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The Arctic sea ice plays a significant role in climate-related processes and has a

considerable effect on humans, however accurately predicting the Arctic sea ice

concentration is still challenging. Recently, with the rise and development of

artificial intelligence, big data technology, machine learning has been widely

used in the field of sea ice prediction. In this study, we utilized a sea ice

concentration dataset obtained from satellite remote sensing and applied the

k-nearest-neighbors (Ice-kNN) machine learning model to forecast the summer

Arctic sea ice concentration and extent on 122 days prediction. Based on the

physical characteristics of summer sea ice, different algorithms are employed to

optimize the prediction model. A drift-ice correction algorithm is designed to

address the unrealistic drift ice around the sea ice edge, and a distance function

combined with the spatial pattern is proposed to enhance similarity detection.

Deseasonalized and detrended sea ice datasets and an expanded training library

are also utilized to improve model performance. Furthermore, sensitivity analysis

reveals a positive impact of net surface heat flux on sea ice prediction. The

modified Ice-kNN model outperforms climatological and anomaly persistence

predictions, demonstrating its applicability to predicting summer Arctic sea ice.

The September sea ice extent hindcasts of the modified Ice-kNN model are

compared to a variety of models submitted to the Sea Ice Prediction Network,

underscoring its potential to improve predictive skill for Arctic sea ice.

KEYWORDS

sea ice prediction, summer Arctic, machine learning, KNN, optimization
1 Introduction

Sea ice is important for climate processes such as heat, momentum, and material

exchange between the ocean and the atmosphere (Lindsay et al., 2008; Steele et al., 2008). It

also has a variety of ecological and social impacts, for example, the melting of sea ice affects

species interaction, population mixing, productivity, and disease transmission (Post

et al., 2013).
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In recent years, the marked decline in Arctic sea ice extent (SIE;

defined as the area of the ocean where the sea ice concentration is

more than 15%) has caused widespread international concern

(Stroeve et al., 2012; Kwok, 2018; Stroeve & Notz, 2018). The

smallest decline occurred in winter, while the largest occurred in

September. The trend for September over the period 1979-2017 was

-83,000 km2/year, or -13.0% per decade when compared to the

average extent for 1981-2010 (Serreze & Meier, 2019). The loss of

sea ice has transformed the once unnavigable Arctic region into a

seasonally navigable region (Melia et al., 2016). Affected by sea ice

seasonal fluctuations, forecasting of sea ice in summer is vital to the

safety and efficiency of navigation in the Arctic (Vihma, 2014;

Wang et al., 2019; Chen et al., 2020; Min et al., 2022). Accurate sea

ice forecasts in the summer months can also aid in mitigating

potential hazards posed to navigation, such as navigation delays,

collisions, and navigation errors. Furthermore, reliable predictions

of SIE enable better planning and resource allocation for Arctic

shipping endeavors, helping to ensure that the safest and most

economical routes are used.

Since 2008, the Sea Ice Prediction Network (SIPN) has been

collecting predictions of Arctic September SIE from contributors

around the world (Bhatt et al., 2022a). SIPN has requested

participants to submit their predicted September Arctic SIE

during early June, July, August, and September. Through these

submissions, SIPN provides an indication of the current prediction

status of summer Arctic sea ice on the sub-seasonal-to-seasonal

(S2S) timescale. Most contributors utilize dynamic models and

statistical models. However, according to the predictive

September SIEs submitted to SIPN, accurately predicting the

Arctic SIE and spatial distribution of Arctic sea ice concentration

(SIC) on the S2S timescale is still challenging, especially in

September when SIE is at its minimum for the year (Wei

et al., 2021).

With the recent advances in machine learning techniques,

machine learning has been widely applied to Earth system analyses

in recent years (Reichstein et al., 2019), which has resulted in

substantial progress in the forecasting of Arctic sea ice. Chi and

Kim (2017) used a fully data-driven deep learning long short-term

memory (LSTM)model to predict the monthly Arctic sea ice in 2015.

Jun Kim et al. (2020) used a convolutional neural network (CNN), to

predict the monthly Arctic sea ice during 2000–2017. Andersson et al.

(2021) established the monthly distribution probability model IceNet

of Arctic sea ice based on a U-Net structure, and compared it with the

SEAS5 model. IceNet has better predictive skill than the SEAS5

model and the linear trend model for extreme events. Mu et al. (2023)

constructed the Ice Temporal Fusion Transformer (IceTFT) model

with 11 predictors to directly predict the 12-month SIE. Its prediction

error for September SIE nine months in advance is less than 0.1 × 106

km2. The above models mainly focus on the monthly sea ice, rather

than the daily sea ice. Fritzner et al. (2020) designed two machine

learning models, namely, a fully convolutional network (FCN) and k-

nearest-neighbors (kNN) to forecast the Arctic sea ice for one to four

weeks. The predictive skill of FCN model was similar to that of the

dynamic model, Metroms. It is worth noting that the kNN model

performs the best among all models for the seven-day predictive skill.
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In general, since CNN excelling in image and signal processing

tasks by capturing spatial relations, many studies have employed

convolutional neural networks, either independently or as part of

more complex networks, to tackle the challenge of spatial prediction

for sea ice. On the other hand, some researchers have utilized

traditional time series models to address point-to-point sea ice

prediction. The selection of these models hinges upon the specific

problem at hand, the available data, and the desired level of

performance. It is often advantageous to explore diverse

algorithms and techniques to discern the most suitable approach

for the given task. kNN is one of the most commonly used machine

learning methods (Thanh Noi and Kappas, 2017; Zhang et al., 2017;

Zhang et al., 2018; Fritzner et al., 2020). The kNN model has many

advantages compared to other machine learning models. These

include its simplicity, low computational cost, and robustness in

dealing with noisy training data. It is also a non-parametric model.

That means its performance is not affected by changes in the

underlying data distribution. Additionally, it is highly effective

with datasets that contain multiple classes and can easily deal

with new instances of data, making it ideal for real-world

applications (Deng et al., 2016; Thanh Noi and Kappas, 2017;

Zhang et al., 2018). In Fritzner et al. (2020), the kNN model

outperformed both the FCN and dynamic models in weather-

scale forecasting, yet it demonstrated a lack of spatial connectivity

and forecast an unrealistic abundance of drift ice around the sea ice

edge in long-term-scale predictions.

In this study, we focus on the sea ice forecast during summer

(June–September) on 122 days prediction, with the aim of

optimizing the kNN-based method and exploring the potential of

the prediction ability of summer Arctic SIC. Our study advances

previous work in two respects. First, the Ice-kNN model removes

some of the unrealistic drift ice around the sea ice edge using a drift-

ice correction algorithm. Second, we present different processes for

the key steps of the Ice-kNN model to enhance the accuracy of the

summer daily Arctic SIC predictions. The remaining sections of this

paper are organized as follows: Section 2 describes the data used in

this study and presents different processes used in the Ice-kNN

model. Section 3 evaluates the hindcast skill of the Ice-kNN models

and provides a comparison with the September SIEs submitted to

the SIPN. Finally, Section 4 provides a summary and discussion of

the findings.
2 Dataset

In this study, daily Arctic SIC data on a 25 × 25 km grid from

1979 to 2020 were obtained from the National Snow and Ice Data

Centre (NSIDC; http://nsidc.org) (Maslanik and Stroeve, 1999).

Multiple spaceborne remote sensing instruments, (e.g., the Nimbus

7 Scanning Multichannel Microwave Radiometer (SMMR) and the

Special Sensor Microwave Imager (SSM/I and SSMIS) on board the

Defense Meteorological Satellite Program (DMSP) satellites) have

been used to generate this dataset. The SIC data are accessed

starting from the 26th of October 1978 on alternate days until the

31st of July 1987 and subsequently on a daily basis. The missing
frontiersin.org
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data were obtained by the linear interpolation. Atmospheric data

from the European Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis 5 (ERA5) were used, including 2m

temperature (T2m), sea-level pressure (SLP), and surface net heat

flux (Sflux, which is calculated by summing up surface latent heat

flux, surface sensible heat flux, surface net long-wave radiation flux

and surface net short-wave radiation flux) from 1982 to 2020 with a

0.25° × 0.25° horizontal resolution (Hersbach et al., 2020). In

addition, daily reanalysis sea surface temperature (SST) data from

the NOAA Optimum Interpolation SST, version 2.1, dataset

(OISST) for the period of 1982-2020 with a horizontal resolution

of 0.25° × 0.25° were used (Huang et al., 2021). Due to the SST

warm bias over the ice-covered regions, only SST data where SIC is

less than 15% were used. Both atmospheric and oceanic data fields

were standardized to ensure that the dimensions of the SIC and the

atmospheric and oceanic data fields are consistent. The reanalysis

datasets were re-gridded to the polar stereographic 25 km EASE-

Grid by linear interpolation.
3 Methods

3.1 Traditional kNN model

For a given target unlabeled sample xt, we find the most similar

state called the nearest labeled samples  xt0 , from a library based on

distance function. Then, the subsequent evolution xt0+t of the xt0 are

weight averaged based on combination functions to calculate xt +t.

To construct the forecast, the nearest labeled samples are weighted

as follows:

xt +t  ¼o
k

i ¼ 1
wi � xit0+t   (1)

where xt +t is the predicted variable with lead time t, wi is the

weight corresponding to the ith selected nearest labeled sample; k is

the number of the nearest labeled samples, t0 is the historical period
of t. The wi values are kept constant in the forecast and do not

change with the lead time t.
3.2 Experiments design

A control run named Ice-kNN-Ctrl was constructed according

to the traditional kNN model. The traditional kNN model has three

main procedures that can influence the predictive skill, namely, the

distance function, which measures the similarity between samples,

the selection of the k value, and the combination function based on

the closest labeled samples (Zhang et al., 2017). Our research

focuses on how to organically adapt the physical properties of sea

ice to the kNN model, instead of adjusting the parameters.

Therefore, Ice-kNN-Ctrl used Euclidean distance to measure the

similarity, which is one of the most commonly used distance

functions (Zhang et al., 2017); the combination function was set

as distance weighting, which assigns weights inverse to the distance

and prioritizes the examination of local structures surrounding the
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samples to be predicted; only SIC was used as input data to calculate

the Euclidean distance. A group of hindcast experiments with

different k values were conducted and it is found that the

prediction results were insensitive to k values (Figure S1).

Therefore, the k value for Ice-kNN-Ctrl is only 3.

In this study, following Yang et al. (2020), the summer Arctic

sea ice prediction is typically initialized on 1st June. The SIC

forecasts are conducted for the independent period from June to

September, 2011–2020, which does not overlap with the training

period from June to September, 1979 to 2010.

Built on Ice-kNN-Ctrl, we selected different processes for the key

steps of the prediction model to optimize its results in Table 1. These

algorithms were identified in advance by our sensitivity experiments to

have a considerable impact on the SIC predictive skill. The key steps of

the prediction model are: data preprocessing of deseasonalization and

detrending; a drift-ice correlation algorithm; expansion of the training

library; a distance function; and predictors. Figure 1 illustrates the

processes of forecasting the SIC using Ice-kNN.

All experiments were conducted on the Intel Xeon E5-2609

(1.70GHz, 16 cores). The kNN model does not separate the time of

training and prediction, so it needs to go through the training and

prediction process all over again with each prediction. One 122-day

prediction at an initial time costs about 300 seconds.

3.2.1 Deseasonalization and detrending
Time series forecasting models must address the classical patterns

frequently encountered in time series data: trend and seasonality. In

contrast to the statistical methodologies, wherein established strategies

are used to tackle seasonality, there is no universal agreement among

computational intelligence methods for dealing with seasonal patterns.

Wang et al. (2016) suggested that the application of detrending may

lead to artificial mutation, causing the predicted value of the SIC to

exceed the boundary value. Nevertheless, many studies have shown

that using anomaly data can achieve better forecast skill (Yuan et al.,

2016; Jun Kim et al., 2020; Chi et al., 2021). To determine whether Ice-

kNN can benefit from detrending and deseasonalization steps, the Ice-

kNN-An experiment was designed, in which the long-term linear

trend and the climatological annual cycle of SIC had been subtracted

at each grid point.
3.2.2 Drift-ice correlation
Fritzner et al. (2020) indicated that in the kNN model, the

modelling of each point is independent of each other, leading to

frequent occurrence of drift ice in the Arctic marginal region in the

forecast results. Li et al. (2020) proposed a method that considers

full-field distance of variables and thus the best similarity type can

be found. This method considers the spatial correlation of variables

to a certain extent and thus alleviating the drift-ice problem in

pointwise prediction. Therefore, this study proposed two drift-ice

corre la t ion a lgor i thms : Fu l l_F ie ld ( Ice-kNN-F) and

Full_Field_Plus_Pointwise (Ice-kNN-FP). In Ice-kNN-F, the

sample was defined as the whole pattern of the sea ice

concentration anomaly (SICA) rather than single point of SICA.

In other words, the features of the sample are expanded. In Ice-

kNN-FP, the kNN model first defined the sample as the whole
frontiersin.org
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pattern of the SICA to predict the sea ice edge location where SIC

greater than 0, and then defined the sample as the grid point of the

SICA to predict the SIC within the sea ice edge.
3.2.3 Expand the training library
Owing to the limited length of the SIC satellite record, the

training library for each target state has only 32-41 training samples

from 2011 to 2020. As in previous studies (Mullan and Thompson,

2006; Li et al., 2020), the past adjacent calendar days are selected in

the training library. In this way, the library for each target state was

expanded threefold in Ice-kNN_Past_Adjacent_Days (Ice-kNN-

PA). In addition, to further verify the sensitivity of predictive skill

to the number of samples in training library, the past and

future adjacent calendar days (which do not overlap with

the forecast period) were selected in the training library in Ice-

kNN_Past_Future_Adjacent_Days (Ice-kNN-PFA). A series of

preliminary experiments were conducted with varying numbers of

adjacent days. These experiments revealed that employing one

adjacent day to expand the training library can yield desirable

levels of both precision and efficiency (Figure S2). Moderately

increasing the training database can effectively make up for the

lack of training data, but newly added data may contain noise or

irrelevant information. If this data introduces incorrect patterns or

inconsistencies, it can lead to larger errors. In addition, time-series

data often exhibits strong temporal correlation. In kNN, data points
Frontiers in Marine Science 04
from adjacent dates tend to have more similar features because they

may be influenced by similar external factors or trends. However,

when you add more adjacent calendar days, the model may not

effectively capture this temporal correlation, leading to

increased errors.
3.2.4 Distance function
Taking into consideration the spatial continuity of the gridded

sea ice data, in Ice-kNN_Pattern_Correlation (Ice- kNN-PC), for a

given unlabeled sample xt, the Euclidean distance and spatial

anomaly correlation coefficient were both computed to measure

the similarity between samples. The library was then sorted in

descending order based on the spatial correlation between fields.

The sample with the highest pattern correlation greater than

threshold R was selected as the nearest labeled sample, provided

that its distance was smaller than the corresponding 25th

percentiles of the entire library. If the labeled sample did not

satisfy these conditions, the next labeled sample in the list was

evaluated. This process was repeated until three nearest labeled

samples were identified, if available. If there was no training sample

that satisfied these conditions, the training sample with the largest

pattern correlation was chosen as the nearest labeled sample.

Therefore, it was guaranteed that at least one labeled sample was

found. We conducted a preliminary experiment to discuss the

impact of different threshold values R on prediction skills. The
TABLE 1 Experiment design using the kNN model for the optimization.

Model Preprocessing
Drift ice

correlation
Expand the training

library
Distance function Predictors

Ice-kNN-
Ctrl

No

No No Euclidean distance SIC
Ice-kNN-
An

Yes

Ice-kNN-F

Yes

Full-field

No Euclidean distance SIC
Ice-kNN-FP

Full-field +
pointwise

Ice-kNN-
PA

Yes
Full-field +
pointwise

past adjacent days

Euclidean distance SIC
Ice-kNN-
PFA

past and future adjacent days

Ice-kNN-
PC

Yes
Full-field +
pointwise

past adjacent days
spatial anomaly correlation coefficient +

Euclidean distance
SIC

Ice-kNN-
SLP

Yes
Full-field +
pointwise

past adjacent days
spatial anomaly correlation coefficient + Euclidean

distance

SIC + SLP

Ice-kNN-
SST

SIC + SST

Ice-kNN-
T2m

SIC + T2m

Ice-kNN-
Sflux

SIC + Sflux
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results show that the prediction skills are best, especially for the lead

time less than one month when the threshold R is selected as 0.2

(Figure S3). Therefore, the threshold R of Ice-kNN-PC is set to 0.2.

3.2.5 Predictors
Four ice-related variables that have been frequently used in

prior studies (Yuan et al., 2016; Liu et al., 2021), namely SLP, SST,

T2m, and Sflux, along with SIC, were chosen to construct the Ice-

kNN model. These four experiments are named Ice-kNN-SLP, Ice-

kNN-SST, Ice-kNN-T2m, and Ice-kNN-Sflux, respectively.
Frontiers in Marine Science 05
3.3 Verification metrics

To assess the forecast skill of the experiments, the SIC

predictions of the Ice-kNN model were evaluated at each grid cell

using the RMSE of SIC (RMSE_SIC) and bias between the

prediction and the observations at 1–122 lead days. The bias is

the difference between the prediction and observations for the 10-

year average from 2011 to 2020. The Arctic is divided into five

regions, as shown in Figure S4. Owing to the rapid melting of sea ice

in recent years, the grid points where SIC have not changed from
FIGURE 1

A flowchart showing the processing steps required of using Ice-kNN to predict Arctic sea ice.
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2011 to 2020 were excluded when calculating the regional mean

predictive skill (Chi and Kim, 2017; Jun Kim et al., 2020).

For SIE verification, three metrics are used: (1) the error of the

September monthly mean SIE (DSIE), (2) the RMSE of SIE

(RMSE_SIE), and (3) the integrated ice edge error (IIEE) bias

DIIEE (Melsom et al., 2019; Fritzner et al., 2020). The total extent

(sum of cell areas where SIC > 15%) for each day in September was

computed and then averaged for the month for each year into a

September mean SIE. The IIEE bias metric, DIIEE, is a measure of the

relative difference in sea ice offset predicted by the model. It is

computed from three parts, the overestimated and underestimated

local SIE and the length of the ice edge. The overestimated part

consists of sea ice-free areas that are predicted to be covered with

sea ice, and the underestimated part consists of sea ice-covered

areas that are predicted to be sea ice free. The length of the ice edge

is determined by the ice edge of the observed and predicted fields. A

positive DIIEE bias means that the overestimated SIE in the model is

large relative to the underestimated SIE, and vice versa.

Sensitivity tests were conducted with the Ice-kNN model using

SIC along with one extra variable as a predictor variable (Jun Kim

et al., 2020; Liu et al., 2021). To examine the contribution of each

predictor to the predictive skill of SIC, the sensitivity is defined as

Sens_SIC; to examine the contribution to the predictive skill of SIE,

the sensitivity is defined as Sens_SIE. The sensitivity formulas are as

follows:

Sens _ SIC (predictor)   =
RMSE _ SICsic − RMSE _ SICpredictor

RMSE _ SICsic
  (2)

Sens _ SIE(predictor)   =
RMSE _ SIEsic − RMSE _ SIEpredictor

RMSE _ SIEsic
  (3)

Here RMSE_SICsic (RMSE_SIEsic) is the RMSE_SIC

(RMSE_SIE) of forecast using only SIC, and the RMSE_SICpredictor

(RMSE_SIEpredictor) is the RMSE_SIC (RMSE_SIE) of forecast using

SIC and one extra predictor.
4 Results

4.1 Impacts of deseasonalization
and detrending

To examine whether the data preprocessing strategy for

removing the seasonality and trend could improve the forecast

accuracy of the Ice-kNN model, the predictive skill of Ice-kNN-An

is compared with that of Ice-kNN-Ctrl in this section. Figure 2

shows the comparison of the hindcast skill between Ice-kNN-An

and Ice-kNN-Ctrl measured by the different verification metrics.

The RMSE_SIC of Ice-kNN-Ctrl increases with the lead time and

stays around 16% after one month (Figure 2A). The RMSE_SIC and

bias of Ice-kNN-Ctrl in September is mainly distributed in the

regions where seasonal sea ice retreats from June to September,

including the Beaufort Sea, Chukchi Sea, East Siberian Sea, and
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Laptev Sea, and it is higher than the climatological prediction in all

studied areas (Figures 3, 4A). For SIE, the RMSE_SIE of Ice-kNN-

Ctrl increases with lead time and reaches 2.2 × 106 km2 in

September (Figure 2B). Compared with the observations, the

prediction of Ice-kNN-Ctrl always overestimates SIE from June to

September, and the overestimation gradually increases with the

retreat of seasonal sea ice (Figures 2C, S5A). It may be related to the

difficulty of marginal sea ice prediction and the prediction bias of

the Ice-kNN model with the increasing prediction time (Guemas

et al., 2016; Liu et al., 2021).

For Ice-kNN-An, there is notable skill enhancement in

predicting SIC at lead times longer than one month, and the

enhancement of Ice-kNN-An is more pronounced with lead time

(Figure 2A). According to the spatial pattern, the September

RMSE_SIC and bias of Ice-kNN-An in all areas is lower

compared with Ice-kNN-Ctrl (Figures 3, 4A, B). For SIE,

although both Ice-kNN-An and Ice-kNN-Ctrl tend to

overestimate SIE in summer, the predictive skill of Ice-kNN-An is

significantly superior than that of Ice-kNN-Ctrl for summer SIE

and the improvement increases with lead time (Figure 2C). This

indicates that the Ice-kNN model can better find the temporal

evolution of sea ice by extracting the seasonality and trend,

especially from an ice-covered period to an ice-free period.

In extreme ice cover years, such as record low in 2012, the

forecast biases are relatively large compared to other years for both

models (Figure 2D). On the one hand, the lowest minimum Arctic

SIE in 2012 is associated with the large multiyear ice volume export

and the storm that entered into the central Arctic in early August

2012 (Parkinson & Comiso, 2013; Li et al., 2022). Since the initial

day is fixed on June 1st, it is hard for Ice-kNN model to catch the

atmospheric disturbance in the extreme cases. On the other hand,

for the extreme cases of SIE, Ice-kNN model is not suitable to

forecast the extreme values which are not included in the training

library due to its prediction principle. While in the other years, Ice-

kNN-An shows an impressive improvement compared with Ice-

kNN-Ctrl (Figure 2D). However, there is still considerable drift ice

outside the sea ice edge in both experiments (Figures S5A, B).

The improvement of Ice-kNN-An indicates that the

deseasonalization and detrending step is useful to improve the

Arctic sea ice forecast accuracy of the Ice-kNN model. Therefore,

the data preprocessing strategy was used to remove the seasonality

and the trend components in subsequent experiments.
4.2 Impact of drift-ice correlation

Due to the lack of spatial continuity in the traditional kNN

model, both Ice-kNN-Ctrl and Ice-kNN-An forecasts showed

unrealistic drift ice around the sea ice edge (Figures S5A, B). This

section studies the impact of different drift-ice correction

algorithms in the Ice-kNN prediction. As shown in Figure 5A,

the RMSE_SIC of Ice-kNN-F shows poor predictive skill at lead

times of less than 30 days, but it is better than Ice-kNN-An at lead

times longer than 30 days. According to the distribution of
frontiersin.or
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September RMSE_SIC and bias, Ice-kNN-F is superior to Ice-kNN-

An in predicting SIC in September in all sea areas except the

Chukchi Sea (Figures 3, 4B, C). The results show that the pointwise

modeling is better for the prediction of SICA caused by short-term-

scale disturbances, whereas for the SICA caused by large-scale

anomalies, selecting the similarity using the full-field distance

could improve the predictive skill with lead times of more than

one month. Ice-kNN-FP predicted the SIC point by point based on

Ice-kNN-F determination of the sea ice edge. It performs better

than Ice-kNN-F at lead times of less than 30 days and better than

Ice-kNN-An at lead times of longer than 30 days (Figure 5A). In

addition, Ice-kNN-FP has a lower unrealistic drift-ice bias

compared with Ice-kNN-An, especially in the Chukchi, East

Siberian, Laptev, and Kara seas (Figures 3, S5B, D).

For SIE, the prediction bias of Ice-kNN-F in the short-term lead

time is larger. However, Ice-kNN-FP, which combines full-field
Frontiers in Marine Science 07
distance and single-point distance, shows a significant

improvement in sea ice edge compared with Ice-kNN-F and Ice-

kNN-An for the whole lead time (Figures 5B, C). In Figure 5D, it

can be seen that Ice-kNN-FP effectively reduces the bias of the

September mean SIE in Ice-kNN-F and Ice-kNN-An in most years.

The kNN model, which takes only a single grid point as the

prediction sample, lacks physical spatial connection, and leads to the

prediction of unrealistic drift ice. A drift-ice correlation algorithm,

which selects similarity by full-field distance, would consider the

spatial continuity of sea ice but ignore the local SICA caused by short-

term disturbance. Therefore, the full-field distance is first used to

limit the sea ice coverage, and then pointwise modelling is carried out

to predict the SIC of each single grid point, which can effectively

correct the unrealistic drift ice of pointwise modelling and the initial

sea ice migration bias of full-field modelling. In the following kNN

models, the drift-ice correction algorithm of Ice-kNN-FP is applied.
A B

DC

FIGURE 2

Hindcast skill comparison between Ice-kNN-Ctrl (black) and Ice-kNN-An (blue) measured by (A) spatial averaged RMSE_SIC, (B) RMSE_SIE, (C) DIIEE,

and (D) DSIE.
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4.3 Impact of expanding the training library

In principle, the nearest neighbors with insufficient similarity

could diverge relatively quickly in time compared with the very

close nearest neighbors. The limited Ice-kNN forecast skill may

therefore be partly due to the relatively small number of available
Frontiers in Marine Science 08
training labeled samples, which makes the nearest neighbor

selection a challenge. As the most accurate summer SIC datasets

are limited to the satellite era starting in the 1979, the training

labeled samples for each state has only 32 to 41 members from 2011

to 2020. To verify the sensitivity of the predictive skill to the number

of training labeled samples, Ice-kNN-PA and Ice-kNN-PFA expand
A B

D

E

C

FIGURE 3

Spatial averaged RMSE_SIC of the Ice-kNN model in hindcasting September SIC averaged from 2011 to 2020 in the (A) Beaufort Sea, (B) Chukchi
Sea, (C) East Siberian–Laptev seas, (D) Kara–Barents-Greenland seas, and (E) Baffin Bay–Canadian Archipelago.
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the training library by adding adjacent calendar days. The number

of training labels samples in Ice-kNN-PA increases from 96 to 123

from 2011 to 2020, and that in Ice-kNN-PFA increases to 123.

Compared with Ice-kNN-FP, the RMSE_SICs of the Ice-kNN-

PA and Ice-kNN-PFA seems not to be significantly reduced (Figure

6A), but from the perspective of different sea areas, the Ice-kNN-PA
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and Ice-kNN-PFA mainly reduced the positive SIC bias in the sea

ice marginal zone of Beaufort Sea and the East SiberianLaptev seas

(Figures 4D–F, S6A, B). For SIE, Ice-kNN-PA and Ice-kNN-PFA

have a larger initial bias at lead times of less than two weeks

(Figure 6B), which is mainly due to the underestimation of SIE

(Figure 6C). However, Ice-kNN-PA and Ice-kNN-PFA show
A B

D E F

G IH

J K

C

FIGURE 4

The prediction bias between the Ice-kNN model and the observation of (A) Ice-kNN-Ctrl-Bias, (B) Ice-kNN-An-Bias, (C) Ice-kNN-F-Bias, (D) Ice-
kNN-FP-Bias, (E) Ice-kNN-PA-Bias, (F) Ice-kNN-PFA-Bias, (G) Ice-kNN-PC-Bias, (H) Ice-kNN-SLP-Bias, (I) Ice-kNN-SST-Bias, (J) Ice-kNN-T2m-Bias,
and (K) Ice-kNN-Sflux-Bias in September averaged from 2011 to 2020. The black line represents the outline of the 10-year (2011-2020) mean extent
for the September.
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significant improvement in predicting SIE after that (Figures 6B, C).

In Figure 6D, except for 2017 in Ice-kNN-PFA, the September mean

SIE bias of Ice-kNN-PA and Ice-kNN-PFA is reduced by about 0.5

million square kilometers compared with Ice-kNN-FP.

In general, expanding the training library will cause an initial

underestimation bias, but it will not rapidly diverge with increasing

lead time. The predictive skill of the experiments that use the

expanded training library are significantly improved compared with

Ice-kNN-FP with lead times of more than two weeks. Using the

future adjacent calendar days as the training labeled samples has

relatively little impact, except for 2017 when Ice-kNN-PFA selects

future sample as the nearest sample. The younger and thinner

Arctic sea ice in recent years is more sensitive to external forcing

(Parkinson & Comiso, 2013), resulting in a large deviation in the

forecast results when the future adjacent calendar days are selected

in the training library.
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Therefore, selecting sufficient training labeled samples could

better improve the predictive skill of the Ice-kNN model for Arctic

sea ice. In subsequent experiments, the strategy of expanding the

training library by adding past adjacent calendar days as training

labeled samples to predict the Arctic sea ice was applied.
4.4 Impact of distance function

In previous Ice-kNN models, the Euclidean distance has been

selected most frequently as the distance function. In the prediction

of sea ice, not only the distance between grid cells but also the

spatial correlation coefficient between states should be considered to

select similarity. In this section, a compound distance function

scheme, including the spatial anomaly correlation coefficient and

the Euclidean distance between sea ice, is studied.
A B

DC

FIGURE 5

Hindcast skill comparison between Ice-kNN-An (black), Ice-kNN-F (blue), and Ice-kNN-FP (orange) measured by (A) spatial averaged RMSE_SIC, (B)
RMSE_SIE, (C) DIIEE, and (D) DSIE.
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As shown in Figure 7A, the RMSE_SIC of Ice-kNN-PC is

comparable to that of Ice-kNN-PA. According to the spatial

pattern, the September RMSE_SIC and bias of Ice-kNN-PC

decreases in the East Siberian–Laptev seas and Kara–Barents–

Greenland seas, but increases in the Beaufort Sea, Chukchi Sea,

and Baffin Bay–Canadian Archipelago compared with Ice-kNN-PA

(Figures 3, 4F, G). For the SIE, the RMSE_SIE of Ice-kNN-PC has a

larger bias at lead times of less than one week (Figure 7B), which is

mainly due to the underestimation of SIE (Figure 7C). However,

Ice-kNN-PC shows improvement in SIE compared with Ice-kNN-

PA at lead times of more than one week and the improvement is

more pronounced with increasing lead time (Figures 7B, C). In the

Figure 7D, except for 2012, the biases of monthly mean SIE in

September of Ice-kNN-PC from 2011 to 2020 are within about 0.5

million square kilometers, which is lower than Ice-kNN-PA.

In general, the composite distance function with a spatial

anomaly correlation coefficient is beneficial to the prediction of
Frontiers in Marine Science 11
Arctic sea ice. The new distance function considers not only the

similarity between samples at a single point through the Euclidean

distance but also the spatial mode of the SICA through the spatial

anomaly correlation coefficient. It is helpful for the Ice-kNN model

to consider the large-scale spatial variation of SICA when selecting

the similarity. Therefore, in the following experiments, a composite

distance function combining the Euclidean distance and the spatial

anomaly correlation coefficient is used to further improve the

predictive skill of the Ice-kNN model.
4.5 Impact of sea ice-related predictors

To verify the impact of sea ice-related atmospheric and oceanic

variables on the predictive skill of summer Arctic sea ice, SIC and

SIE sensitivity indices including sea ice-related variables were

calculated based on the Ice-kNN-PC model in Figure 8. A
A B

DC

FIGURE 6

Hindcast skill comparison between Ice-kNN-FP (black), Ice-kNN-PA (blue), and Ice-kNN-PFA (orange) measured by (A) spatial averaged RMSE_SIC,
(B) RMSE_SIE, (C) DIIEE, and (D) DSIE.
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positive sensitivity index indicates that a variable has a positive

contribution to the predictive skill of SIC (SIE).

Ice-kNN-Sflux, which selects Sflux and SIC as predictors,

improves the predictive skill of SIC for the whole lead time

(Figure 8A). SST improves the predictive skill at lead times of less

than one month, but SLP and T2m provide only limited

improvement in the predictive skill at lead times of about one to

two months (Figure 8A). According to the distribution of

RMSE_SIC and bias in September, the improvement of the

predictive skill of Ice-kNN-Sflux mainly occurs in the Beaufort

Sea, compared with Ice-kNN-PC (Figures 3A, 4G–K). For SIE, the

sensitivity index is calculated based on the RMSE_SIE. All the sea

ice-related variables show improvement of the SIE predictive skill at

lead times of less than one month. But for lead times longer than

one month, all the sea ice-related variables show negative

contributions to the predictive skill of SIE.
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The predictive skill of Ice-kNN-Sflux for SIC is significantly

better than both the climatological prediction and the anomaly

persistence prediction at lead times of longer than two weeks

(Figure S7). The predictive skill of Ice-kNN-Sflux for September

SIC is significantly better than the anomaly persistence prediction

for the whole Arctic, and significantly better than the climatological

prediction for the whole Arctic, except for Baffin Bay and the

Canadian Islands (Figure 3). The prediction bias of Ice-kNN-Sflux

in September SIE is reduced by 2.0 × 106 km2 compared with the

climatological prediction and by 3.0 × 106 km2 compared with the

anomaly persistence prediction.

In general, for daily Arctic sea ice forecasts in summer, the Sflux

fields, which have a direct relation to sea ice (Liu et al., 2021), can

enhance the predictive skill of sea ice. SLP and T2m show little

improvement of the predictive skill of sea ice, which may result

from the chaotic behavior of the atmosphere (Mohammadi-Aragh
A B

DC

FIGURE 7

Hindcast skill comparison between Ice-kNN-PA (black) and Ice-kNN-PC (blue) measured by (A) spatial averaged RMSE_SIC, (B) RMSE_SIE, (C) DIIEE,
and (D) DSIE.
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et al., 2018). While the surface oceanic field SST does not show its

long-term memory, which may result from the interpolation bias.

Similar results were obtained in Liu et al. (2021) using the deep

learning model ConvLSTM.
4.6 Comparison of SIE

The Sea Ice Prediction Network (SIPN) is an open platform that

has been collecting predictions of Arctic SIE in September around

the world since 2008, then compiling and presenting them to those

interested in Arctic sea ice. September SIE predictions have been

submitted to the SIPN in June, July, and August since 2008, with an

additional September submission added in 2021. There are a variety

of prediction methods, including heuristic, statistical, mixed,

dynamic, and machine learning/other. To further evaluate the

Arctic sea ice forecast skill of Ice-kNN model, we compared the

Arctic September SIEs in 2021 and 2022 using the Ice-kNN-Sflux

model with the observations and the contributions for the

September SIE predictions to the Post-Season Sea Ice Outlook for

2021 and 2022 (Bhatt et al., 2022a; Bhatt et al., 2022b). We utilized

the SIC of May 31, June 30, July 31 and August 31 respectively as the

input of Ice-kNN-Sflux model to predict the September SIEs. It

should be noted here we use a hindcast (not real-time forecast)

result of the Ice-kNN-Sflux model.

As shown in Figure 9A, the observed September SIE in 2021 was

4.92 × 106 km2 (reported by NSIDC). The median hindcasting

result of Ice-kNN-Sflux from June to September is 4.8 × 106 km2,

with a quartile range of 4.62 to 5.04 × 106 km2 (Figure 9A). The

median September estimate based on all contributors of SIPN were

4.37 × 106, 4.36 × 106, 4.39 × 106, and 4.39 × 106 km2, respectively,

from June to September. In comparison, our hindcasts using Ice-

kNN-Sflux were 5.34 × 106, 4.94 × 106, 4.66 × 106, and 4.49 × 106

km2, respectively (Table S1A). For 2022, the medians September
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estimate of SIPN were 4.57 × 106, 4.64 × 106, 4.83 × 106, and 4.91 ×

106 km2, respectively, from June to September, which approaches

observation 4.87 × 106 km2 (reported by the NSIDC). The hindcasts

of Ice-kNN-Sflux from June to September were 5.05 × 106, 4.47 ×

106, 5.65 × 106, and 4.62 × 106 km2 (Table S1B). The median

hindcasting result of Ice-kNN-Sflux from June to September is

4.835 × 106 km2, with a quartile range of 4.58 to 5.2 × 106

km2 (Figure 9B).
5 Conclusions and discussion

In this study, a SIC dataset of remote sensing was utilized and a

machine learning model, Ice-kNN, has been introduced and

optimized to improve the prediction skill of summer Arctic SIC

for a 122-day prediction. The results show that when the traditional

kNN model is directly applied to predict the summer Arctic SIC, its

September predictive skill is poorer than the climatological

prediction for the whole Arctic, which is due to the inability of

the kNNmodel to identify the seasonal variability of SIC in summer

Arctic. To address this issue, we proposed different processes to

improve the performance of the Ice-kNN model, including the data

preprocessing of deseasonalization and detrending, a drift-ice

correction algorithm, expansion of the training library, a distance

function, and predictors. By using these algorithms, we aimed to

optimize the results of the Ice-kNN model. Our sensitivity analysis

revealed that the seasonalization and trends of the data need to be

preprocessed to improve the identification of sea ice variability by

the Ice-kNN model. Although the traditional kNN model has no

spatial relation, the sea ice coverage can be constrained by defining

the samples as a pattern of SICA and using the composite distance

function combined with a spatial anomaly correlation coefficient

and Euclidean distance. In addition, selecting sufficient training

labeled samples improves the predictive skill of the Ice-kNN model
A B

FIGURE 8

The monthly mean sensitivity indexes from June to September of (A) RMSE_SIC-based for SIC and (B) RMSE_SIE-based for SIE with kNN using
different predictors (blue, SIC/SLP; orange, SIC/SST; grey, SIC/T2m; yellow, SIC/Sflux).
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for Arctic sea ice. Besides, the importance of sea ice-related variables

was studied through sensitivity tests. The introduction of Sflux into

the Ice-kNN model effectively improved the predictive skill of the

model, whereas the addition of SLP, T2m, and SST did not

significantly improve the predictive skill.

The Ice-kNN-Sflux model was evaluated against climatological

and anomaly persistence predictions. There is notable skill

enhancement in the hindcasts of Arctic sea ice using the Ice-

kNN-Sflux model, which is more pronounced with increasing

lead time. The September mean SIE of the Ice-kNN-Sflux

hindcasts was reduced by about 2.0 × 106 km2 and 3.0 × 106 km2

compared with the climatological and the anomaly persistence

predictions. In addition, the September SIE was found to be

reasonably well predicted compared with the forecasts submitted

to the SIPN in 2021 and 2022. Overall, our study provides

important insights into predicting summer daily Arctic SIC and

highlights the potential benefits of using modified Ice-kNN for

this purpose.

Although this Ice-kNNmodel shows great potential for summer

daily Arctic sea ice prediction, more experiments need to be

conducted to improve the Ice-kNN model and examine its

robustness. Future studies are needed to further expand the initial

forecast days of the Ice-kNN model. In addition, the combined

effects of the predictors mentioned in this study on the Ice-kNN
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model are not considered and Arctic SIC is also influenced by a

variety of other factors, such as ice drift, surface albedo and ocean

heat content (Shimada et al., 2006; Screen and Simmonds, 2010;

Mahajan et al., 2011; Liu et al., 2021). Therefore, it is necessary to

study different combinations of predictors and include more

predictor variables related to sea ice for feature processing to

strengthen the understanding of the multivariable processes.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.

Author contributions

YL: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Software, Validation, Visualization,

Writing – original draft, Writing – review and editing. QY:

Conceptualization, Funding acquisition, Project administration,

Resources, Supervision, Writing – review and editing. XL:

Conceptualization, Investigation, Methodology, Resources,

Supervision, Validation, Writing – review and editing. CY:
A B

FIGURE 9

The SIPN forecast box plots for the estimates of September Arctic SIE in (A) 2021 and (B) 2022 by ML/Other (M/O), Mixed (M), Dynamic (Dy),
Statistical (St) and Heuristic (He). Our model hindcasts of Ice-kNN-Sflux has been bolded. The data for this Figure were adapted from the Sea Ice
Prediction Network.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1260047
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Lin et al. 10.3389/fmars.2023.1260047
Conceptualization, Supervision, Writing – review and editing. YW:

Writing – review and editing, Supervision. JW: Writing – review

and editing, Supervision. JinL: Writing – review and editing,

Conceptualization, Data curation, Investigation. SC: Writing –

review and editing, Data curation, Investigation. JipL: Supervision,

Writing – review and editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Southern Marine Science and Engineering

Guangdong Laboratory (Zhuhai) (NO. SML2020sp007), the

Guangdong Basic and Applied Basic Research Foundation (No.

2020B1515020025), the National Key R&D Program of China (No.

2022YFE0106300), the National Natural Science Foundation of

China (No. 42106233, 42106226, 41922044) and the fundamental

research funds for the Norges Forskningsråd (No. 328886).
Frontiers in Marine Science 15
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fmars.2023.1260047/

full#supplementary-material
References
Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., et al.
(2021). Seasonal Arctic sea ice forecasting with probabilistic deep learning. Nat.
Commun. 12 (1), 1–12. doi: 10.1038/s41467-021-25257-4

Bhatt, U. S., Bieniek, P., Bitz, C. M., Blanchard-Wrigglesworth, E., Eicken, H., Fisher,
H. M., et al. (2022a) 2021 sea ice outlook post-season report. Available at: https://www.
arcus.org/sipn/sea-ice-outlook/2021/post-season.

Bhatt, U. S., Meier, W., Blanchard-Wrigglesworth, E., Massonnet, F., Goessling, H.,
Ludwig, V., et al. (2022b) Sea ice outlook: 2022 post season report. Available at: https://
www.arcus.org/sipn/sea-ice-outlook/2022/post-season.

Chen, J., Kang, S., Chen, C., You, Q., Du, W., Xu, M., et al. (2020). Changes in sea ice
and future accessibility along the Arctic Northeast Passage. Glob. Planet. Change 195,
103319. doi: 10.1016/j.gloplacha.2020.103319

Chi, J., Bae, J., and Kwon, Y. J. (2021). Two-stream convolutional long-and short-
term memory model using perceptual loss for sequence-to-sequence arctic sea ice
prediction. Remote Sens. 13 (17), 3413. doi: 10.3390/rs13173413

Chi, J., and Kim, H. C. (2017). Prediction of Arctic sea ice concentration using a fully
data driven deep neural network. Remote Sens. 9 (12), 1305. doi: 10.3390/rs9121305

Deng, Z., Zhu, X., Cheng, D., Zong, M., and Zhang, S. (2016). Efficient kNN
classification algorithm for big data. Neurocomputing 195, 143–148. doi: 10.1016/
j.neucom.2015.08.112

Fritzner, S., Graversen, R., and Christensen, K. H. (2020). Assessment of high-
resolution dynamical and machine learning models for prediction of sea ice
concentration in a regional application. J. Geophys. Res. Ocean. 125 (11), 1–23.
doi: 10.1029/2020JC016277

Guemas, V., Blanchard-Wrigglesworth, E., Chevallier, M., Day, J. J., Déqué, M.,
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