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We used Biogeochemical-Argo (BGC-Argo) float observation profiles and satellite

data to investigate the physical-biogeochemical processes of a phytoplankton

biomass rise in the Kuroshio region south of Japan during a period of two

sequential tropical cyclones (TCs)—Hagibis and Neoguri—in October 2019.

During TC Hagibis, prominent sea surface cooling and surface chlorophyll-a

(Chl-a) increase occurred within a pre-existing cyclonic eddy (CE) south of

Japan. Because of TC-induced mixing and upwelling, the maximum cooling

happened at the depth of 57 m where water temperature dropped by 6°C. The

dramatic mixing and upwelling redistributed chlorophyll-a vertically (reducing

subsurface Chl-a and increasing surface Chl-a) with little augment of depth-

integrated Chl-a in the upper ocean above 160 m depth. Meanwhile, the mixing

and upwelling transported nutrients from the subsurface to the surface layer. In the

week after Hagibis, the depth-integrated Chl-a greatly increased. Subsequently,

TC Neoguri obviously enhanced the augment of phytoplankton biomass although

it was weaker than Hagibis. The upwelling induced by Hagibis increased nutrients

in the water below 80 m, providing a very favorable condition for the subsequent

TC Neoguri to further promote the growth of phytoplankton. The intense

precipitation accompanying with Neoguri brought the coastal water with rich

terrestrial material to offshore ocean, increasing nutrients and decreasing salinity in

the subsurface layer. These both contributed to the marked increase in Chl-a

during Neoguri. Our results demonstrated that the two sequential TCs worked

together with a cyclonic eddy to cause a drastic and complex Chl-a enhancement

event in the Kuroshio region south of Japan.
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1 Introduction

Tropical cyclones (TCs), known as typhoons in the

northwestern Pacific, have considerable impacts on the upper

ocean. The TC-induced upwelling, mixing and entrainment

generally would cause a cold wake (surface cooling) along the TC

track (Price, 1981; Dickey et al., 1998; Jacob et al., 2000). The surface

cooling with the sea surface temperature (SST) decreasing is usually

strong on the right (left) side of TC tracks in the Northern

(Southern) Hemisphere, attributed to wind-current resonance

(Price et al., 1994). The hydrographic responses of upper ocean to

TCs are often accompanied by biogeochemical processes, frequently

resulting in surface phytoplankton blooms in oligotrophic oceans

(Subrahmanyam et al., 2002; Lin et al., 2003; Babin et al., 2004;

Chacko, 2019). Two mechanisms have been proposed to explain the

surface phytoplankton biomass increase caused by a TC: 1) the TC

could directly bring subsurface water with more phytoplankton into

surface layer via physical processes; 2) more nutrients are injected

into surface layer by the TC-induced upwelling and entrainment,

which facilitates phytoplankton growth in the surface layer (Gierach

and Subrahmanyam, 2008; Ye et al., 2013; Zhao et al., 2013; Li

et al., 2021a).

Upper ocean responses to TCs mainly depend on TC

characteristics (e.g., wind speed and translation speed) and pre-

TC ocean condition (e.g., mixed layer depth (MLD) and

stratification). In general, strong and slow-moving TCs passing

over the ocean with a shallow mixed layer (ML) readily cause sea

surface cooling and phytoplankton blooms (Zhao et al., 2008; Lin,

2012; Mei et al., 2015; Wang, 2020). In addition, numerous studies

suggest that a pre-existing cyclonic eddy with a shallow ML due to

upwelling could strengthen the ocean responses to TCs, while an

anticyclonic eddy has an opposite effect on account of the eddy-

induced downwelling (Zheng et al., 2008; Liu et al., 2009; Jin et al.,

2020). Walker et al. (2005) found two surface cooling patches and

phytoplankton blooms within two cyclonic eddies (CEs),

respectively, along the Hurricane Ivan’s track in the Gulf of

Mexico. Lin (2012) conducted a series of numerical experiments

to systematically study the TC-induced surface cooling. The SST

drops by 4°C after removing the pre-existing anticyclonic eddy

(ACE) in a super typhoon Maemi case, which is much higher than

the remote sensing observation of 1.5°C. Analyzing 46 typhoons

events from 1998 to 2013, Xu et al. (2017) indicated that the TC-

induced surface Chl-a increase is significantly correlated with the

pre-existing cyclonic circulation. Based on the composite analysis

results, Liu and Tang (2018) demonstrated that more persistent SST

cooling and greater phytoplankton blooms occur after typhoons

passing by CEs compared with ACEs.

Upper ocean responses to two sequential TCs must be more

complex than those to an individual TC. Here two sequential TCs

means that the temporal interval between the two TCs passing over

the same sea area is no more than 20 days, given that the e-folding

recovery time of the TC-induced cold wake is 5-20 days (Price et al.,

2008; Lin et al., 2017). Numerical simulations by Zheng et al. (2010)

revealed that a previous typhoon (Rammasun) contributed to the

phytoplankton bloom induced by a subsequent typhoon (Nakri)
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because Rammasun uplifted nitrate profiles before Nakri passage.

However, Huang et al. (2016) using remote sensing sea surface data

and CTD (conductivity, temperature, and depth) profiles suggested

that a previous typhoon (Sinlaku) induced a thick ML which

suppressed cold water injection into surface layer during a

subsequent typhoon (Jangmi), leading to a relatively weak

phytoplankton bloom during Jangmi. On account of few in-situ

observations, physical and biogeochemical responses to two

sequential TCs in an ocean environment full of eddies are still

unclear. In October 2019, two sequential TCs—Hagibis and

Neoguri—just passed over the same CE in the Kuroshio region

south of Japan. A Biogeochemical-Argo (BGC-Argo) float (ID

2902754) happened to be cruising in this region during the two

sequential TCs. These provided a great opportunity to study the

evolutions of physical and biogeochemical processes in the upper

ocean during two sequential TCs. The objective of this work is to

gain new insights into the physical-biogeochemical response of the

upper ocean to two sequential TCs.
2 Data and methods

The track data of TCs Hagibis and Neoguri were taken from the

International Best Track Archive for Climate Stewardship

(IBTrACS, Knapp et al., 2010; Knapp et al., 2018) dataset (https://

doi.org/doi:10.25921/82ty-9e16), provided by the Joint Typhoon

Warning Center (JTWC). This dataset includes the TC center

location, maximum sustained wind (MSW) speed, minimum

central pressure, radii of the specified winds (34, 50 and 64 knot)

and MSW for four quadrants at 3-h intervals. The TC translation

speed was defined as dividing the distance between two adjacent TC

centers by the corresponding time span.

The BGC-Argo float 2902754 (Argo, 2000, https://data-argo.

ifremer.fr) was deployed at 146.5°E, 29.9°N on 30 August 2018

which was equipped with an extensive range of biogeochemical and

physical sensors to measure abundant parameters in the upper 1000

m, such as dissolved oxygen, Chl-a, particle backscattering at 700

nm, colored dissolved organic matter (CDOM), downwelling

irradiance, nitrate, temperature, and practical salinity. According

to Wang et al. (2021), the nitrate correction equation for this float

can be expressed as follows:

NitrateCor = NitrateRaw − 7:9772 − 0:0071� CycleNum : (1)

Here, NitrateRaw and CycleNum represent the float-observed

nitrate concentration and cycle number of the float, respectively.

The nitrate data accuracy can be improved to 0.5 mmol/kg after the

above drift adjustment (Johnson et al., 2017). Observation profiles

were smoothed by a five-point running median filter to remove

unusual spiny data, following Qiu et al. (2021). The MLD was

determined by the depth at which water temperature is lower by

0.5°C than that at the sea surface, according to Kara et al. (2000).

The euphotic zone depth (EZD) was defined as the depth of photon

flux dropping to 1% of its sea surface value (Falkowaski, 1994).

To investigate the ocean responses to TCs Hagibis and Neoguri,

satellite-derived SST, Chl-a, precipitation, absolute dynamic
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topography (ADT), and sea level anomaly (SLA) were applied in this

study. Daily SST data at 9 km resolution were extracted from

microwave and infrared (MW_IR) Optimally Interpolated (OI) SST

daily products provided by the Remote Sensing Systems (RSS, https://

data.remss.com/SST/daily/). Surface Chl-a concentrations were taken

from the Moderate Resolution Imaging Spectroradiometer (MODIS)

level-3 products with a resolution of 4 km×4 km (https://oceandata.sci.

gsfc.nasa.gov/opendap/). Three-hourly precipitation data were from

the Tropical Rainfall Measuring Mission (TRMM) project (Huffman,

2016). Daily ADT and SLA data were obtained from the Copernicus

Climate Change Service (C3S) Climate Data Store (CDS,

https://doi.org/10.24381/cds.4c328c78) with a resolution of

0.25°×0.25° (Copernicus Climate Change Service Climate Data

Store, 2018).
3 Results and discussion

3.1 Remote sensing evidences of sea
surface cooling and Chl-a enhancement
induced by two sequential TCs

The category 5 (on the Saffir-Simpson Hurricane Wind Scale)

super typhoon Hagibis developed from a tropical depression in the

northwestern Pacific on 4 October 2019 (Figure 1). It moved across a

CE to the south of Japan with a MSW of ~48.9 m/s and a translation

speed of ~7.3 m/s. Ten days later after TC Hagibis passage, TC

Neoguri, a category 2 typhoon, passed over the same CE with a MSW

of ~20.6 m/s and a translation speed of ~6.8 m/s. Figure 1 shows the

location of the CE to the south of Japan, denoted by a patch of low

and negative SLA, on October 5 before the two TCs arrived. This CE

was quasi-stationary with almost no change in its central position

during the influence period of the TCs (Figure S1).
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Most of previous studies defined the effects of TCs as the

differences of post-TCs and pre-TCs SST or Chl-a concentrations

(Siswanto et al., 2009; Zhao et al., 2013; Huang et al., 2016; Li et al.,

2021b). However, the background SST in the study area decreased

continuously during the two sequential TCs because of the seasonal

variation of air temperature. Hence, we chose the differences between

daily SST anomalies and pre-TCs SST anomalies to investigate the

impacts of Hagibis and Neoguri (Figure 2). Here, SST anomaly on a

day was calculated by removing the climatic mean SST state on the

corresponding date in a year from the SST, eliminating SST seasonal

change. We defined the pre-TCs status as the average SST anomalies

during the period of October 3-9 just before the TCs affected the study

area. On October 10, two days before Hagibis arriving at the CE,

remarkable surface cooling happened under the track of Hagibis with

the maximum cooling of 4.9°C (Figure 2A). After Hagibis passed over

the CE (Figure 2B), the average SST anomaly within the CE region

dropped to about -1.0°C, but smaller in magnitude than the maximum

cooling (-4.9°C) south of the CE. A notable feature of SST cooling was

rightward bias as the same as past researches (e.g. Price et al., 1994).

The maximum SST anomaly was gradually reduced to -3.8°C in the

two days after Hagibis passage while the area-averaged SST cooling in

the CE was still -1.0°C. The subsequent TC Neoguri induced a smaller

SST anomaly mainly because the intensity of Neoguri was weaker than

Hagibis (Figure 1). The area-averaged and maximum values of SST

anomaly in the CE were -0.72°C and -2.0°C, respectively. The surface

cooling almost disappeared one day after Neoguri passage.

An interesting feature in the Figure 2B is that the SST cooling

along Hagibis track were separated by the Kuroshio indicated by

ADT derived geostrophic currents in Figure 3A. Temperature

profiles in the north of the Kuroshio, the Kuroshio, and the south

of the Kuroshio were obtained by Argo floats 2902754, 2903336 and

2902972, respectively, on October 9, 5 and 7 before Hagibis passage

(Figure 3B). Among these areas, the temperature below the ML in
FIGURE 1

The SLA field (shading) on October 5, 2019 in the northwestern Pacific. Red lines are the tracks of TCs Hagibis and Neoguri. Red dots represent the
12-hourly TC centers and black pentagrams indicate the positions of BGC-Argo float 2902754 from October 9 to November 8.
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the Kuroshio was the highest with the weakest vertical temperature

gradient. This is not beneficial to surface temperature drop due to

TC-induced vertical mixing and upwelling, resulting in a weak

surface cooling during Hagibis passage (Figure 2B). In contrast, the

ML was shallow and the temperature gradient below the ML was

strong in the area south of the Kuroshio, which was mainly

responsible for the prominent TC-induced surface cooling there
Frontiers in Marine Science 04
(Figure 2B). In the area north of the Kuroshio, the vertical

temperature gradient was also strong but the ML was deeper than

that in the south of the Kuroshio (Figure 3B) so the TC-induced

surface cooling was weaker. Some studies have reported that

stronger thermal stratification below shallower ML corresponds to

stronger SST cooling induced by a TC (Schade and Emanuel, 1999;

Mei et al., 2015).
FIGURE 3

(A) ADT-derived geostrophic currents on October 7. (B) Black, red and green curves represent the temperature profiles observed by Argo floats
2902754, 2903336 and 2902972, respectively, on October 9, 5 and 7, and their observation positions are respectively marked by black, red and
green pentagrams in (A).
FIGURE 2

The changes of SST anomalies during the influence period of two sequential TCs Hagibis and Neoguri. Black and gray lines with dots represent the
tracks of Hagibis and Neoguri, respectively. Black, red and green pentagrams in B denote the positions of Argo floats 2902754, 2903336 and
2902972, respectively, before TC Hagibis passage. Red dash lines are 0-cm SLA contours representing the edges of the CE.
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Figure 4 demonstrates the variation of surface Chl-a concentration

during the influence period of the TCs. Before Hagibis passage, the

surface Chl-a concentration was very low in open ocean, however,

within the CE it reached 0.12 mg/m3, probably attributed to the CE-

induced upwelling (Gaube et al., 2014). After Hagibis passing over the

CE, the surface Chl-a concentration increased to a peak value of 0.33

mg/m3 within the CE (Figure 4B). Same as the SST cooling, the

increase of surface Chl-a was restricted in the Kuroshio which is

identified as low-nutrient water. Figure 4C shows that about three days

after Hagibis passage, the surface Chl-a concentration in the CE

increased obviously with the maximum value of 0.68 mg/m3 while

that was only 0.35 mg/m3 to the south of Kuroshio. Different from the

pattern of SST response, the most striking increasing of surface Chl-a

concentration was located at the CE center probably due to eddy

pumping lifting the nutricline (Falkowski et al., 1991). Besides,

upwelling within the CE was strengthened by Hagibis with the

maximum SLA varied from -121 to -131 cm (Figure S1), implicating

the further enhancement of nutrients for phytoplankton growth in the

upper ocean. On October 17, five days after Hagibis, the increased

phytoplankton biomass began to decline, and the maximum values of

Chl-a concentration in the CE and to the south of the Kuroshio

decreased to 0.56 and 0.19 mg/m3, respectively.

The surface Chl-a within the CE increased again soon after TC

Neoguri passage with the area-averaged and maximum values
Frontiers in Marine Science 05
reaching to 0.23 and 0.8 mg/m3, respectively. About one week

later, it diminished rapidly with its maximum concentration

decreasing to 0.51 mg/m3. Hagibis and Neoguri generated

comparable and significant surface Chl-a increases although their

intensity difference is conspicuous. Note that the translation speed

of Neoguri (6.8 m/s) is slower than Hagibis (7.3 m/s), but Neoguri is

not a slow-moving TC according to Li et al. (2021a). Li et al. (2021a)

indicated that a TC that causes a significant ocean response usually

has a translation speed<= 4 m/s. Chacko (2019) investigated the

variability of TC-induced ocean biological response in the Indian

Ocean from 1999 to 2016. Their results demonstrated that all TCs

which had MSWs and translation speeds close to the corresponding

values of Neoguri did not generate an obvious surface bloom.

Similar results were also found by Pan et al. (2018) in the

Northwest Pacific and South China Sea.

Seen from Figures 2, 4, the increase of surface Chl-a

concentration apparently lagged the SST cooling because the

phytoplankton need some time to grow by utilizing the nutrients

injected from subsurface water. Pan et al. (2017) indicated that

when the uplifted nitrate causes a phytoplankton bloom, Chl-a

concentration reaches a peak three days after nitrate concentration

begins to obviously increase. Zheng and Tang (2007) also found

that the offshore bloom along the track of TC Damrey exhibited a

Chl-a concentration peak five days after the lowest SST occurred.
FIGURE 4

Surface Chl-a concentration. Black and gray lines with dots represent the tracks of Hagibis and Neoguri, respectively. Red dash line in each panel is
0-cm SLA contour representing the edge of the CE on the date indicated. The blank areas in each panel indicate no data due to cloud cover.
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3.2 Subsurface Chl-a increase induced by
two sequential TCs

Before the super typhoon Hagibis arrival, the vertical

distribution of Chl-a obtained by BGC-Argo float 2902754 was

characterized by a pronounced deep Chl-a maximum (DCM)

reaching up to 0.48 mg/m3 (Figure 5C). The DCM is a ubiquitous

phenomenon in worldwide oceans, formed by biological-chemical-

physical interaction. In the stratified open ocean, the vertical

stratification below the ML suppresses the supply of nutrients

from subsurface layer, generally leading to a DCM beneath the

MLD and at the top of nutricline within the euphotic layer where

there are adequate nutrients and light (Furuya, 1990; Cullen, 2015;

Wang, 2020; Chai et al., 2021; Zhuang et al., 2021). On October 9,

2019, The DCM occurred at the depth of 59.9 m just above the

nutricline. Meanwhile, the EZD and MLD were 65.7 and 58.9 m,

respectively (Figure 6), which reflects the above relationship.

On October 14, two days after Hagibis passage, the MLD

decreased by ~14 m to 44.9 m probably due to strong upwelling
Frontiers in Marine Science 06
induced by Hagibis with no distinct change in stratification

intensity (Figures 5A, 6A, S2). A similar result was also observed

by a Bio-Argo after TC Hudhud in the Bay of Bengal (Chacko,

2017). Shoaling of thermocline caused an intense cooling in the

subsurface with the maximum temperature drop of 6°C at the depth

of 57 m, while a slight temperature rise happened below the 100 m

depth. At the same time, nitrate concentration increased distinctly

in the upper layer but decreased below the 100 m depth. The

temperature-salinity (T-S) property below the 100 m depth (near 25

kg/m3 sigma contour) was consistent with that of the Kuroshio

water with high temperature and low nitrate (Figure S3), indicating

the invasion of the Kuroshio water due to the deep convergence

accompanying with the Hagibis-induced upwelling. The daily

absolute geostrophic currents derived from altimeter ADT data

also certified the invasion of the Kuroshio, showed in Figure 7.

The DCM disappeared and the maximum Chl-a concentration

occurred in the ML on October 14 (Figure 5C). The Chl-a

concentration was remarkably higher than that before Hagibis

passage in the ML, but the opposite was true below the ML. To
A B

DC

FIGURE 5

Vertical profiles of temperature [°C, (A)], salinity [PSU, (B)], Chl-a [mg/m3, (C)], nitrate [mmol/kg, (D)] from October 9 to 29, observed by BGC-Argo 2902754.
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further explore the reason of these Chl-a variations, here we define

the upper ocean Chl-a content integrated from the surface to 160 m

depth as depth-integrated Chl-a since the Chl-a concentration below

160 m depth is very low and negligible. The depth-integrated Chl-a

on October 14 was 20.4 mg/m2 which was close to 19.8 mg/m2 on

October 9 before the influence of Hagibis (Figure 6C), indicating the

increase of surface Chl-a was mostly the result of Chl-a redistribution

due to TC-induced physical processes (upwelling and mixing) rather

than phytoplankton growth.
Frontiers in Marine Science 07
One week after Hagibis passage, Chl-a concentration decreased

a little in the upper 44 m but increased significantly below it on

October 19 (Figure 5C), compared with that on October 14. And a

small Chl-a concentration peak of 0.35 mg/m3 was formed at the

depth of 28 m. The depth-integrated Chl-a rose to 24.9 mg/m2 with

a net increase of 4.5 mg/m2, indicating a great growth of

phytoplankton. The growth of phytoplankton consumed much

nutrients injected from the subsurface layer, resulting in the

reduction of nitrate concentration within the euphotic zone above

80 m depth (Figure 5D). The salinity in the ML was much lower

than that 5 days ago because of heavy precipitation (Figure 8A).

These results manifest that Hagibis induced strong upwelling and

mixing, resulting in an apparent cooling and Chl-a increase in the

upper ocean, and the phytoplankton growth lagged the response of

temperature and nitrate by approximately one week.

The vertical distribution of Chl-a was almost uniform in the ML

soon after TC Neoguri passage (Figure 5C). The temperature profile

on October 24 also presented an obvious mixing process with the

MLD increasing about 10 m and temperature increasing in

subsurface layer. Differing from Hagibis, Neoguri raised the depth-

integrated Chl-a immediately, especially in the ML. The increase of

depth-integrated Chl-a reached up to 2.4 mg/m2 despite the weak

intensity of Neoguri. This unusual increase in phytoplankton biomass

was attributed to both the uplift of nutrients due to the previous TC

Hagibis and the influence of Neoguri. The abnormal profile of salinity

on October 24 was affected by typhoon-induced flood-related

hyperpycnal flow as reviewed by Liu et al. (2013) so that the

salinity in the subsurface was very low compared with that before

Neoguri passage (Figure 5B). An intense precipitation happened after

Neoguri passage in the south of Japan (Figure 8B), which would bring

flood-related fresh water with rich terrestrial sediment to offshore

ocean, resulting in the low salinity in the subsurface layer. Meanwhile,

this hyperpycnal flow might also contribute to the increase of

subsurface nutrients and then Chl-a concentration on October 24

(Figures 5C, D). Five days later, the salinity profile on October 29 was

restored to its pre-typhoon state (Figures 5B, S3).

A noteworthy feature in this case is that the weaker TC Neoguri

rapidly generated an obvious augment of phytoplankton biomass in

the upper ocean. A category 5 typhoon Trami in late September 2018

with average translation speed of 6.1 m/s barely caused net increase of

primary production in the upper ocean observed by BGC-Argo float

2902750, in spite of the stronger intensity and slower translation speed

compared to Neoguri (Chai et al., 2021). Huang et al. (2016) reported

that TC Jangmi caused a weaker surface bloom owing to the thick ML

induced by TC Sinlaku that passed earlier. In our study, the surface

Chl-a concentration following Neoguri was slightly less than that on

October 14 (Figure 5C), but a dramatical increase happened in the

subsurface layer. Hence, the sequential TC-induced primary

production increase would be underestimated if only satellite

sensing surface data were used.

4 Conclusion

In this paper, we mainly investigated the upper ocean responses

to two sequential TCs with a pre-existing CE in the Kuroshio region

south of Japan based on the BGC-Argo float profiles and satellite-
A

B

C

FIGURE 6

Time series of mixed layer depth (A), euphotic zone depth (B) and
depth-integrated Chl-a (C) observed by BGC-Argo float 2902754.
Black, red and blue lines in C represent the depth-integrated Chl-a
in the entire column (0-160 m), the upper (0-MLD) and lower layers
(MLD-160 m), respectively. The gray backgrounds denote the
periods when Hagibis and Neoguri passed over the positions of
the BGC-Argo.
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derived data. Hagibis, the TC occurring earlier, induced obvious

cooling and a phytoplankton biomass increase in the surface layer

within two days. However, the little increase in depth-integrated

Chl-a indicated that the surface Chl-a enhancement at this time was

almost the result of Chl-a redistribution because of the TC-induced
Frontiers in Marine Science 08
upwelling and mixing. Additionally, more nutrients were injected

into euphotic layer below the MLD due to the upwelling, providing

an appropriate condition for phytoplankton growth in the next few

days. Consequently, the depth-integrated Chl-a, especially below

the ML, increased notably one week after Hagibis passage.
FIGURE 7

Absolute geostrophic currents (arrows and shading colors) and the positions of BGC-Argo float 2902754 (black pentagram) from October 9 to 24.
FIGURE 8

Daily precipitation on October 19 (A) and 22 (B). Black pentagrams denote the positions of BGC-Argo float 2902754 on October 19 (A) and 24 (B).
White lines show the shorelines.
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Compared with Hagibis, Neoguri, the TC occurring latter, had

much weaker intensity than Hagibis, leading to a weaker SST

cooling along its track. However, the satellite data indicated that

Neoguri generated an obvious rise in Chl-a within the CE in the

Kuroshio region immediately. This was also captured by the BGC-

Argo observations. Although Neoguri was weaker, it caused a

stronger phytoplankton biomass increase than Hagibis in this

region. The previous TC, Hagibis, lifted nutrients to the upper

layer, providing conditions that were very favorable to the

phytoplankton growth during Neoguri. Furthermore, the intense

precipitation induced by Neoguri in the south of Japan brought the

coastal water with rich terrestrial material to offshore ocean,

increasing nutrients and decreasing salinity. The forcing of

Neoguri together with the above two factors resulted in the

stronger enhancement of Chl-a.

Two sequential TCs could cause a much more complex

biological response than a single TC, particularly in a coastal

Kuroshio region demonstrated in this work. In addition, satellite

sensing results alone may overestimate and underestimate the effect

of TCs on the primary production in the upper ocean because of

TC-induced vertical phytoplankton migration and phytoplankton

growth in the subsurface, respectively.
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