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We investigated feeding byCalanus sinicus in the Yellow Sea over four seasons in

2019–2022 using the gut pigment method. Studying the feeding of copepods is

important for understanding processes within food webs, but little is known

about the feeding ecology of C. sinicus, a major consumer of primary production

in the Yellow Sea. The seasonal mean ingestion rate of C. sinicus was 16.6–42.1

for copepodite stage I (CI), 24.1–41.8 for CII, and 32.7–58.5 ng chl ind.−1 d−1 for

CIII, with different seasonal fluctuations in each stage. The seasonal mean

ingestion rate was 45.8–114.4 for CIV, 50.2–189.3 for CV, 96.9–438.9 for

females, and 69.8–132.3 ng chl ind.−1 d−1 for males, with higher values in

spring and lower values in summer. The combined grazing impacts of C.

sinicus from the CI to adult stages were 1.66%, 1.43%, 2.04%, and 0.65% in

spring, summer, autumn, and winter, respectively. The ingestion rate of later

developmental stages from CIV to adults was positively related to chlorophyll-a

concentration rather than water temperature or salinity, according to a

redundancy analysis. These results suggest that C. sinicus population in the

Yellow Sea actively feeds on phytoplankton in spring and that most of the grazing

impact is attributed to females.
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Introduction

In the ocean, zooplankton transfer primary production to upper trophic levels as major

consumers that regulate phytoplankton biomass and structure (Sterner, 1989; Kagami et al.,

2002). Fecal pellets produced by zooplankton after ingesting prey such as phytoplankton

are decomposed, providing carbon to the microbial loop (Pomeroy et al., 2007). Fecal

pellets of large copepods sink to the bottom and are an important carbon source in

nutrient-poor deep waters (Turner, 2015). Therefore, quantifying zooplankton feeding is

essential to elucidate the carbon cycle and energy flow of marine food webs.
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Laboratory culturing is a classical method for measuring the

feeding rate of zooplankton. In this method, the amount of

reduction in food is measured after incubating zooplankton with

a measured amount of food for a certain period of time (Båmstedt

et al., 1991). This technique has the advantages of a controlled

environment and relatively accurate quantification, but its results

inevitably differ from the ingestion rate of organisms in the actual

field. Gut pigment analysis is a method of directly measuring the

chlorophyll concentration associated with prey in the intestines of

collected organisms. Gut pigment measurement is more realistic

than artificial culturing, but ingestion rates may be underestimated

because prey lacking chlorophyll or with its pigment destroyed is

ignored. Nevertheless, such analysis has been used in many studies

due to its convenience relative to culture-based processes (López

et al., 2007; Debes et al., 2008; Yamaguchi et al., 2010; Matsuno

et al., 2015), particularly in situations where feeding is investigated

across a wide range of open-ocean sites, such as this study.

The copepod Calanus sinicus represents up to 44% of total

zooplankton biomass in the Yellow Sea (Sun et al., 2010). Thus, it is

a major contributor to the consumption of primary production and

carbon cycling, and also a major food source for juvenile and small

fish in this region (Huh, 1999; Jeong et al., 2016; Ko et al., 2019).

Despite the importance of this species, studies on feeding by C.

sinicus in offshore waters of the Yellow Sea are scarce (Li et al., 2004;

Zhang et al., 2006; Huo et al., 2008). In inshore parts of the Yellow

Sea, feeding by C. sinicus has been reported in Gyeonggi Bay (Shin

and Choi, 1992), Taean (Song et al., 2010), and Asan Bay (Lee et al.,

2012). In natural habitats, copepodites outnumber adults and have
Frontiers in Marine Science 02
considerable biomass, but their feeding has been neglected in

previous studies. Even for adults, seasonal fluctuations are still

unclear. This study provides detailed and comprehensive data on

the developmental and seasonal feeding of C. sinicus.

In this study, we quantified the seasonal feeding pattern of C.

sinicus and its environmental drivers to elucidate its seasonality. As

well as to quantify the ingestion rates of the developmental stages of

C. sinicus to characterize the feeding ecology of this species in detail.

This study provides basic data on the ecology of C. sinicus that will

help to understand the interaction between phytoplankton and

zooplankton, and energy flows and carbon cycling in the Yellow Sea

food web.
Materials and methods

Sampling and environmental monitoring

In the Yellow Sea (Figure 1), we sampled copepods at nine

stations in April 2019 (spring), six stations each in August 2020

(summer) and November 2021 (autumn), and seven stations in

early March 2022 (winter). In summer, typhoon Bavi (950 hPa, 40

m/s) passed through the study area a few days before sampling.

A flowmeter (Model 438 115, Hydro-Bios, Kiel, Germany)

attached conical net (diameter, 60 cm; 115 µm mesh) was towed

vertically from the bottom to the surface. The live sample was

filtered through a 115 µm net to remove seawater, frozen in liquid

nitrogen, transported to the laboratory, and stored at –70°C until
FIGURE 1

Sampling stations for the feeding study of Calanus sinicus in the Yellow Sea.
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measurement. Because the collection time differed among stations

(Table 1), no distinction was made between day and night.

Temperature and salinity were monitored at the sampling

stations using a conductivity, temperature, and depth instrument

(Sea-Bird 911 CTD; Sea-Bird Scientific, Bellevue, WA, USA).

Temperature and salinity data from adjacent stations were

included to better describe the vertical distribution. Seawater

samples (500 mL) were filtered with GF/F filter paper (Whatman,

UK), frozen, and transported to the laboratory. Chlorophyll a (chl-

a) was extracted for 24 h in a cool, dark place (–20°C) and measured

using a fluorometer (10 AU; Turner Designs, San Jose, CA, USA).

Sampling was performed at four to five water depths (0, 5, 10, 20 m

for stations less than 50 m and 0, 10, 20, 30, 50 for others); the

resulting values were averaged and expressed as mean water column

chl-a concentrations.
Gut pigment contents

Experiments were conducted on copepodite stages I–V (CI–

CV) and adult (CVI) males and females of C. sinicus, without

considering naupliar stages. Then, 4–100 individuals of each stage

(average of 48 individuals) were selected, washed with distilled

water, and subjected to chlorophyll extraction in 90% acetone for 24

h in the dark at –20°C. Fluorescence before and after acidification

was measured using a fluorometer (Turner Design, Trilogy, USA) to

determine gut pigment values. During the experiment, the

laboratory was set to a weak light condition at 18°C, and the

temperature of the sample was reduced with an ice pack to

minimize pigment destruction.

The gut pigment content (ng chl ind.−1) of copepod individual

(ind.) was calculated as the sum of the chl-a and phaeopigment (ng

chl eq. ind.–1) concentrations, as follows (Mackas and Bohrer, 1976;

Dagg and Wyman, 1983):
Frontiers in Marine Science 03
Chlorophyll a =
k(f0 – fa)

n

Phaeopigment =
k(Rfa – f0)

n

where f0 is the fluorescence before acidification, fa is the

fluorescence after acidification, k is the machine calibration

constant, and R is the acidification ratio during calibration.
Ingestion rate and grazing impact

The ingestion rate (I, ng chl ind.−1 d−1) of copepods was

calculated as follows (Dagg and Wyman, 1983):

I = G� E � 1440

where G is the gut pigment content and E is the gut evacuation rate

(min–1), which was obtained from Uye and Yamamoto (1995) and

converted into a daily rate daily rate (d‒1). The population ingestion

rate (mg m–2 d–1) was determined by multiplying the ingestion rate

by the number of individuals (individuals m–2) for each

developmental stage. Grazing impact was expressed as a

percentage (%), obtained by dividing the population ingestion

rate by the mean chl-a concentration of the water column.
Data analysis

The Kruskal–Wallis test with Dunn’s multiple comparison test

was performed to determine the seasonal mean differences in C.

sinicus gut pigment, ingestion rate, and grazing impact using

GraphPad Prism v8 software (GraphPad Software, San Diego,

CA, USA). To determine the relative effects of environmental
TABLE 1 Depth and sampling time for each station during the four seasons.

Station Latitude (°) Longitude (°) Depth (m) Time of sampling (hh:mm)

Spring Summer Autumn Winter

35-03 35 125.7 28 18:30 17:05

35-05 35 125.5 64 15:50 22:33

35-09 35 124.5 88 0:35 6:43 9:49

35-11 35 124.0 80 11:02

35-15 35 122.5 64 21:35 20:38 22:30 4:28

36-03 36 125.5 55 22:03 18:37

36-05 36 124.5 84 13:38 12:57 21:18 12:28

36-07 36 123.0 70 5:19 4:18 10:12 13:24

37-02 37 126.1 72 16:36

37-05 37 125.5 42 10:10

37-06 37 125.0 70 3:14

37-08 37 123.8 78 12:18 5:10 2:50
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factors, a redundancy analysis (RDA) was performed between the

ingestion rate of the C. sinicus developmental stages and

environmental factors, including surface (5 m) and bottom

temperature and salinity, as well as surface (0 m) and water

column mean chl-a concentrations. A preliminary RDA was
Frontiers in Marine Science 04
performed including all environmental factors, and variables with

low significance were excluded. The significance of the RDA results

was checked using permutation tests. Canonical community

ordination was performed using Canoco v5 (ter Braak and

Smilauer, 2012).
FIGURE 2

Vertical profiles of temperature (left, °C) and salinity (right, psu) at sampling stations located at 35°N in the four seasons.
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Results

Environmental factors

In spring, surface temperatures were in the range of 8.1–12.7°C

and bottom temperatures were 7.1–10.4°C (Figure 2). Salinities

ranged from 31.7 to 33.3 psu in the water column. In summer,

vertical mixing caused by a typhoon disturbed the isotherms in

coastal areas. Surface temperatures were in the range of 20.2–26.7°C

and bottom temperatures were 9.1–17.8°C. 'Salinities ranged from

30.7 to 33.1 in the water column. In autumn, surface temperatures

were in the range of 17.2–19.4°C and bottom temperatures were

8.8–16.7°C. Salinities ranged from 31.1 to 32.8 in the water column.

In winter, both water temperature and salinity were vertically

homogeneous. surface temperatures were in the range of 4.8–8.9°

C and bottom temperatures were 4.8–9.9°C. Salinities ranged from

31.9 to 33.0 psu in the water column. The surface chl-a

concentrations were 0.35–3.10, 0.27–0.90, 0.28–1.63, and 0.48–

8.49 μg L–1 in spring, summer, autumn, and winter, respectively,

and the water column-averaged chl-a concentrations were 0.86–

3 . 30 , 0 . 42–0 . 92 , 0 . 28–1 . 58 , and 0 . 48–6 . 49 μg L – 1 ,

respectively (Figure 3).
Gut pigment contents

The seasonal mean gut pigment content of C. sinicus CI was

0.24–0.49 ng chl ind.−1, with higher values in winter and lower

values in spring (Figure 4). CII was 0.39–0.46 ng chl ind.−1, with

small seasonal differences. The seasonal mean gut pigment content
Frontiers in Marine Science 05
of CIII-V was 0.45–0.81, 0.47–1.70, and 0.52–2.79 ng chl ind.−1, and

that of females was 1.00–6.41 ng chl ind.−1, and that of males was

0.74–1.94 ng chl ind.−1. The values for CIII to adults were higher in

spring and lower in summer. The observed seasonal differences

were nonsignificant for all stages (p > 0.05).
Ingestion rate

The seasonal mean ingestion rate of C. sinicus CI was 16.6–42.1

ng chl ind.−1 d−1, with higher values in summer and lower values in

spring (Figure 5). CII was 24.1–41.8 and CIII was 32.7–58.5 ng chl

ind.−1 d−1, with higher values in autumn and lower values in winter.

The seasonal mean ingestion rate was 45.8–114.4 for CIV, 50.2–

189.3 for CV, 96.9–438.9 for females, and 69.8–132.3 ng chl ind.−1

d−1 for males. The values for CIV to adults were higher in spring

and lower in summer. Seasonal differences were nonsignificant for

all stages.
Population ingestion rate

The seasonal mean population ingestion rate of C. sinicus CI

was 0.01–0.10 mg chl m–2 d–1, with higher values in spring and

lower values in winter (Figure 6). The values for CII–V were 0.01–

0.09, 0.01–0.15, 0.02–0.27, and 0.19–0.81 mg chl m–2 d–1; it was

0.03–0.15 in males and 0.20–1.42 mg chl m–2 d–1 in females, being

higher in spring and lower in winter. The value for CIII was

significantly higher in spring than summer (p = 0.043). The

combined population ingestion rates of C. sinicus from the CI to
FIGURE 3

Seasonal variation in the spatial distribution of water column mean chlorophyll-a concentrations (µg L–1) in the four seasons.
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adult stages were 2.98, 0.58, 0.95, 0.60 mg chl m–2 d–1 in spring,

summer, autumn, and winter, respectively. That of females was the

highest among stages, followed by CV, while those of the remaining

stages were low (Table 2).
Grazing impact

The seasonal mean grazing impact of C. sinicus at CI was 0.02–

0.06%, with higher values in spring and lower values in winter

(Figure 7). The impact of CII was 0.02–0.06%, and was highest in

autumn and lowest in winter. The impact of CIII was 0.02–0.10% and

that of CIV was 0.05–0.22%, with higher values in autumn and lower

values in summer for both stages. The impact of CV was 0.26–0.49%

and those of females andmales were 0.18–1.01% and 0.07–0.16%, being
Frontiers in Marine Science 06
higher in autumn and lower in winter. The combined grazing impacts

of C. sinicus from the CI to adult stages were 1.66%, 1.43%, 2.04%,

0.65% in spring, summer, autumn, and winter, respectively. The impact

of females was highest, at 45.9% of the total impact, followed by CV, at

27.4% (Table 2). Seasonal differences were nonsignificant at all stages.
Environmental influences

RDA results for the ingestion rate of C. sinicus and

environmental factors in all seasons showed that CIV to adults

had positive relationships with the mean chl-a concentrations in the

water column (Figure 8). The early developmental stage CI-III were

rather related to mean temperature in the water column. The

eigenvalues of axes 1 and 2 were 0.34 and 0.06, respectively, and
FIGURE 4

Seasonal variation in gut pigment content (ng chl ind.–1) of Calanus sinicus from copepodite stage I (CI) to adult female (CVI F) and male (CVI M).
Error bars indicate the standard deviation.
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the cumulative percentage variance of axes 1 and 2 was 39.9%

(Table 3). Environmental factors explained 97% of the variation in

the ingestion rate on axes 1 and 2. The correlation coefficients for

axes 1 and 2 were 0.67 and 0.73, respectively. Axis 1 and 2 were

significantly related to mean chl-a concentrations (r = 0.55) and

temperature (r = 0.67) in the water column, respectively.
Discussion

Seasonal fluctuation

Because water temperature affects all phases of the copepod life

cycle, including respiration, survival, production and development

(Halsband-Lenk et al., 2002; Heine et al., 2019), it may also affect

their feeding. In this study, the ingestion rate of C. sinicus on
Frontiers in Marine Science 07
phytoplankton was particularly high in spring and decreased

sharply during the summer (Figures 4–6). This is likely due to the

ecological characteristics of this species, which is sensitive to water

temperature. The temperature tolerance range for the survival of C.

sinicus is known to be 1–27°C in the Yellow Sea (Wang et al., 2003).

The optimal water temperature for C. sinicus was 20°C in the Inland

Sea of Japan, and the lower and upper thermal limits for C. sinicus

embryonic development were 5°C and 23°C, respectively (Uye,

1988; Uye, 2000). Therefore, high or low water temperatures in

summer or winter are unfavorable to the feeding of C. sinicus. In

addition to water temperature, food composition in the fields are

also important factors affecting copepod feeding. C. sinicus is an

omnivorous copepod that can feed on a variety of prey, including

not only phytoplankton but also ciliates, flagellates, metazoan eggs

and larvae, bacteria, and fungi (Huo et al., 2008; Ho et al., 2017; Yi

et al., 2017; Hirai et al., 2018). In the Yellow Sea, seasonal
FIGURE 5

Seasonal variation in ingestion rate (ng chl ind.–1 d–1) of Calanus sinicus from CI to adult female (CVI F) and male (CVI M). Error bars indicate the
standard deviation.
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FIGURE 6

Seasonal variation in population ingestion rate (µg chl m–2 d–1) of Calanus sinicus from CI to adult female (CVI F) and male (CVI M). Error bars
indicate the standard deviation.
TABLE 2 Population ingestion rate (mg chl m‒2 d‒1), grazing impact (%), and relative grazing impact contribution (%) for each developmental stage of
Calanus sinicus from copepodite stage I to adults.

Stage Population ingestion rate Grazing impact Contribution

CI 0.06 ± 0.11 0.05 ± 0.07 3.3

CII 0.06 ± 0.08 0.05 ± 0.05 3.3

CIII 0.07 ± 0.12 0.07 ± 0.09 4.4

CIV 0.15 ± 0.21 0.13 ± 0.16 8.9

CV 0.40 ± 0.74 0.41 ± 0.39 27.4

CVI F 0.67 ± 1.30 0.68 ± 0.85 45.9

CVI M 0.09 ± 0.12 0.10 ± 0.12 6.8
F
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fluctuations in phytoplankton communities have been reported,

with diatom blooms occurring in spring and increased proportions

of flagella and cyanobacteria in summer and autumn (Gao et al.,

2013; Liu et al., 2015). Therefore, the diet of C. sinicusmay vary with

seasonal environmental changes in its habitat. In a previous study,

herbivorous feeding supported more than 82.5% of C. sinicus egg

production in spring but only 47.8% in autumn in Bohai Bay, likely

driven by the prevalence of large diatoms and sufficient non-

phytoplankton food sources during autumn (Zhang et al., 2006).
Developmental and sexual differences

In general, the copepod ingestion rate increases with increasing

water temperature, body weight, and food concentration (Saiz and
Frontiers in Marine Science 09
Calbet, 2011). The positive relationships between ingestion rate and

body size (Figure 5) and chl-a concentration (Figure 8) were

confirmed for C. sinicus in the Yellow Sea in this study. However,

when developmental stage was considered, the relationship between

ingestion rate in early stages (CI–CIII) and chl-a concentration

were nonsignificant (Figure 8). Feeding habits and prey preferences

of copepods differ with developmental stage and sex (Calbet et al.,

2007; Brucet et al., 2008; Saiz et al., 2014; Meunier et al., 2016; Ismar

et al., 2018). In general, the size of the ingested prey increases with

increasing copepod size. Therefore, relatively large and chlorophyll-

rich diatoms are more likely to be consumed by adults or late

copepodites than by nauplii or early copepodites. This preference

explains why chl-a concentrations were significantly correlated with

C. sinicus ingestion rates only at CIV to adults in this study

(Figure 8). The preferred food type may differ in association with
FIGURE 7

Seasonal variation in grazing impact (%) of Calanus sinicus from CI to adult female (CVI F) and male (CVI M) and the sum of all stages in the
population. Error bars indicate the standard deviation.
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sexual dimorphism. In laboratory experiments with three types of

prey, namely, cryptophytes, haptophytes, and diatoms, females of

the copepod Acartia tonsa preferred diatoms, while males preferred

cryptophytes (Ismar et al., 2018). For C. sinicus, an analysis of gut

contents reported that females consumed more diatoms than males

(Chen et al., 2010). Methods other than chl-a measurement may

produce higher ingestion rates for C. sinicusmales on potential prey

than are reported in this paper.

A large proportion of grazing impact is associated with CV and

female individuals in the C. sinicus population (Table 2). In the

Yellow Sea, spring is the main spawning season of C. sinicus (Zhang

et al., 2005). As copepod egg production is related to water

temperature and prey concentration expressed as chl-a

concentration (Richardson and Verheye, 1998; Wang et al., 2009;

Kang and Kim, 2021), copepod feeding may increase during the

spawning season. On the other hand, males had ingestion rates

around three times lower than females (Figure 5). Previous studies

of several copepods have reported lower ingestion rates of males

compared to females (van Someren Gréve et al., 2017), primarily

due to the smaller size of males than females (Hirst and Kiørboe,

2014). Furthermore, during the mating season, females exhibit

feeding-focused behaviors, while males engage in both mate

searching and feeding behaviors (Kiørboe, 2008; Moison et al.,
Frontiers in Marine Science 10
2013), which may increase female ingestion rates relative to male

ingestion rates.
Evaluation of measured values

The gut pigment contents and ingestion rates of C. sinicus

measured in this study were similar to those reported in a study of

the southern Yellow Sea in summer, but higher than observations in

inshore such as Taean and Asan Bay (Table 4). Li et al. (2004) noted

that their results were lower than local observations in the western

bay of the Yellow Sea, indicating regional differences in gut pigment

contents and ingestion rates. The seasonal difference in feeding

impact observed in this study was less than 1%, which is smaller

than in previous studies (Table 4). This finding suggests that C.

sinicus likely did not experience food limitation during any season

in this study area, at least in terms of phytoplankton prey. The

feeding impact of C. sinicus in this study was relatively small

compared to other studies conducted in open seas (Table 4).

Because the feeding impact of copepods varies greatly depending

on the environment and prey conditions of the sea area, it ranges

from less than 1% to 40% of phytoplankton stock (Li et al., 2003;

Schnetzer and Caron, 2005; Tseng et al., 2008; Saiz and Calbet,
FIGURE 8

Redundancy analysis biplot of the year-round ingestion rate of Calanus sinicus from CI to adult female (CVI F) and male (CVI M) according to temperature
(°C), salinity (psu), and chl-a concentration (µg L-1).
TABLE 3 Redundancy analysis results of year-round ingestion rate of Calanus sinicus in relation to environmental factors.

Axis 1 Axis 2 Axis 3 Axis 4

Eigenvalues 0.3414 0.0573 0.0118 0.45

Pseudo-canonical correlation 0.6654 0.7333 0.6897

Cumulative percentage variance

of response data 34.14 39.87 41.05 86.05

of fitted response data 83.16 97.12 100
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2011; Lee et al., 2012; Jagadeesan et al., 2017). Therefore, caution is

needed when comparing the feeding impact values obtained in this

study with other studies, even for the same species.

Copepods have endogenous diel feeding rhythms that can be

affected by external factors such as food availability, risk for

predation and light intensity (Bollens and Stearns, 1992; Calbet

et al., 1999; Olsen et al., 2000; Olivares et al., 2020). Diel feeding

rhythm amplitudes and the time of active feeding vary among

copepod species (Peterson et al., 1990; Atkinson et al., 1996;

Yamaguchi et al., 2010; Lee et al., 2012). C. sinicus appears to

have diel feeding rhythms of large amplitude, as the difference in gut

pigment content over time was 4.20 ng chl ind–1 for adult C. sinicus

in the southern Yellow Sea (Li et al., 2004). In coastal waters of

Taiwan, the gut fullness of female C. sinicus was 5% greater in the

morning and at midnight than in the afternoon (Chen et al., 2010).

This study did not assess the impact of collection time on feeding

because sampling times varied (Table 1), but it is likely that there

are differences in feeding during the day and night.
Conclusion

In the Yellow Sea, feeding on phytoplankton by C. sinicus was

significantly greater in spring than in other seasons, indicating that

a classical food chain based on phytoplankton is operating at this

time. In summer and winter, water temperature that is higher or

lower than the preference of C. sinicus appears to lower its ingestion
Frontiers in Marine Science 11
rate. In autumn, considering the relatively high-water temperature,

low chl-a concentration, and low ingestion rate of C. sinicus on

phytoplankton, the microbial food web appears to be dominant.

The majority of the grazing impact of the C. sinicus population in

the Yellow Sea was attributable to females, most likely because they

require substantial energy for reproduction.
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TABLE 4 Comparison of gut pigment, ingestion rate and grazing impact of Calanus sinicus. Parentheses indicate mean values.

Region Month
Temp.
(°C)

Chl-a
(mg L–1)

GP
(ng chl ind.–1)

IR
(ng chl ind.–1 d–1)

Grazing
impact (%)

Reference

Black Sea
(C. euxinus)

Apr 0.34 3.42-21.28 (10.1) 304.1-551.3 (448.8)* 14.5 Besiktepe
et al., 1998Sep 1.31 8.7-19.9 (14.0) 626.4-1430 (1008)* 9.5

Inland Sea
of Japan

Jun-Jun 0.5-8.5 0.66-28.2 209-842 13.1-68.9**
Uye &
Yamamoto,
1995

Southern
Yellow Sea

Aug 25-28 < 0.5 0.44-2.53 (1.5) 48.8-182.5 (115.7) Li et al., 2004

Taean,
Yellow Sea

Feb, May,
Aug, Nov

4.4-22.7 0.6-6.2 < 0.99 < 48.2* 0.1-1.6
Song
et al., 2010

Asan Bay,
Yellow Sea

Apr-May

1.3-25.4 < 67

0.64-4.02 (2.33)

2.9-394.6*

0.82-6.42

Lee et al., 2012
Jun 0.11 0.004

Oct-Nov 0.04-3.00 (1.52) 0.001-0.73

Dec-Jan 0.63-1.27 (0.95) 0.10-0.17

Yellow Sea

Apr

3.7-26.7 0.1-8.5

0.67-23.1 (6.41) 44.5-1571 (438.9) 0.78

This study
(adult female)

Aug 0.75-1.32 (1.0) 64.6-129.3 (96.6) 0.79

Nov 0.31-2.09 (1.06) 27.8-183.8 (97.9) 1.01

Mar 0.28-5.32 (2.22) 18.4-358.2 (137.4) 0.18
*converted from per hour to per day for comparison purpose; **calculated from presented chl-a concentration and population ingestion rate.
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