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and Purcarea. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 January 2024

DOI 10.3389/fmars.2023.1279849
First screening of bacteria
assemblages associated with
the marine polychaete Melinna
palmata Grube, 1870 and
adjacent sediments
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Mihaela Mureşan1, Adrian Teacă1 and Cristina Purcarea2*

1Department of Biology and Ecology, National Institute for Research and Development on MarineGeology
and Geoecology-GeoEcoMar, Bucharest, Romania, 2Department of Microbiology, Institute of Biology
Bucharest of the Romanian Academy, Bucharest, Romania, 3Facultad de Ciencias del Mar y Recursos
Biológicos, Departamento de Biotecnologı́a, Universidad de Antofagasta, Antofagasta, Chile
Bacteria associated with marine invertebrate play a fundamental role in the

biology, ecology, development and evolution of their hosts. Although many

studies have been focused on the microbial populations of benthic and pelagic

habitats, little is known about bacteria colonizing tube-dwelling polychaete. In

this context, the current study provided the first characterization of the Melinna

palmata Grube, 1870 microbiome based on Illumina sequencing of 16S rRNA

gene of the polychaete tissue and proximate sediments collected from the Black

Sea, Romania, along a 24.2 m – 45.4 m depth-gradient. The diversity, taxonomic

composition and deduced functional profile of the tissue and sediments

associated bacterial communities were compared and analyzed in relation with

the environmental parameters. This polychaete harbored a distinct bacterial

assemblage as compared to their sediments and independent on the depth of

their habitat, including 8 phyla in tissues dominated by Proteobacteria, and 12

phyla in sediments majorly represented by Actinobacteriota, respectively. At

order level, Synechococcales, Rhodobacterales and Actinomarinales were

highly represented in the M. palmata microbiome, while Microtrichales,

Anaerolineales and Caldilineales were mostly found in sediments. A significant

correlation was observed between Cyanobacteria taxa and the dissolved oxygen

concentrations in shallow waters impacted by the Danube inputs. Meanwhile,

this phylum showed a positive correlation with Planctomycetota colonizing the

invertebrate tissues, and a negative one with Actinobacteriota and Chloroflexi

found in sediments. The deduced functional profile of these bacterial

assemblages suggested the prevalence of the amino acid and carbohydrate

metabolism for both analyzed matrices. This pioneering report on theM. palmata

microbiome highlighted the environment contribution to bacterial species

enrichment of the polychaete, and provided a glimpse on the putative role of

microbial communities associated with this marine organism.
KEYWORDS

Melinna palmata microbiome, invertebrates bacteria, Black Sea sediments, marine
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1 Introduction

Marine benthic organisms are naturally colonized by

microorganisms, which play a fundamental role in the biology of

their hosts (Kelman et al., 2009; Ketchum et al., 2018). The diversity

of bacterial communities associated with marine organisms plays an

important role in immunity, metabolism, physiology (Mcfall-Ngai

et al., 2013; Bordenstein and Theis, 2015; Theis et al., 2016), as well

as in host development, adaptation and evolution (Rosenberg et al.,

2007; Zilber-Rosenberg and Rosenberg, 2008) of these

invertebrates. The bacterial-host relationship has aroused

considerable interest in the field of marine biology (Piel, 2004);

some of these microorganisms may be symbionts, pathogens or can

create mutualism relations (Kelman et al, 2009). Symbiotic bacteria

are found in many biological systems, influencing the host’s

evolution and suggesting that microorganisms are involved in

limiting pathogen colonization through antimicrobial compounds

and competition for food resources (Felbeck and Distel, 2004;

Desriac et al., 2014). As a result of co-evolving with their specific

hosts, microbial symbionts exhibit a diverse array of custom-

tailored biochemical traits. This renders them a reservoir of

secondary metabolites characterized by distinct bioactivities that

hold significant medical and commercial appeal (Zhang et al.,

2015). Filtering and deposit feeding invertebrates that can

concentrate bacteria from water and sediments also play an

important role in aquatic microbiome contribution to the

ecosystem, representing biomarkers for the microbial diversity in

aquatic environments (Burkhardt et al., 1992; Graczyk et al., 2003;

Marino et al., 2005).

Marine ecosystems, among the most complex environments,

harbour a significant part of the global microbial population.

Certain bacterial species within these ecosystems are essential

contributors to many biogeochemical cycles (Muriel-Millán et al.,

2021). Many microorganisms, such as taxa belonging to

Proteobacteria, engage in symbiotic relationships with various

marine invertebrates, influencing processes such as nutrient

cycling, digestion, and defence mechanisms (Kunihiro et al., 2011;

Summers et al., 2013; Von Borzyskowski et al., 2019).

Cyanobacteria are crucial contributors to primary production and

often create symbiotic relationships with sponges, corals or

molluscs, providing their hosts with fixed carbon through

photosynthesis (Erwin and Thacker, 2008; Zhukova et al., 2022).

In the broader marine ecosystem, Actinobacteriota’s metabolic

activities, including the breakdown of complex organic

compounds, have a significant impact on the availability of

nutrients and the carbon cycling (Goodfellow and William, 1983;

Stevens et al., 2007).

Various environmental factors, including salinity, temperature,

pH, organic matter content, and oxygen levels, play an important

role in shaping the distribution and abundance of microbial

communities Dang and Lovell, 2016; Guo et al., 2022a). These

microorganisms’ interactions with environmental parameters serve

as indicators that reflect the function and structure of marine

ecosystems, as highlighted in previous studies (Boucher et al.,

2006). For instance, the community structure and dynamics of
Frontiers in Marine Science 02
bacteria belonging to Proteobacteria, Firmicutes, and

Actinobacteriota phyla appeared to be affected by various factors

such as salinity, dissolved oxygen, ammonia, phosphate and silicate

concentrations (Guo et al., 2022b). Although variations in microbial

community can be substantial across different habitat types,

primarily due to the impact of environmental gradients (Martiny

et al., 2006), some studies suggested consistency in community

composition across similar habitats, regardless of geographical

distance (Lauber et al., 2009).

Deep screening of free-living bacterial assemblages in the

marine environments (Pommier et al., 2010; Costas-Selas et al.,

2022; Ruginescu et al., 2022) and of bacteria associated with

different organisms (Musella et al., 2020; Li et al., 2023) was

successfully carried out based on next-generation sequencing of

16S rRNA genes (Webster and Taylor, 2012), overcoming some of

the challenges previously associated with determining microbial

diversity (Sogin et al., 2006; Winand et al., 2019).

For the last decades, investigations of bacteria-invertebrate

associations from various marine environments became of high

interest for the scientific community (Goffredi et al., 2007;

Gilbertson et al., 2012; Lo Giudice and Rizzo, 2022). Many

studies demonstrated that interactions between these organisms

create symbioses leading to production of secondary metabolites

with antimicrobial activities by the invertebrates-associated

microbiome (Thomas et al. , 2010; Graca et al. , 2013;

Abdelmohsen et al., 2014; Kuo et al., 2019). Also, symbiotic

bacteria from bivalves were involved in the host defense

mechanisms (Defer et al., 2013), and could contribute to

adaptation to environmental stress conditions (Leite et al., 2017).

Various methods, such as biochemical, enzymatic, molecular, and

transmission electron microscopy techniques confirmed the

presence of chemoautotrophic symbiotic bacteria in these

organisms, supporting the idea that these bacteria play a crucial

role in nutrition (Conway et al., 1992; Eisen et al., 1992). Microbes

inhabiting tunicates were able to produce metabolites with anti-

tumor effect (Schmidt et al., 2005), and for various biotechnologies

and pharmaceutical applications (Paul and Ritson-Williams, 2008;

Erwin et al., 2010). Moreover, recent studies have emphasized the

potential of symbiotic bacteria found in polychaetes as a novel

reservoir for biosurfactant-producing microbes (Rizzo et al., 2013;

Markande et al., 2014).

Bacterial communities of tube-building worms could have an

important contribution to the biogeochemical processes that occur

at the interface between benthic organisms and their habitat. Thus,

burrowing organisms appeared to be essential contributors to the

biogeochemistry of the benthic environment through excavation,

grazing and excretion (Konhauser et al., 2020). Furthermore,

polychaetes host symbiotic microorganisms involved in

transformation, degradation and detoxification processes, such as

Ophelina species that are characterized by a high content of metal-

resistant bacteria (Neave et al., 2012). Also, Capitella teleta was

reported to be associated with highly abundant microbes able to

degrade polyaromatic hydrocarbons which potentially allows the

species to survive in polluted environments or serve as indicators of

pollution (Hochstein et al., 2019).
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Melinna palmata Grube, 1870 is a deposit-feeder tube-dwelling

ampharetid polychaeta, with a length of 3- 4 cm (Hunt, 1925; Mare,

1942; Fauchald and Jumars, 1979). It builds a mucus-lined tube

from which it can emerge to spread its tentacular palate on the

sediment surface inhabiting the Black Sea generally at depths

ranging from 30 to 40 m (Băcescu et al., 1971). Although this

species did not occupy a well-established habitat in the Romanian

Back Sea shelf until 1970, its populations started to reach significant

densities and biomass a decade later (Gomoiu, 1982). Currently,M.

palmata and/or Spisula subtruncata constitute the engineering

species of the Circalittoral mud habitat, reaching an average

density of 3,450 specimen m−2 in the Danube influenced area

(Teacă et al., 2020).

Several studies in the Black Sea have been focused on investigating

the microbial populations of sediments (Schulz et al, 1999; Thamdrup

et al, 2000; Leloup et al, 2007; Schäfer et al, 2007; Coolen and Shtereva,

2009; Schippers et. al, 2012) and pelagic habitats (Jørgensen et al, 1991;

Sorokin et al, 1995; Glaubitz et al, 2010; Bryukhanov et al, 2015;

Ruginescu et al., 2022). In contrast, only one study characterized

bacteria associated with the bivalve Mytilaster lineatus (Onishchenko

and Kiprianova, 2006), while no research has been carried out so far

on bacteria colonizing polychaete species in order to untangle the role

of these symbionts in the invertebrate marine adaptation and possible

microbiome exchanges with the seabed sediments.In this context, the

current investigation focused on identifying the bacterial communities

associated with the tube-building polychaete M. palmata and its

surrounding sediments from the Romanian Black Sea shelf based on

16S rRNA gene Illumina sequencing. Comparative analyses of the

microbial diversity, community composition and putative functional

profile of the polychaete tissue and sediments, and correlation of

bacterial taxa with the physicochemical parameters of the sea water

were carried out in order to determine if the M. palmata bacterial

assembly reflects the partial recruitment of surrounding

representatives depending on environmental variables. To our

knowledge, this study provides the first characterization of the

microbiome of the marine polychaete M. palmata.
2 Materials and methods

2.1 Description of the study area

The North-Western part of the Black Sea receives 80% of the

basin’s total freshwater input originating from the Dnieper, Dniester

and Danube, the latter being the major contributor of freshwater and

sediment inputs (Mikhailov and Mikhailova, 2008). The Danube

River is the second European largest river basin, covering territories

of 18 states including EU-Member States, Accession Countries and

other countries (ICPDR, 2004). Romanian coastal waters are subject

to Danube inputs, which provide significant organic and inorganic

matter, the mean annual river flow recorded form all three main

branches being of 6500 m3 s−1. The direction, range and depth of

dispersion of the Danube waters are dependent on the intensity of

water flow and wind direction. North and northeast winds are

dominant during spring, reaching average speeds of 5.5 m s-1,

while during autumn, north winds predominate, with an average
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speed of 8.0 m s-1 (Tescari et al., 2006). According to Panin and Jipa

(2002), the average sediment discharge from the Danube into the

Black Sea is estimated to range between 25 and 35 million tones/year,

with sandy material accounting 4-6 million tonnes/year. The study

area is located within the marine protected area ROSCI0066 (Danube

Delta - marine zone), included in Natura 2000 European ecological

network (Figure 1A).

The major habitat of the investigated area is represented by

Circalittoral muds with Melinna palmata. The total benthic

communities of this area comprise a diverse assemblage of deposit

feeders and suspension filters, such as oligochaetes, polychaetes (Mellina

palmata, Heteromastus filiformis), molluscs (Mytilus galloprovincialis,

Spisula subtruncata, Abra nitida, Pitar rudis, Acanthocardia

paucicostata), and bacteriouvorus nematodes (Terschellingia

longicaudata, Sabatieria pulchra, S. abyssalis, Neochromadora izhorica,

Desmolaimus sp.) (Muresa̧n and Teacă, 2019; Teacă et al., 2020).

Among these, M. palmata represented more than 42% of the total

average macrozoobenthic density (Muresa̧n et al., 2019; Muresa̧n and

Teacă, 2019; Teacă et al., 2019; Teacă et al., 2020).
2.2 Sample collection

Sediment samples were collected using a Box Corer with a

surface of 0.1 m2 (Todorova and Konsulova, 2005) from four

different sites located in the Romanian northwestern continental

shelf of the Black Sea, during June 2020 (Figure 1A). In order to

assess the microbial communities from M. palmata individuals

(Figure 1B) and sediments (Figure 1C), two subsamples were

collected from each site. The sedimentary material was collected

in sterile containers after discarding the fraction in contact with the

sampling equipment, and stored at -20°C. For polychaete isolation,

sediment particles were removed using 250 mm and 125 mm mesh

sieve. Each specimen selected was washed with sterile water and

stored in 200 ml Tris-EDTA pH 8 buffer at −20°C for genetic

analyses (Ross et al., 1990).
2.3 Physicochemical parameters

In situmeasurements of temperature, salinity, dissolved oxygen (DO)

and pH of water above the seabed (bottom layer) were performed for each

location with an EXO2multi-parameter probe (YSI Incorporated, Yellow

Springs, USA). The salinity was expressed in practical salinity units (PSU)

corresponding to parts per thousand (PPT).
2.4 DNA Extraction, 16S rRNA gene
sequencing and sequence analysis

Total DNA was extracted from two sediment samples and two

Melinna palmata individuals from each site using DNeasy Blood

and Tissue Kit (Qiagen, Hilden, Germany) following an optimized

protocol that includes an initial cell disruption step (Iancu et al.,

2015). Tissue samples were resuspended into Tris-EDTA buffer pH

8 and homogenized at 20°C for 12 min in a SpeedMill PLUS cell
frontiersin.org

https://doi.org/10.3389/fmars.2023.1279849
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Menabit et al. 10.3389/fmars.2023.1279849
homogenizer at 50 Hz (Analytik Jena, Jena, Germany) in the

presence of 5 ZR BashingBead 0.2 mm lysis matrix (Zymo

Research, Irvine, CA, USA), and further processed according to

the manufacturer’s protocol. For sediment samples, DNA was

isolated using DNeasy PowerSoil Pro Kit (Qiagen, Hilden,

Germany) following the manufacturer’s instruction.

Sequencing of the amplified V3-V4 region of the 16S rRNA

genes was performed using 341F/805R primer pair (Takahashi et al.,

2014) and an Illumina MiSeq 300PE platform (Macrogen, Seoul,

South Korea).

The resulted DNA sequences were processed using the DADA2

package v1.8) implemented in R (v4.0.2) (Callahan et al., 2016). After

removing the forward and reverse primers sequences using cutadapt

(v4.2.2) (Martin, 2011), the sequences were trimmed and filtered.

Amplicon Sequence Variants (ASVs) were inferred from de-replicated

sequences, and chimeras were removed using the “consensus”

method. Taxonomic assignment of the ASVs was performed using
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the Silva v138 16S rRNA database (silva.nr.v138). Analyses were

carried out using MicrobiomeAnalyst 2.0 (Lu et al., 2023).

Pattern Search was used to for sequence assignment to phylum

Cyanobacteria. The putative functional profile was obtained by

mapping the gene abundance as predicted from Tax4Fun2

according to KEGG metabolism (Lu et al., 2023).

The 16S rRNA gene sequences of the bacteria from M. palmata

tissues and adjacent sediments of the 16 samples (MP1-MP16)

(Table 1) were deposited in the NCBI SRA Sequence Read Archive

under the BioProject PRJNA923146.
2.5 Statistical analyses

Alpha and Beta diversities were calculated using the pyloseq

package (McMurdie and Holmes, 2013). Alpha diversity of ASVs

was evaluated based on Chao1, Shannon, Evenness, and Fisher
B C

A

FIGURE 1

Study area and investigated organism. (A) Map of Black Sea sampling locations and detailed sampling sites area (B) Melinna palmata specimens
collected from the Black Sea (photo by photo by A. Teacă); (C) Sediments collected from the Black Sea studied area containing M. palmata (photo
by photo by A. Teacă).
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indices. Bray-Curtis dissimilarity was used to assess the Beta

diversity, in order to compare the diversity between samples and

microbial communities. Non-metric multidimensional scaling

(NMDS) was used to visualize the 2-D matrix where each point

represents the entire microbiome of a single sample. The statistical

significance (p < 0.05) of the clustering pattern in ordination plots

was evaluated using Analysis of group Similarities (ANOSIM) and

Permutational multivariate analysis of variance (PERMANOVA).

Multiple Linear Regression with Covariate Adjustment was used to

find associations between the microbial community structure and

the physicochemical water parameters using MaAsLin2. All

statistical analyses were conducted using MicrobiomeAnalyst 2.0

(Lu et al., 2023).

A correlation analysis based on SECOM (Pearson 1) between

abundances in the two matrices was performed (Lin et al., 2022).

The principal Component Analysis (PCA) was performed using

tidyverse and ggplot2 packages in R v4.2.3. (Wickham, 2016;

Wickham et al., 2019; R Core Team, 2023). Student’s t-test was

used to compare the means of gene abundance between the two

types of samples (Wickham, 2016; Mishra et al., 2019; R Core

Team, 2023).
3 Results

3.1 Characteristics of Melinna
palmata habitat

Sediment samples containing M. palmata Grube, 1870

specimens were collected from 4 sites which formed a perimeter
Frontiers in Marine Science 05
with an area of about 25 km2, with the minimum distance of 6.8 km

(between P2-25 and P3-30) and a maximum distance of 14 km

(between P8-35 and P2-40) located along the Romanian shore of

the Black Sea, where the water depth ranged from 24.2 m to 45.5 m

(Figure 1A, Table 1).

The seabed from all sampling locations consisted of mud

sediments originating from alluvial deposits made of silt and

clay particles.

The physicochemical properties of the sea water showed little

variations between the sites (Table 2). Water temperature varied

between 9.05°C (P2-40) and 14.80°C (P2-25), with an average of

11.63 (± 2.40) °C. The average salinity was of 17.97 (± 0.38) PSU,

with a minimum of 17.60 PSU at station P2-25 and a maximum of

18.49 PSU at station P2-40 (Table 2). The dissolved oxygen

concentration had a slight increasing trend with the water depth,

between 4.40 mg L-1 and 6.48 mg L-1 at P3-30 and P2-40,

respectively, with an average of 5.32 (± 0.94) mg L-1. A slightly

alkaline pH was measured all 4 stations with an average value of

8.05(± 0.12), varying between 7.90 (at P3-30 station) and 8.20 (at

P8-35 station) (Table 2).
3.2 Bacterial diversity in M. palmata tissues
and sediments

The microbial diversity and community structure of M.

palmata tissues and surrounding sediments were determined

from the duplicate samples (Table 1) collected from the

Romanian Black Sea coast based on Illumina sequencing of the

16S rRNA gene. The total number of DNA sequences (134975)
TABLE 1 Sampling sites and collected samples of Melinna palmata .

Sampling site Coordinates Water depth (m) Sample code Sample type

P2-25 44°38,954’N
29°18,570’E

24.2 MP5 tissue

MP6

MP7 sediment

MP8

P3-30 44°39,768’N
29°23,815’E

28.2 MP1 tissue

MP2

MP3 sediment

MP4

P8-35 44°34,590’N
29°18,960’E

36.5 MP13 tissue

MP14

MP15 sediment

MP16

P2-40 44°36,037’N
29°28,920’E

45.4 MP9 tissue

MP10

MP11 sediment

MP12
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corresponded to 1444 unique bacterial amplicon sequence variants

(ASVs). Rarefaction curves of both analyzed matrices showed a

complete identified bacterial community, thus capturing a

representative portion of the microbial diversity present in

samples (Supplementary Figure S1).

Alpha diversity analysis of the tissue and sediment associated

bacteria based on Chao1 index showed significant differences

between the analyzed group (p-value 0.0249; Table 3,

Supplementary Figure S2). The microbiome of all sediment

samples exhibited higher microbial diversity, with Chao1 index

values ranging from 401 to 647.1 and a mean of 554.8 ± 27.

Meanwhile, this diversity index varied within the 295.6 - 628.1

interval, with a mean value of 425.9 ± 43.6 in the case of tissue-

associated bacterial communities (Table 3). No major variation was

observed between bacterial diversity at different depths
Frontiers in Marine Science 06
(Supplementary Figure S2B). The corresponding calculated Fisher

indices (Table 3) reflected a similar trend (p-value 0.0229), showing

a slightly lower diversity forM. palmata associated bacteria (average

of 97.37 ± 11,19) as compared to that of the adjacent sediments

(average 130.3 ± 6.38). Slight variation of these diversity indices was

observed between samples and within the replicate groups

(Table 3). The calculated Shannon indices showed higher values

for both tissue and sediment associated bacteria with no significant

differences. Furthermore, no statistically significant variations

between these communities along the depth gradient was

observed (Chao1 p-value: 0.61761; [ANOVA] F-value: 0.61619;

Shannon p-value: 0.47727; [ANOVA] F-value: 0.88328).

The multidimensional beta diversity analysis of the microbial

communities in relation with the type of matrices showed

significantly different diversity and relative abundance between
TABLE 2 Physicochemical parameters of the seawater collected from the Black Sea sampling sites.

Sampling site
Temperature

(°C)
Salinity
(PSU)

Dissolved oxygen
(mg L-1) pH

P2-25 14.80 17.60 4.75 8.05

P3-30 10.85 17.80 4.40 7.90

P8-35 11.80 18.00 5.65 8.20

P2-40 9.05 18.49 6.48 8.07
frontiers
TABLE 3 Number of reads, ASVs and alpha diversity indices of bacterial communities from M. palmata tissue and associated sediments with statistical
comparison (p-values).

Sample Sample Type Number of reads ASVs

Alpha Diversity index

Shanon Chao1 Fisher Evenness

MP11 Sediment 111558 10652 6,14 ± 0,028 608,5 ± 10,69 139,9 0,76 ± 0,021

MP12 Sediment 98227 10277 6,18 ± 0,031 647,1 ± 8,79 153,3 0,74 ± 0,022

MP15 Sediment 78852 9764 5,98 ± 0,034 573,1 ± 9,7 132,9 0,69 ± 0,023

MP16 Sediment 76348 9333 5,94 ± 0,036 544,2 ± 7,3 126 0,7 ± 0,024

MP3 Sediment 74447 7030 5,59 ± 0,043 401 ± 9,5 91,96 0,67 ± 0,027

MP4 Sediment 80614 8022 5,9 ± 0,036 522,5 ± 10,7 125 0,7 ± 0,025

MP7 Sediment 79130 7061 5,94 ± 0,038 526,6 ± 11,3 131,1 0,72 ± 0,027

MP8 Sediment 103453 10557 6,13 ± 0,03 615,3 ± 9,19 142,1 0,75 ± 0,021

MP1 Tissue 57849 7305 5,69 ± 0,027 359,1 ± 6,89 79,15 0,82 ± 0,022

MP10 Tissue 60169 4901 5,57 ± 0,037 323,3 ± 5,89 77,63 0,81 ± 0,029

MP13 Tissue 70336 11681 5,75 ± 0,027 433 ± 5,6 88,55 0,73 ± 0,019

MP14 Tissue 85995 10059 6,09 ± 0,031 594,4 ± 8,6 138,1 0,74 ± 0,022

MP2 Tissue 57897 6971 5,35 ± 0,037 295,6 ± 7,19 62,45 0,71 ± 0,025

MP5 Tissue 78262 6948 5,79 ± 0,033 419,1 ± 8,1 98,01 0,78 ± 0,024

MP6 Tissue 71788 6040 5,56 ± 0,038 354,3 ± 8,7 82,1 0,74 ± 0,027

MP9 Tissue 85519 8374 6,17 ± 0,028 628,1 ± 21,1 153 0,77 ± 0,021

Tissue vs Sediment p=0.1884 p=0.0722 p=0.0249* p=0.0229 * p=0.0210*

(t-student two-tailed) (t=1.383 df=14) (t=1.944 df=14) (t=2.512 df=14) (t=2.555 df=14) (t=2.599 df=14)
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the polychaete tissue and the sediment samples ([ANOSIM] R:

0.77623; p-value < 0.001 [NMDS] Stress = 0.061336) (Figure 2), and

[PERMANOVA] F-value: 4.6741; R-squared: 0.2503; p-value: 0.001.

[NMDS] Stress = 0.061336 (Supplementary Figure S3), with

higher differences among tissue samples.
3.3 Bacterial taxonomic profile in M.
palmata and associated sediments in
relation with environmental factors

Taxonomic assignment of bacterial community from M.

palmata tissue led to identification of 12 phyla, 14 classes, 26

orders, 26 families and 30 genera, while the adjacent sediments

microbiota contained 12 phyla, 19 classes, 34 orders, 29 families and

36 genera. Among these, 14 classes were common to the

invertebrate and its habitat, while Fusobacteriia, ABY1,

Thermodesulfovibrionia, Parcubacteria and Phycisphaerae were

identified only in sediments.

At phylum level, the tissue-colonizing bacteria were dominated

by Proteobacteria (16541 ASVs), followed by Actinobacteriota

(14171 ASVs), Cyanobacteria (11419 ASVs) and Chloroflexi

(6330 ASVs), accounting for a total of 62276 ASVs (Figure 3A).

Meanwhile, the sediment communities totaling 72696 ASVs was

mostly represented by Actinobacteriota (28581 ASVs) and

Chloroflexi (18968 ASVs), with a lower abundance of

Proteobacteria (7682 ASVs) and Campylobacterota (6924 ASVs).

The relative content of phylum Fimicutes was similar in both tissues

and sediments, accounting for 2576 and 2572 ASVs of total reads,

respectively, while Planctomycetota taxa were more prominently

represented in tissues (5951 ASVs vs. 2887 ASVs, respectively).
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Also, low presence of phyla Fusobacteria, Nitrospirota and

Patescibacteria (less than 250 ASVs for each group) have been

observed in sediments (Figure 3A).

At order level, 24 taxa were found in both polychaete and

sediments, with Rhodospirillales and Lachnospirales exclusively

identified in tissues, and Christensenellales, SJA_15, B2M28,

Phycisphaerales, Ectothiorhodospirales, Frankiales, Candidatus

K u e n e n b a c t e r i a , C a n d i d a t u s M o r a n b a c t e r i a ,

Candidatus_Magasanikbacteria and Fusobacteriales only in

sediments. At family level, 23 taxa were shared, while

Butyricicoccaceae, Lachnospiraceae and Magnetospiraceae

r e p r e s e n t a t i v e w e r e s p e c i fi c f o r t i s s u e s a n d

Ectothiorhodospiraceae, Acidothermaceae, Phycisphaeraceae,

Hungateiclostridiaceae, Fusobacteriaceae and Christensenellaceae

found only in sediments. Among these, Synechococcales (10948

ASVs), Rhodobacterales (10173 ASVs), Actinomarinales (7414

ASVs) were the most prominent representatives in M. palmata

tissues, while Micotrichales (21239 ASVs), Anaerolineas (9660

ASVs), Caldilineales (8042 ASVs) and Campylobacterales (6924

A SV s ) r e c o r d e d h i g h e r r e l a t i v e a b u n d a n c e s i n

sediments (Figure 3B).

From the 36 identified bacterial genera, 28 were common to

both types of samples. The tissue-colonizing bacteria were assigned

to 30 genera Butyricicoccus and Ruminococcus species were present

only in the polychaete tissues, while those associated with sediments

b e l o n g e d t o 3 6 d i f f e r e n t g e n e r a w i t h Ho e fl e a ,

Clostridium_sensu_stricto_13S, M1A02, Candidatus Alysiosphaera,

Psychrilyobacter, Levilinea, Thiogranum and Acidothermus species

exclusively found in these samples (Figure 3C). Among these,

species belonging to genera Ilumatobacter (163210ASVs) and

Sulfurovum (6924 ASVs) were dominant in the sediments, while
frontiersin.or
FIGURE 2

Multidimensional analysis (ANOSIM) of the beta diversity of bacterial communities from tissues and sediments, based on ASVs. The sample depth
(number) is indicated for each sample.
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notable abundance of Synechocossus-CC9902 (8866 ASVs) was

recorded in tissues (Figure 3C).

To assess the effect of the habitat depth on the M. palmata-

associated bacterial communities and related sediments, the core

microbiome of phyla with a higher prevalence than 10% from both

tissue and sediments was analyzed for each sampling site

(Supplementary Figure S4). No notable differences between the

relative abundance of major taxa were observed between

communities collected from variable water depth, with the highest
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presence in all cases of Actinobacteriota taxa, followed by

Chloroflexi, Proteobacteria, and Planctomycetota, and the lowest

representation by phylum Nitrospirota (Supplementary Figure S4).

Pearson analysis of phyla abundances from the two types of

samples showed the correlation between the top features (bacterial

taxa) ranked by their significance according to the cutoff p-value

(0.05) and correlation threshold (0.3) (Figure 4). Specifically,

Ve r rucomic rob i o t a t axa pos i t i v e l y co r r e l a t ed wi th

Planctomycetota, both much more abundant in tissues, while
A

B

C

FIGURE 3

Relative abundance profile of bacterial communities colonizing sediments and tissues of M. palmata at Phylum (A), Order (B), and Genus (C) levels.
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bacteria belonging to phylum Desulfobacterota positively correlated

with Nitrospinota and Sumerlaeota taxa highly represented in

sediments. Meanwhile, a negative correlation was observed

between phyla Nitrospirota and Planctomycetota, as well as

between Verrucomicrobiota and Actinobacteriota (Figure 4).

The impact of sea water parameters on the community

structure was evaluated by a Multiple Linear Regression analysis

showing a significant correlation between Cyanobacteria

representatives and DO concentration (p-value 0.0188), with

considerable relative abundance of these communities registered

at 4.75 mg L-1 dissolved oxygen in shallow waters (Figure 5).

Meanwhile, no significant correlation between other taxa and

physicochemical parameters was observed (Supplementary

Table S1).

Moreover, a positive pattern correlation between Cyanobacteria

phylum and representatives of phylum Planctomycetota colonizing

tissues has been identified (Pearson r = 0.89083; p-value: 3.6972e-

06), while a negative correlation has been observed between the

former group and Actinobacteriota (Pearson r = 0.76177; p-value:

0.00060532) and with Chroloflexi (Pearson r = -0.62317; p-value:

0.0099101) from sediments, respectively (Supplementary

Figure S5).
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3.4 Predicted functional profile of the
microbiome of M. palmata and sediments

Based on the taxonomic profile and sequence analysis of the

ASVs from 16S rRNA metagenomics, an estimated metabolic

profile of both M. palmata tissue and sediments bacterial

communities was generated, in order to evaluate putative

contribution of the sediment substrate to the polychaete

microbiota (Figure 6).

Analysis of the predicted functional profile of these

microbiomes showed no major differences between the

distribution of relative abundance of various genes in accordance

with the KEGG (Kyoto Encyclopedia of Genes and Genomes)

metabolic pathways, with the prevalence of the amino acid and

carbohydrate metabolism across all examined samples (Figure 6A).

Nevertheless, the statistical analysis (Student’s t-test) indicated a

higher content of genes involved in carbohydrates, amino acids,

lipid, terpenoids and polyketides metabolism along with the those

associated with biodegradation and metabolism of xenobiotics (p-

value < 0.05) in the polychaete symbiotic bacteria relative to the

prokaryotic community from adjacent sediments. Meanwhile, genes

related to biosynthesis and metabolism of lipids, terpenoids,
FIGURE 4

Pearson correlation analysis of relative abundance of bacterial phyla associated with sediments and tissues. Phyla connected by an edge (line)
correspond to a correlation between them for p-value cutoff (0.05) and correlation threshold (0.3). The connection length reflects the magnitude of
the significant correlation (shorter lengths corresponding to stronger correlations), and the diameter corresponds to the relative abundance of
each taxon.
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polyketides, nucleotides, cofactors, vitamins, energy, glycans, and

other secondary metabolites were evidenced in both the tissue-

associated and sediment microbiomes (Figure 6A).

A Principal Component Analysis (PCA) of predicted functional

genes indicated differences between the gene functionality diversity

of the analyzed matrices (Figure 6B). These findings are in

accordance with the outcomes of the NMDS analysis (Figure 2),

providing further support for the observed differentiation in genes

functionality resulting from the comparison between distinct

communities, namely tissues and sediments.

Despite the significant diversity differences betweenM. palmata

and sediments-associated bacteria, their predicted metabolic profile

based on 16S rRNA taxonomic data could suggest only limited

variances between the two communities. Further investigations of

these communities by metagenomics and metatranscriptomics are

required to highlight the metabolic variability of the polychaete

microbiome in relation with that of its substrate, and untangle their

putative ecological role.
4 Discussion

The current investigation reported original data on the tissue

microbiome from the marine polychaeteMelinna palmata from the
Frontiers in Marine Science 10
Black Sea, Romania, in relation with the bacterial community of the

adjacent sediments. For this invertebrate, a recent study conducted

in Arcachon Bay (French Atlantic coast) (Massé et al., 2019)

described the aerobic bacterial community composition

colonizing the surrounding sediments of this ampharetid

polychaete, while so far no investigations have been carried out

on the tissue-associated microbiome. In this survey, we applied a

culture-independent method based on 16S rRNA gene Illumina

sequencing of the bacterial community inhabiting the tissues of M.

palmata collected from various depths in the Romanian Black Sea

sediments in comparison with that of the sediments of collected

specimens. The community composition of both analyzed matrices

did not show notable changes along the sea depth gradient between

24.2 and 45.8 mm, most likely as a result of similar environmental

characteristics in the studied areas (Teacă et al., 2020).

Our findings demonstrated that M. palmata harbors a distinct

microbiome as compared to that of its habitat, which is consistent

with other similar surveys on three sipunculan worms species

(Sipunculus nudus, Siphonosoma australe, Phascolosoma arcuatum)

from Beibu Gulf, Changhua River and Guangcun that showed a

significantly lower microbial diversity as compared to that of their

surrounding sediments (Li et al., 2023; Liu et al., 2023). The reported

diversity of microorganisms associated with benthic invertebrates,

such as worms, was generally lower as compared to its surrounding
FIGURE 5

Correlation between Cyanobacteria phylum distribution and dissolved oxygen (DO) concentrations of sea water (abundance is expressed in ASVs).
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sediments (Liu et al., 2023). Thus, the tube-dwelling organisms often

create microenvironments with particular conditions which might

favor the colonization with specific bacterial communities (Fuirst

et al., 2021). Moreover, sediments belong to a more heterogeneous

and diverse set of microhabitats, creating a range of niches that can

support a wider diversity of bacterial communities (Liu et al., 2023). It

has been previously demonstrated that nematodes and

macroinvertebrates contributed to the dynamics of bacterial

populations (De Mesel et al., 2004; Plante et al., 2022). Free-living

nematodes, mainly those inhabiting the rich organic sediments, are

non-selective or selective deposit bacterivorous feeders that excrete

mineral or readily mineralizable forms that otherwise would have

been locked up in the microbial biomass after nutrients ingestion,

which exceeds in general the requirements of nematodes (Bonaglia

et al., 2014). Moreover, their mucus was shown to stimulate the

nitrogen production which, in turn, provided substrate for

microorganisms’ activity and growth (Moens et al., 2005). In
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contrast, macrozoobenthic deposit feeders processed large volumes

of sediment. Recent studies showed that the selective and non-

selective deposit feeder nematodes and macrozoobenthic species

were the dominant species, both as diversity and abundance, of

habitats directly impacted by the Danube’s inputs (Muresa̧n and

Teacă, 2019; Teacă et al., 2020). Bioturbating organisms, such as

Melinna sp., were reported to play a substantial role in the nitrogen

cycling of sediments and exchanges between sediment and seawater

(Laverock et al., 2011). This could be due to their burrow ventilation

and particle reworking activities which lead to the redistribution of

organic material and increase of sediment–water interface

(Kristensen et al., 2012). Recent data indicated that the aerobic

bacterial community of M. palmata habitats was more diverse as

compared to that of the undisturbed sediments (Massé et al., 2019).

Moreover, the mucus secreted by invertebrates appeared to stimulate

the growth of bacterial and archaeal ammonia oxidizers, fostering a

more abundant and distinct microbial community (Dale et al., 2019).
B

A

FIGURE 6

Predicted functional profile of bacterial communities from tissues and sediments based on the gene abundance from KEGG metabolic pathways. (A)
Number of predicted functional genes based on amplicon sequence variants (ASVs) from the analyzed matrices (B) diversity of functional genes in
the analyzed matrices based on PCA analysis.
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In M. palmata tissues, the orders Synechococcales,

Rhodobacterales, Actinomarinales, Rhizobiales, Planctomycetales,

Pirellulales, and Clostridiales showed a higher relative abundance,

while sediments were dominated by Microtrichales, Anaerolineales,

Caldilineales and Campylobacterales species. Synechococcales

(Cyanobacteria) species that inhabit various ecological habitats are

able to perform nitrogen fixation (Foster and O’Mullan, 2008) and

create symbiotic relationships with other benthic invertebrates

(Kumar and Kumar, 2020) such as sponges (Erwin and Thacker,

2008), ascidians (Tianero et al., 2015), and mollusks (Zhukova et al.,

2022). In the current study, high content of Cyanobacteria taxa was

found in shallow water sediments strongly influenced by the Danube

inputs, at low dissolved oxygen levels. As photoautotrophic primary

producers, they contribute to sediment enrichment with organic

matter, while reducing the levels of atmospheric and hydrospheric

carbon dioxide and bicarbonate (Golubic et al., 2000). In addition,

Siynechococcus species were found associated with sipunculan worms,

which might be an important food source for these species (Li et al.,

2023; Liu et al., 2023). Therefore, the prevalence of these

microorganisms in the M. palmata tissues might be also linked to

the dietary requirements of this invertebrate. As deposit-feeding

organisms, they acquire substantial amounts of sediment,

potentially incorporating organic debris and microbes along with it

(Lopez and Levinton, 1987). Furthermore, frequent algal blooms in

the Danube influence area could affect the sea water microbiome

during summer (Raport privind starea mediului in Romania in anul

2019, 2020). Due to this phenomenon, the occurrence of phylum

Planctomycetota, represented in tissues by phylotypes belonging to

orders Planctomycetales and Pirellulales, was also expected. These

bacteria able to use polysaccharides as carbon and energy sources,

were also detected in other marine organisms such as sponges

(Kallscheuer et al., 2020), fish (Kormas et al., 2022), and other

polychaete (Liu et al., 2023).

The presence of Rhodobacterales and Rhizobiales taxa

belonging to phylum Proteobacteria could be associated with

their involvement in the carbon cycling, being able to assimilate

glyocolate, one of the most abundant organic carbon sources in the

ocean (Von Borzyskowski et al., 2019). Rhodobacterales

representatives were identified in different invertebrate species

such as Capitella sp. and its surrounding organic-enriched

sediments (Kunihiro et al., 2011). In the case of M. palmata, the

prevalence of this group could be associated with its specific habitat

represented by rich organic sediments (Bucs ̧e et al., 2020; Teacă

et al., 2020), suggesting the possible involvement in decomposing

and incorporating the organic matter within the organically

enriched sediments. Rhodobacterales were positively correlated

with some of the most abundant organic pollutants from

sediments such as polycyclic aromatic hydrocarbons (PAHs)

(Rodrıǵuez et al., 2021). These compounds were detected in high

concentrations in benthic fish populating the Romanian Black Sea

coast (Damir et al., 2022) that feed also with Melinna, which could

indicate the functional role of Rhodobacterales within tissues.

Moreover, Anaerolineales order (Chloroflexi) that was higher

represented in sediments has been reported as highly abundant in

polluted sediments (Rodrıǵuez et al., 2021). Therefore, these

bacteria may be used as bioindicators of high levels of particular
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pollutants. Moreover, some invertebrates (i.e. the marine polychaete

Meganerilla bactericol) were reported to obtain bioavailable

nitrogen from symbioses with diazotrophs such as Rhizobiales

(Summers et al., 2013) by temporary or permanent intracellular

interactions with symbionts passed between generations (Fiore

et al., 2010). Also, the higher presence of Clostridiales in Melinna

tissues was in accordance with the previously reported dominance

of Firmicutes taxa in the gut microbiome of several marine

invertebrates (Priscilla et al., 2022).

A high representation of Actionomarinales in Melinna tissue

could be due to the adaptation of some of Actinobacteria taxa to

colonize marine organisms such as sponges, molluscs, and polychaete

tubes, constituting important sources for natural products with

pharmaceutical applications (Konig et al., 2006; Fuirst et al., 2021).

Meanwhile, the order Microtrichales of Actinobacteria showed a

higher relative abundance within sediments. A recent study (Miksch

et al., 2021) revealed that members of these heterotroph bacteria,

along with Actinomarinales, inhabit muddy bottoms, suggesting their

putative involvement in the carbon mineralization processes. The

occurrence of Campylobacterales might be related to the low

dissolved oxygen concentrations of the study area (Table 2), which

is in line with other reports of their presence in marine sediments,

usually in habitats characterized by low oxygen/sulfide ratios (Wirsen

et al., 2002).

Based on the 16S rRNA gene sequence data obtained, the

TAX4FUN tool was used for predicting the functional profiles of

bacterial communities associated with the polychaete and

sediments, while many questions are raised in the ecology of this

ecosystem requiring information on the community function in

addition to their taxonomic composition. However, the accuracy of

this approach depends on the available genomic information from

public databases, which, in many cases, do not represent the

microorganisms of the investigated ecosystem (Wemheuer et al.,

2020). In addition, the approach used in our survey cannot

differentiate the DNA sequences of live and dead organisms,

which may impact the accurate inference of the metabolic profile

of the analyzed microbial communities, with consequential

ecological implications (Wang et al., 2023).

Although the predicted functional profile did not reflect the

taxonomic differences found between the communities associated

with the polychaete and sediments, the deduced metabolic profile of

the M. palmata bacterial community was in accordance with

previous data demonstrating that several marine bacteria play a

significant role in amino acid cycling and utilization (Mudryk et al.,

2005; Wünsch et al., 2019). In this context, antimicrobial peptides

were isolated from various marine invertebrates such as the worms

Arenicola marina (Ovchinnikova et al., 2004) and Nereis

diversicolor (Tasiemski et al., 2007), and from the oyster

Magallana gigas (Zhang et al., 2018). The current investigation

also evidenced the amino acid metabolism as the dominant function

among bacteria colonizing both matrices. The dominant species

identified in M. palmata tissue belonging to Rhodobacterales and

Synechoccocales are known to be involved in the cofactors

metabolism, being capable to synthesize thiamine (vitamin B1),

riboflavin (vitamin B2) and cobalamin (vitamin B12) (Cooper et al.,

2018; Mills et al. , 2020). Moreover, representatives of
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Verrucomicrobiota, mainly present in Melinna tissues, could play

an important role in nutrient cycling, with putative applicative

potential in biotechnologies (Cardman et al., 2014), and represent

good candidates for production of secondary metabolites and

exopolysaccharides (EPS) (Feng et al., 2021).

The higher prevalence of genes involved in carbohydrate, amino

acid, and lipid metabolism within tissues could suggest an enhanced

capacity for nutrient processing, thereby contributing to the energy

metabolism of the polychaete. This metabolic capacity likely plays a

crucial role in supporting the organism’s growth, reproduction, and

other physiological processes. Previous studies indicated that genes

associated with terpenoid and polyketide metabolism are frequently

linked to the production of secondary metabolites, which serve various

ecological functions such as defense against predators or competition

with other organisms (Osbourn, 2010). Also, microorganisms such as

bacteria and fungi have distinct properties that allow them tometabolize

xenobiotic substances either partially or entirely in various ecosystems

(Miglani et al., 2022). Therefore, the presence of genes involved in

xenobiotics biodegradation andmetabolism suggests that the polychaete

may have evolved a strategy for detoxification and tolerance to

potentially harmful substances and expression of these genes could be

a response to exposure to pollutants present in sediments.

The current data revealed thatM. palmata harbors a distinct but

significantly lower bacterial diversity as compared with its

surrounding sediments, with no prominent differences between the

communities along the depth gradient of their habitat. Phylum

Proteobacteria dominated the tissue-colonizing bacteria, while

Actinobacteriota prevailed in the sediment communities. This

investigation showed that bacterial communities colonizing the

invertebrate and its surrounding sediments are involved in various

metabolic processes, from biosynthesis to degradation of different

xenobiotic substances. Overall, this first characterization of the M.

palmata microbiome can serve as a starting point for revealing the

role of associated bacterial communities in the polychaete

metabolism and their interchange dynamics within marine habitats.
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M., et al. (2005). Do nematode mucus secretions affect bacterial growth? Aquat. Microb.
Ecol. 40, 77–83. doi: 10.3354/ame040077
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