
j=1W(a, bij)

(4)

W(a, bij) =

− 1
4

b
a

� �5+ 1
2

b
a

� �4+ 5
8

b
a

� �3− 5
3

b
a

� �2+1 0 ≤ b ≤ a    

1
12

b
a

� �5− 1
2

b
a

� �4+ 5
8

b
a

� �3+ 5
3

b
a

� �2−5 b
a

� �
+ 4 − 2

3
b
a

� �−1 a < b ≤ 2a

0 b > 2a

8>><
>>:

where a is the characteristic distance of the observation

response; b is the distance between the observation point and the

model grid point; and K is the total number of observations.

Parameter a determines the scale of the multiscale method, and

also the reduction ratio of each level of the scale grid to the original

pattern grid when the grid varies.

The process of assimilation can be summarized as follows,
Fron
1) Observation: quality control of acquired data and

production of observation data sets;

2) Assimilation: the observation dataset and model results are

fed into the assimilation system module, which performs

scale-by-scale 3D variational assimilation after grid

transformation.

3) Forecasting: the assimilation results are substituted into the

ocean model as initial values to obtain new numerical

forecasts.
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In this study, the process of ‘Observation - Assimilation -

Forecasting’ is repeated with the number of observation cycles.
3 Experiment

An experiment was conducted in August 2019 on the northwest

continental slope of the Yellow Sea with the objective of improving

short-term (7-day) thermal structure predictions during the

summer season. The experiment consisted of two main

components: OAT and targeted observation sections.
3.1 Targeted observation experiment

The targeted observation experiment was conducted from 18th

to 25th August with the aim of improving short-term (7-day)

thermal structure predictions. The experiment focused on a

selected target region, denoted by a red box in Figure 2, which is

located near the margin of Yellow Sea Cold Water Mass (YSCWM).

In this region, Vertical Thermal Structure (VTS) is influenced by

various dynamic processes, as well as complex topography.

Consequently, the prediction of VTS in this region is associated

with significant uncertainties (Hu et al, 2021). To determine the

sensitive areas within the target region, an adjoint-free CNOP

algorithm was employed. The identified sensitive areas were

found to be oriented northeast to southwest, extending from the

northeast towards the target region. These sensitive areas are likely

influenced by the southwestward background currents.

In the target region, a total of 5 buoys were deployed to gather

data for the experiment. These buoys were composed of

temperature loggers and pressure–temperature–conductivity

loggers, enabling the collection of temperature profile at a vertical

interval of 2m. The sampling interval of loggers is 10 minutes. The

collected data from the buoys in the target region were utilized for

validation purposes. Furthermore, shipboard temperature,

conductivity, and depth measurements were conducted, resulting

in 21 temperature profiles measured within the targeted region. In

the sensitive region identified through CNOP (green area in

Figure 2), eXpendable Bathy Thermographs (XBT) were

employed to collect temperature profiles 4 times a day (4:30-7:30,

10:30- 13:30, 16:30-19:30, 22:30-01:30) along predesigned routes

(i.e., triangles in Figure 2). The data acquired from XBT in the time-

varying sensitive area were then substituted into cycle data

assimilation process to refine the prediction of the target region at

the 7-th day following XBT deployment (verification time). The

refined prediction obtained from this assimilation, as well as the

basic prediction, were both compared against the data measured by

the buoys in the target region. These comparisons served to verify

the effectiveness of the targeted observation approach. The

experimental results demonstrated that observations within the

identified sensitive area, which aimed at reducing initial errors,

led to a more significant improvement in VTS prediction of the

target region at the verification time compared to similar actions
frontiersin.org

https://doi.org/10.3389/fmars.2023.1259864
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Baolong et al. 10.3389/fmars.2023.1259864
conducted solely within the target region itself (Hu et al, 2021; Liu

et al, 2021). This study focuses on the application of acoustic

tomography in targeted observation, and as such, the conclusions

of the targeted observation experiment will not be repeated.
3.2 OAT experiment

OAT experiment was designed to validate the feasibility of

acoustic tomography for the inversion of the marine environment.

The experiment was carried out on August 25 in the southern

region of the targeted observation experiment, as denoted by the

blue box in Figure 2. NGA algorithm was employed to invert SSP

using acoustic travel time data. Subsequently, based on OACM, the

corresponding temperature profile was calculated through the

inversion of SSP obtained from NGA algorithm.

A launching ship was employed during the experiment to deploy

fixed-depth explosive as the acoustic source. The launching ship

moved away from the receiving ship and followed a predetermined

trajectory from point S1 (approximately 10 nautical miles away from

the receiving ship) to point S6 (approximately 22.5 nautical miles). At

intervals of 2.5 nautical miles along this trajectory, the launching ship

came to a halt and dropped 3 kinds of bombs at controlled depths: 7,

25, and 35m. The depths of explosions and distances between
Frontiers in Marine Science 06
launching and receiving ships are shown in Table 1. To capture the

acoustic signals generated by the explosions, a standard hydrophone

was fixed at a depth of 10m on the stern of the launching ship. This

hydrophone was utilized to record the explosion time and the

corresponding source level.

On the receiving ship, a vertical array comprising 15-element

hydrophones was deployed on the port aft deck. The hydrophone

array spanned depths ranging from 5 to 33m, with a uniform

interval of 2m. The receiving ship remained anchored at a fixed

position throughout the experiment, enabling the recording of the

acoustic signals. The schematic diagram of OAT experiment is

shown in Figure 3. Examples of signals received by hydrophones are

shown in Figure 4.

Both the launching and receiving vessels were equipped with a

multi-channel hydroacoustic signal synchronization acquisition

system. This system facilitated the acquisition of the explosion

sound source signals from the launching ship and the hydroacoustic

signals recorded by the hydrophone array on the receiving ship.

Importantly, the embedded a GPS module, enabling the acquisition

of precise GPS clock information and position data for real-time

synchronization of the explosion sound source signals. This

synchronization ensured accurate temporal alignment between

the recorded acoustic signals and facilitated reliable analysis of

the acoustic data obtained during the experiment.
FIGURE 2

Schematic diagram of the experiment. The red open rectangle indicates the location of the target region of targeted observation experiment. The
green area is the sensitive area in which the data were obtained on 20 August during CNOP, and which is extended from northeast to southwest
towards the target region. The red closed stars indicate five temperature profile buoy stations, carried out during Aug 18-25. The yellow, grey and
blue closed triangles locate thirty-six XBT locations, obtained on Aug 18, 19 and 20, respectively, and the yellow, grey and blue closed circles locate
twenty-one shipboard CTD stations, obtained at the same date allocation. The violet closed squares, accompanied by a vertical array of S1, S2, S3,
S4, S5 and S6, indicates 6 fixed-depth explosive acoustic source locations for OAT experiment on Aug 20. The lower right figure shows the position
of the ocean model domain, in which the white open rectangle indicates the position of the experiment.
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TABLE 1 Depths of explosions and distances between launching and receiving ships.

Explosion serial number Depth of explosion (m) Location Range (km) Average travel time (s)

1 7

S1

18.65 12.3457

2 35 18.68 12.3389

3 25 18.72 12.3983

4 35 18.72 12.4057

5 7

S2

23.95 15.8577

6 25 23.95 15.8925

7 35 23.96 15.8875

8 25
S3

29.14 19.3528

9 35 29.13 19.3142

10 7
S4

34.20 22.7262

11 35 34.20 22.7157

12 7

S5

39.27 27.1309

13 25 39.27 26.0844

14 35 39.27 26.1230

15 7

S6

44.45 29.5747

44.42
16 25 29.5574

17 35 44.45 29.5425
F
rontiers in Marine Science
 07
FIGURE 3

Schematic diagram of OAT experiment. Launching ships dropped fixed-depth explosive at specific ranges, while the explosion time were recorded
using a hydrophone fixed at the stern. Receiving ship recorded acoustic signals with a 15-element vertical hydrophones array at a fixed location.
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4 Result

4.1 Ocean environment inversion based
on OAT

The steps of inverting the ocean environment in section 2.2

were executed as follows:
Fron
1) A total of 29 SSPs were measured by the launching and

receiving ships during the OAT experiment. The covariance

matrix eigenvectors and eigenvalues of these SSPs were

computed. As the largest three eigenvalues accounted for

more than 95% of the sum of all the eigenvalues, so the 3-

order EOFs was used. The eigenfunctions corresponding to

top 3 eigenvalues are the EOF functions. The EOF

coefficients of every SSP were calculated;

2) The EOF coefficients obtained above were augmented with a

normal perturbation to generate an initial population with a

population size of 500. The population size of 500 was

found in the simulations to cover the variable space of the

EOF coefficients well and achieve as large a diversity of

populations as possible;

3) The positioning and timing information is obtained through

synchronous GPS data collected by the standard

hydrophone on the launching ship and the hydrophone

array on the receiving ship. The travel time of the acoustic
tiers in Marine Science 08
signal is calculated using the first wave peak of the signal

received by the receiving ship and the signal pulse received

by the launching ship. A matched filter algorithm was used

to determine the travel times of different eigenrays and the

eigenray with the min travel time is consider as the fastest

eigenray. The time obtained above is considered as the

travel time of the fastest eigenray (Table 1). It’s worth

mentioning that there is a distance (30m) between the

bomb launching point and the hydrophone on the

launching ship. So, an extra delay is added on travel time.

Considering that the depth of 0-15m is a homogeneous

layer and the speed of sound is 1535m/s, it is necessary to

add another 0.0195s to the travel time. In this way, the tk in
equation (1) is calculated. Subsequently, the BELLHOP

acoustic model is employed to calculate the intrinsic

acoustic propagation delay from the sound source to each

hydrophone i.e., tk in equation (1). Thus, the fitness Fi of

the individuals of each population was calculated according

to equation (1);

4) The 500 individuals were sorted by Fi and the top 100

individuals were labelled, i.e., the crowding factor was set to

1/5 (De Jong, 1975; Zhang, 2013; Cui et al, 2021);

5) Selection, crossover and mutation operations of genetic

algorithm were performed on all 500 individuals to

produce the next generation. The maximum number of

genetic generations was set to be 40, the mating probability
FIGURE 4

Examples of signals received by hydrophones on the launching and receiving ships. The figure on the left is the signal example received by the
hydrophone on the launching ship. The figures on the right are the signal examples received by the receiving ship at point S1, 33m, 27m, 15m, and
7m depth hydrophones from top to bottom. The horizontal axis is the time axis, 1308 means 13:08 p.m., and the values under the horizontal axis
represent the corresponding seconds.
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Fron
to be 0.5, the mutation probability to be 0.2. The parameters

are the result of a comprehensive consideration after

simulation, which takes into account both the need to

traverse the entire search space and also the computational

efficiency;

6) The Hemming distances between the 500 individuals

generated in the step 5 and the 100 individuals labeled in

the step 4 were calculated according to equation (2). The

less adapted of the two individuals within specific distance

was penalized. Thus, 500 individuals (out of 500 + 100

individuals above) with higher fitness Fi are the next

generation.
The above steps were repeated until the fitness function of the

optimal individual satisfied the termination condition, then the

corresponding SSP of the optimal individual was output as the

inversion result.

The SSP obtained from the experiments of 35m bombs at 6

release points (S1-S6) and measured data are selected as samples

and shown in Figure 5. The measured data are XBT measurement

from launching and receiving vessels during the experiment. Due to

the limited availability of salinity data (only 2 CTD measurements

per buoy), the salinity profile is assimilated with measured data

based on ROMS dataset, shown in Figure 6A. The average SSP of

OAT is shown in Figure 6B. Consequently, the temperature profile

is extracted using OACM and illustrated in Figure 6C. Figure 6

reveals that the biases primarily originate in the thermocline depth,
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while the biases in the sea surface mixed layer and deeper layers are

relatively smaller. Root Mean Square Error (RMSE) for SSP and

temperature profile is calculated to be 1.07m/s and 0.40°C,

respectively. Specifically, RMSE in thermocline depth (15-40m) is

1.21m/s and 0.47°C. These results are considered accurate, taking

into account the limited number of blast sources and the duration of

the experiment. The findings suggest that NGA algorithm-based

OAT can reliably invert the marine environment in Yellow Sea.
4.2 Application of OAT in
targeted observation

As OAT experiment was not conducted within the sensitive

area of targeted observation, a simulation experiment was employed

to verify the impact of OAT on ocean environment prediction.

Considering the variation characteristics of temperature in the

OAT experiment area and the sensitive area are quite different, it’s

irrational to assimilate OAT inversion result as targeted observation

data directly. In this study, the temperature bias obtained from the

acoustic tomography inversion and the temperature measurement

data from XBT in the sensitive area were combined to simulate the

acoustic tomography inversion data within the sensitive area. The

vertical bias structure is related only to the OAT inversion method,

but not the region. Thus, the simulated observations of “truth +

bias” avoid the influence of the bias in different regions on the

results. These simulated OAT observation data were then brought
FIGURE 5

Comparisons of NGA results and measured data obtained from the experiments of 35m bombs at 6 release points (S1-S6).
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A B C

FIGURE 6

Results of OAT inversion. (A) Salinity profile after assimilation with measured data based on ROMS dataset, (B) Comparison of average SSP obtained
from OAT and measured data, (C) Comparison of average temperature profiles obtained from OAT and measured data.
FIGURE 7

Comparisons of sound speed profile at different buoy station at verification time (day 7), including measured data (black line), basic prediction (blue
line), assimilation results from XBT measured data (green line) and assimilation results from OAT inversion simulation data (red line).
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into the assimilation system to obtain updated ICs, leading to

improved predictions through the use of 3D-Var and ROMS

methods. The prediction results at the verification time were

compared between the basic prediction, the measured data from

buoys in the target region (noted by red stars in Figure 2), the

assimilation of XBT measured data, and the assimilation of the

simulated OAT assimilation. The comparison results are shown

in Figure 7.

The results demonstrate that both the simulated OAT

observation and Exp observation(XBT result) significantly

improve the accuracy of temperature profile forecasts compared

to the basic prediction at the verification time. These results are

closer to the measured data, particularly in surface and thermocline

layers. It should be noted that the comparison does not include the

deeper layers since the buoy depths do not reach the seafloor.

RMSEs of the basic prediction, Exp, and OAT simulation data

compared to the measured data at 5 buoys are calculated and

presented in Table 2. Overall, Exp yields more accurate results than

OAT simulation data, primarily due to the introduced bias of OAT

inversion. On average, RMSE of XBT prediction is reduced by

68.1%, while RMSE of OAT prediction is decreased by 49.9%

comparing with basic prediction. On the other hand, setting VTS
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at W3 buoy as an example, the RMSEs of these predictions along

with a Ctrl Run, which is the result of assimilation based on

observation in the target region, are shown in Figure 8. From

Figure 8, the bias of XBT and OAT results change on a similar

trajectory. At the verification time, the RMSE in the target region

was greatly reduced by experiment with deploying XBT observation

and simulated OAT observation in the identified sensitive area

(XBT result and OAT result) than that of experiment with

observations being deployed in the verification area itself (Ctrl

Run). These findings demonstrate that OAT can serve as a reliable

observation method for targeted observation.

The simulation experiment described above provides validation

regarding the influence of OAT data from XBT locations. However,

the unique characteristics of acoustic tomography, including its

large-area coverage and long-term observation capabilities under

low-cost conditions, necessitate further verification of OAT’s

influence on prediction using OSSE. For the OSSE, two sets of

predictions with different ICs and same driving conditions are

selected: “True Run” and “Ctrl Run”. “True Run” and “Ctrl Run”

are predictions from same boundary and driving conditions, but

different initial conditions. “True Run” is regarded as the real ocean

measured data. “Ctrl Run” is regarded as the basic prediction
TABLE 2 RMSEs of basic prediction, experimental data, and OAT data compared with measured data in the target region at 7-th day.

Position W1 W2 W3 W4 W5

Basic prediction (m/s) 7.31 6.43 5.59 6.88 5.3

Exp result (m/s) 2.44 2.06 1.51 1.85 2.2

OAT result (m/s) 3.82 3.90 1.93 2.96 3.2
frontier
FIGURE 8

Temporal evolution of vertical integration RMSEs of SSP at W3 station, including basic prediction (blue line), assimilation results from XBT measured
data in sensitive area (green line), OAT inversion simulation data in sensitive area (red line) and measured data in the target region (Ctrl Run-black
line).
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without additional observation. Targeted observation data from the

sensitive area, extracted from “True Run”, is combined with OAT

inversion bias to simulate OAT targeted observation data. This

OAT targeted observation data is then assimilated with data from

“Ctrl Run” using 3D-Var system, resulting in the generation of “Exp

Run”. By comparing the predictions of “Ctrl Run” and “Exp Run”

with “True Run” at the verification time, the impact of OAT as a

targeted observation method on prediction can be analyzed
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(Figure 9). To further investigate the effect of OAT observations

on prediction quality under different conditions, various

experiment setups were employed. EXP1 replicates the same OAT

observation condition as XBT measurement. Observations were

carried out at the locations of the triangular markers of the three Z-

lines in the sensitive area of Figure 2 from day 1 to day 3. EXP2

simulates observation on all ocean model nodes in the sensitive

area, meaning the observation area is 4 times the area of EXP1,
FIGURE 9

Schematic diagram of Observing System Simulation Experiments (OSSE). Targeted observation data from the sensitive area at the targeting time is
extracted from “True Run”. This data is then combined with OAT inversion bias and assimilated with data from “Ctrl Run” to generate “Exp Run”.
FIGURE 10

Results of OSSE. Vertical sound speed bias structures of different experiment conditions are configured, including Ctrl Run (black line), EXP1 for basic
OAT observation (blue line), EXP2 for larger observation area (green line), EXP3 for extended observation time (black line), and EXP4 for both a larger
observation (cyan line) area and an extended observation time (red line).
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while the observation keeps the same(day 1-3). EXP3 takes

observation in the same area as EXP1 while the observations time

is extended, which indicates that observations are located on the

triangular locations from day 1 to day 5. EXP4 is the combination of

EXP2 and EXP3, i.e., observations are carried out on all ocean

model nodes in the sensitive area from day 1 to day 5. The results of

these experiments are depicted in Figure 10 and Table 3.

The results of EXP1 reinforce the finding that OAT can improve

prediction quality, thereby validating its utility as a targeted

observation method. EXP2 and EXP3 demonstrate that increasing

the observation area and extending the observation time further

improve the prediction quality. However, it is observed that the

enhancement in prediction quality is more pronounced with an

extended observation time. This phenomenon can be attributed to

the fact that both the horizontal resolution of the ocean model

employed and the assimilation radius of the 3D-Var system exceed

the observation spacing. Consequently, expanding the observation

area may not yield enough additional valuable environmental

information. Conversely, extending the observation time not only

provides more observations but also reduces the time interval

between the final observations and the verification time. EXP4

results reveal that the combination of increasing the observation

area and extending the observation time improves the prediction

quality for maximum. However, improvement achieved through

this approach is not notably different from that achieved solely by

extending the observation time. Furthermore, extending the

observation time is more cost-effective and logistically feasible

compared to deploying additional observation nodes during sea

trials. Consequently, prolonged observations duration emerges as

an efficient and economical approach to observation, thereby

offering reference for the implementation of acoustic tomography

targeted observation projects.
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5 Summary

OAT is a cost-effective, long-term, and wide-area ocean

monitoring method that obtains acoustic signals to invert marine

environment characteristics. In this study, the validity of OAT for

the marine environment inversion was verified using data collected

during the 2019 Yellow Sea experiment. The OAT inversion biases

were incorporated into measurements obtained from the sensitive

area, identified by CNOP method, to simulate OAT observations

from the sensitive area. These simulated OAT observations were

substituted into a 3D-Var assimilation system to improve the

quality of ICs and subsequently enhance the short term (7-day)

prediction of the target region. These findings confirm the

effectiveness of OAT as a targeted observation method.

Considering the large-scale and long-duration nature of OAT,

OSSE method was employed to further test the impact of OAT

on prediction quality. Specifically, the effects of adding observation

nodes and extending the observation duration were examined. The

results show that both approaches and their combination have

positive effects in reducing prediction uncertainty. However, it was

found that extending the observation duration is a more

efficient strategy.

This study aims to verify the feasibility of acoustic tomography

as a targeted observation method in a simulated environment using

actual measurement data. It is important to note that the findings of

this study are yet to be validated in sea trials. Additionally, most

existing acoustic tomography observation methods utilize fixed or

submerged buoys, while the sensitive area for targeted observation

changes with time. Therefore, it is crucial to investigate optimal

selection strategies for observation nodes that can yield the highest

improvement in prediction quality. Additionally, it is necessary to

examine the effect of parameter variations in the ocean model and

assimilation model on acoustic tomography and its corresponding

targeted observations. Understanding the interrelationships and

contribution of these parameters to the prediction quality requires

further investigation.
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Langland, R., Tóth, Z., Gelaro, R., Szunyogh, I., Shapiro, M., Majumdar, S., et al.
(1999). The north pacific experiment (NORPEX-98): targeted observations for
improved north american weather forecasts. Bull. Amer Meteorol Soc 80, 1363–1384.
doi: 10.1175/1520-0477(1999)080<1363:TNPENT>2.0.CO;2

Lebedev, K. V., Yaremchuk, M., Mitsudera, H., Nakano, I., and Yuan, G. (2003).
Monitoring the kuroshio extension with dynamically constrained synthesis of the
acoustic tomography, satellite altimeter and in situ data. J. Oceanography. 59 (6), 751–
763. doi: 10.1023/B:JOCE.0000009568.06949.c5
frontiersin.org

https://doi.org/10.1002/qj.49712656511
https://doi.org/10.1175/1520-0493(2001)129%3C0420:ASWTET%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056%3C2965:TOUSV%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056%3C2965:TOUSV%3E2.0.CO;2
https://doi.org/10.1121/1.2933874
https://doi.org/10.1007/s00376-022-2267-z
https://doi.org/10.11684/j.issn.1000-310X.2021.02
https://doi.org/10.11684/j.issn.1000-310X.2021.02
https://doi.org/10.15949/j.cnki.0371-0025.201
https://doi.org/10.1109/JOE.2005.843159
https://doi.org/10.1121/1.393569
https://doi.org/10.1007/s00382-015-2789-5
https://climatescience.oxfordre.com
https://doi.org/10.1093/acrefore/9780190228620.013.80
https://doi.org/10.1093/acrefore/9780190228620.013.80
https://doi.org/10.1109/joe.2004.836997
https://doi.org/10.1121/1.413035
https://doi.org/10.1007/s00382-016-3134-3
https://doi.org/10.3390/atmos10010024
https://doi.org/10.1121/1.4816490
https://doi.org/10.1121/1.4816490
https://doi.org/10.1175/1520-0493(2002)130
https://doi.org/10.1029/JC092iC09p09479
https://doi.org/10.1007/978-94-011-3312-8_6
https://doi.org/10.1007/s13131-021-1738-x
https://doi.org/10.1007/s13131-021-1738-x
https://doi.org/10.1121/1.4817835
https://doi.org/10.1121/1.406951
https://doi.org/10.1002/qj.49712556103
https://doi.org/10.1175/JPO-D-11-014.1
https://doi.org/10.1175/1520-0477(1999)080%3C1363:TNPENT%3E2.0.CO;2
https://doi.org/10.1023/B:JOCE.0000009568.06949.c5
https://doi.org/10.3389/fmars.2023.1259864
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Baolong et al. 10.3389/fmars.2023.1259864
Li, F., Guo, X., Hu, T., and Ma, L. (2014). Acoustic travel-time perturbations due to
shallow-water internal waves in the Yellow Sea. J. Comput. Acoustics. 22, 1–11.
doi: 10.1142/S0218396X14400037

Li, F., Yang, X., Zhang, Y., Luo, W., and Gan, W. (2019). Passive ocean acoustic
tomography in shallow water. J. Acoustical Soc. America. 145 (5), 2823–2830.
doi: 10.1121/1.5099350

Liu, K., Guo, W., Da, L., Liu, J., Hu, H., and Cui, B. (2021). Improving the thermal
structure predictions in the Yellow Sea by conducting targeted observations in the
CNOP-identified sensitive areas. Sci. Rep. 11 (1), 19518. doi: 10.1038/s41598-021-
98994-7

Liu, J. Y., Liu, K., Guo, W. H., Liang, P., and Da, L. L. (2023). Optimal initial errors
related to the prediction of the vertical thermal structure and their application to
targeted observation: A 3-day hindcast case study in the northern South China Sea.
Deep Sea Res. Part I: Oceanographic Res. Papers. 200, 104146. doi: 10.1016/
j.dsr.2023.104146

Lynch, J. F., Jin, G., Pawlowicz, R., Ray, D., Plueddemann, A. J., Chiu, C. S., et al.
(1996). Acoustic travel-time perturbations due to shallow-water internal waves and
internal tides in the Barents Sea Polar Front: Theory and experiment. J. Acoust Soc. Am.
99 (2), 803–821. doi: 10.1121/1.414657

Malfoud, S. W. (1995). Niche methods for genetic algorithms (Illinois: University of
Illinois, Urbana-Champain).

Mu, M. (2013). Methods, current status, and prospect of targeted observation. Sci.
China Earth Sci. 56 (12), 1997–2005. doi: 10.1007/s11430-013-4727-x

Mu, M., Duan, W. S., and Wang, B. (2003). Conditional nonlinear optimal
perturbation and its applications. Nonlin. Processes Geophys. 10 (6), 493–501.
doi: 10.5194/npg-10-493-2003

Munk, W., Worcester, P. F., and Wunsch, C. (1995). Ocean acoustic tomography
(Cambridge: Cambridge University Press).

Munk, W., and Wunsch, C. (1979). Ocean acoustic tomography: a scheme for large
scale monitoring. Deep Sea Res. Part A. Oceanographic Res. Papers. 26 (2), 123–161.
doi: 10.1016/0198-0149(79)90073-6

Parsons, D., Beland, M., Burridge, D., Bougeault, P., Brunet, G., Caughey, J., et al.
(2017). THORPEX research and the science of prediction. Bull. Amer Meteorol Soc 98
(4), 807–830. doi: 10.1175/bams-d-14-00025.1

Rabier, F., Klinker, E., Coutie, P. R., and Hollingsworth, A. (1996). Sensitivity of
forecast errors to initial conditions. Q. J. R. Meteor. Soc 122, 121–150. doi: 10.1002/
qj.49712252906

Shang, E. C. (1989). Ocean acoustic tomography based on adiabatic mode theory. J.
Acoust Soc. Am. 85-4, 1531–1537. doi: 10.1121/1.397355

Shang, E., Voronovich, A., Wang, Y., Naugolnykh, K., and Ostrovsky, L. (2000). New
Schemes of ocean acoustic tomography. J. Comp. Acoust. 8 (3), 459–471. doi: 10.1016/
S0218-396X(00)00030-3

Shchepetkin, A. F., and McWilliams, J. C. (2005). The regional oceanic modeling
system (ROMS): A split-explicit, free-surface, topography following-coordinate oceanic
model. Ocean Model. 9 (4), 347–404. doi: 10.1016/j.ocemod.2004.08.002

Shen, Y., Ma, Y., Du, Q., and Jiang, X. (1999). Feasibility of description of the sound
speed profile in shallow water via empirical orthogonal function (EOF). Acta Acustica.
18 (20), 21–25.

Skarsoulis, E. K., Athanassoulis, G. A., and Send, U. (1996). Ocean acoustic tomography
based on peak arrivals. J. Acoust Soc. Am. 100 (2), 797–813. doi: 10.1121/1.416212
Frontiers in Marine Science 15
Snyder, C. (1996). Summary of an informal workshop on adaptive observations and
FASTEX. Bull. Amer Meteorol Soc 77 (5), 953–961. doi: 10.1175/1520-0477-77.5.953

Szunyogh, I., Toth, Z., Morss, R. E., Majumdar, S. J., Etherton, B. J., and Bishop, C. H.
(2000). The effect of targeted dropsonde observations during the 1999 winter storm
reconnaissance program.Monthly Weather Review. 128 (10), 3520–3537. doi: 10.1175/
1520-0493(2000)128<3520:TEOTDO>2.0.CO;2

Taniguchi, N., Mutsuda, H., Arai, M., Sakuno, Y., Hamada, K., Takahashi, T., et al.
(2023). Reconstruction of horizontal tidal current fields in a shallow water with model-
oriented coastal acoustic tomography. Front. Mar. Sci. 10, 1–17. doi: 10.3389/
fmars.2023.1112592

Taroudakis, M. I., and Markaki, M. G. (1997). On the use of matched-field processing
and hybrid algorithms for vertical slice tomography. J. Acoust Soc. Am. 102 (2),
885~895. doi: 10.1121/1.419955

Thiruvengadam, P., Indu, J., and Ghosh, S. (2021). Radar reflectivity and radial
velocity assimilation in a Hybrid ETKF-3DVAR System for Prediction of a Heavy
Convective Rainfall. Q. J. R. Meteorological Society. 147, 1–17. doi: 10.1002/qj.4021

Wang, Q., Mu, M., and Dijkstra, H. (2013). The similarity between optimal precursor
and optimally growing initial error in prediction of Kuroshio large meander and its
application to targeted observation. J. Geophysical Research: Oceans. 118, 869–884.
doi: 10.1002/jgrc.20084
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