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A Wasserstein generative
adversarial network with
gradient penalty for active sonar
signal reverberation suppression
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1Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China, 2Open
Studio for Marine High Frequency Communications, Pilot National Laboratory for Marine Science and
Technology, Qingdao, China
Reverberation is the primary background interference of active sonar systems in

shallow water environments, affecting target position detection accuracy.

Reverberation suppression is a signal processing technique used to improve

the clarity and accuracy of received signals by eliminating the echoes,

reverberations, and noise that occur during underwater propagation. Existing

reverberation suppression methods include algorithms based on Time-

Frequency domain processing, noise reduction, adaptive filtering, and spectral

subtraction, but their performance in high-reverberation environments (echo of

small targets) still does not meet the requirements of target detection. To

address the impact of high reverberation environments, we propose a

structural suppression method based on the Wasserstein gradient penalty

generative adversarial network (RSWGAN-GP). The reverberation suppression

generation network uses a one-dimensional convolutional network structure to

process normalized time-domain signals and achieves the reconstruction of the

reverberation signal through Encoder-Decoder. The proposedmethod is verified

through accurate and effective data collection during sea trials. Comparative

results show that RSWGAN-GP effectively suppresses reverberation in

observation signals with multiple bright spots, improving the signal-to-

reverberation ratio by approximately 10 dB compared to other excellent

algorithms and enhancing the information analysis and feature extraction

capabilities of active sonar signals.
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1 Introduction

Sonar can accurately detect fixed targets and determine target

distance, it has poor concealment and limited range and is

susceptible to reverberation interference. The detection signal

emitted by active sonar encounters obstacles or targets in the

propagation path of water, and is then affected by reflection,

refraction, and scattering, resulting in signal delay and overlap.

The signals are subsequently received at the receivers, forming echo

signals with reverberation (Huang and Wang, 2019). The influence

of reverberation on active sonar like synthetic aperture sonar

(Zhang et al., 2023a; Zhang et al., 2023b), communication sonar

(Yu et al., 2018), multibeam sonar (Neasham et al., 2007) and other

active sonars should be completely reviewed. Underwater interface

reverberation is an important factor limiting the detection

performance of active sonar in shallow water environments.

Unlike noise interference, reverberation has non-smooth

statistical characteristics and is usually mixed with the target

echo, which is challenging to distinguish (Faure, 1964).

Previous works on reverberation in signal processing mainly

focus on the study of detectors under specific reverberation

conditions (Bharathi and Mohanty, 2019) and the spatiotemporal

distribution characteristics of reverberation; researchers have

studied robust detection performance under various reverberation

distribution conditions. Some researchers have attempted to reduce

the effect of reverberation on target echo by designing a

transmission waveform, such as frequency-hopping signals

encoded with particular frequencies (Costas, 1984), Q-function

sonar signals (Cox and Lai, 1994), and SFM signals (Ward, 2001).

However, enough high frequency is needed to achieve a

reverberation suppression effect, which leads to a low utilization

rate of the low-frequency band and affects the range accuracy.

Some researchers study anti-reverberation processing on signals

received by sonar. Marine reverberation has a strong temporal

correlation with target echo signals.Target echo signals cannot be

effectively found by regularly matched filtering methods as the two

spectra overlap in the frequency domain. In order to improve the

performance of coherent processing in reverberation, Kay et al. used

the AR pre-whitening processing method to filter out reverberation

as white noise under certain conditions (Kay and Salisbury, 1990).

Higher gain and more effectively detected target echoes can be

obtained through matched filter by Wu et al. (Wu et al., 2018), but

local stationarity of the reverberation is required as a premise

(Widrow et al., 1967), which is widely used in ALE (Adaptive

Line Enhancement) algorithm (Ma et al., 2021). However, it has

strict requirements for the channel environment. H.M. Ozaktas and

L.B. Almeida filtered the signal based on the time-frequency focus

difference between the echo and reverberation in the Fourier

transform domain to achieve reverberation suppression (Ozaktas

et al., 1996; Zhang et al., 2019; Mejjaoli and Omri, 2020). However,

The LMS algorithm performs adaptive filtering based on the error

between input and output of the channel, which has strict

requirements on the channel environment. Freburger et al. used

the principal component inversion algorithm to project the received

signal into two subspaces based on the power difference between

different backgrounds, thereby achieving reverberation separation
Frontiers in Marine Science 02
(Freburger and Tufts, 1997). When the power of the target echo

signal is similar to that of the reverberation signal, distinguishing

between the two becomes difficult.

With the development of artificial intelligence (AI) technology,

deep neural networks have brought new research ideas to solve the

shallow sea sonar reverberation problem. As a hot research direction

in the field of machine learning, GAN (Ashraf et al., 2021) has

become a popular model in the field of deep learning due to its

advantages of generating high-quality samples, learning unlabeled

data, supporting multi-modal data and innovation (Zhan et al., 2019)

(Dong and Yang, 2018). Recently, Gans have evolved from image

generation to reverberation data generation Hu et al. (2023). Gans are

also used to generate spatial impulse responses, with the aim of

enhancing high-quality RIRs with existing real RIRs (Ratnarajah

et al., 2023). In the field of underwater acoustic engineering, it is

theoretically feasible to use GAN for active sonar reverberation

suppression to solve the problem of reverberation suppression

under high reverberation environment.

This paper proposes a Wasserstein generative adversarial

network model with a gradient penalty (RSWGAN-GP) to solve

reverberation suppression of sonar signals. Sonar signals are

different from the picture, and a one-dimensional convolutional

approach is built in this paper to process the signal data. The

generation side of the adversarial network is made according to the

U-net network (Ronneberger et al., 2015) to encode the original

reverberation signal data, and the decoder generates the anti-

reverberant signal data. The discriminator uses the design idea of

SkipNet (Abrahamyan et al., 2021) that the discriminator to achieve

a balance of speed and accuracy. In order to realize the fast and

accurate training of the countermeasure network, the structure

design referred to WGAN-GP comprehensively. In the

experiment, simulation is used to supplement the data set to solve

the difficulty of Marine experiment data sampling and insufficient

data set. Our main contributions are concluded as follows:
1) In order to solve the difficulty of feature extraction in a

reverberation environment, we propose a Wasserstein

generative adversarial network model with a gradient

penalty method

2) Underwater active sonar reverberation simulation with echo

targets is proposed to obtain many marine reverberation

signals, solving the problem of insufficient training sets.
The rest of the article is organized as follows. Section 2 starts with

a brief review of some related works. In Section 3, some data

preliminary work is presented, which includes RSWGAN-GP

reverberation data generation, signal time gain control, and

automatic gain control. In Section 4, the reverberation suppression

method based on RSWGAN-GP is proposed, and the generation

network, discrimination network, and error loss are explained

respectively. In Section 5, experiments are given to verify the

effectiveness of the method, and in Section 6, conclusions are given.

In active sonar, the commonly used detection signals include single

continuous wave (CW), LFM, NLFM, BPSK and other signals. In this

paper, the research object of active sonar signal feature enhancement

is selected as the typical CW signal for research.
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2 Related works

2.1 Reverberation suppression methods

Traditional methods for reverberation suppression typically

focus on mapping the feature subspace. The differences between

reverberation and target echoes have been investigated in the

domains of Doppler space, discrete wavelet, and fractional

Fourier. Previous research provides essential features for reducing

reverberation and aiding target detection. For moving targets, in

particular, target tracking can achieve reverberation suppression.

However, these methods could be limited in low signal-to-

reverberation ratio (SRR) and high reverberation scenes. When

the echo of a tiny target is received, the target’s echo is weak and

covered by reverberation, and its feature subspace is weak and

difficult to find.

Low-rank and sparsity theories developed a decade ago have

found wide applications in image processing for tasks such as

background modeling, camera calibration, and optical character

recognition (Chandrasekaran et al., 2011). They have also been

introduced to underwater acoustic engineering for reverberation

suppression and target detection (Qian and Cao, 2019). In the case

of fixed-position active sonar, the received signal from multiple

pings exhibits significant stationarity. Considering the echo data

from a single ping as a frame, multiple frames can be constructed

over time and decomposed into dynamic and steady components.

The steady components display similar strength distributions over

time and can be viewed as a low-rank matrix. On the other hand,

the dynamic components, consisting of reverberation fluctuations

and target echoes, can be treated as a sparse matrix.

Consequently, reverberation suppression methods based on

low-rank and sparse matrix decomposition have been proposed.

These include techniques such as non-negative matrix factorization,

principal component analysis, and robust principal component

analys i s (RPCA) (Chalapathy et a l . , 2017) . For the

implementation of processing large matrix factorization,

alternative methods have been developed to expedite the process,

such as accelerated proximal gradient, augmented Lagrange

multiplier, and alternate direction multiplier methods (ADMM)

(LiXiukun et al., 2015). Zhu et al. applied low-rank and sparse

matrix estimation to decompose received data, enhancing

reverberation suppression techniques’ robustness (Zhu et al., 2022).

These reverberation suppression methods can achieve the

purpose of reverb suppression to a certain extent. However, they

still perform limited at a low signal-to-reverberation ratio.
2.2 Application of artificial intelligence in
reverberation suppression

With the development and rise of artificial intelligence in recent

years, algorithms combining artificial intelligence with anti-

reverberation technology continue to surge, such as support

vector machines, CNN (Song et al., 2019), RNN (Chen et al.,

2022), and GAN In the beginning, it was simply a simple

addition to machine learning. For example, Zhu et al. designed a
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feature kernel function SVM based on the non-Gaussian difference

between reverberation and target echo to detect the signal in the

reverberation background. This method improves the recognition

quality of reverberant background, and its effect is better than the

adaptive filtering algorithm (Wu et al., 2008). Jiang Keyu et al.

processed the lake test data (Jiang et al., 2007) and used RBF neural

network to detect the target echo in reverberation to be better.

Xiang et al. proposed a reverberation suppression method for

underwater moving target detection based on a robust

autoencoder (Zhu and Sun, 2008). Xiao et al. proposed an ABNN

focusing on the frequency domain characteristics of the target,

which suppresses environmental noise and ship interference and

makes the accuracy of target detection and recognition higher (Xiao

et al., 2021).

The deep learning technology’s continuous development and

innovation, many neural network architectures with good

performance and robust stability have emerged. For instance,

multilayer perceptrons (MLP) and long short-term memory

(LSTM) networks have been developed to learn mappings from a

window of reverberated frames (or “context” windows) to a source

frame, thus learning to deliberate by inverse transformations Han

et al. (2015); Wang et al. (2017); Wuth et al. (2020). Additionally,

Zhao et al. Zhao et al. (2018) proposed an LSTM-based late

reverberation suppression strategy that learned the difference

between the source and reverberated signals; therefore,

dereverberation is performed by subtracting the late reverberation

estimation from the observed reverberated signal.

The application of deep learning provides another effective

method for reverberation suppression. Artificial intelligence has

relatively excellent performance and effect. It can achieve many

effects that cannot be achieved by traditional methods, which makes

the development of anti-reverberation technology in recent years

mainly biased to- wards the direction of artificial intelligence.

The above studies show that the combination of deep learning

has specific feasibility for sonar signal reverberation suppression.

However, reverberation suppression still needs to be improved

under high reverberation environments and different underwater

signal environments. At the same time, the extraction ability of

effective information in the signal still cannot meet the needs of the

complex environment.
2.3 The relationship between artificial
intelligence methods and
traditional methods

In terms of underwater reverberation suppression, the initial

reference of artificial intelligence (AI) and machine learning

methods is to make up for the shortcomings of traditional

methods and complement and combine them. In a new study, it

was found that artificial intelligence could complete the task better

to replace it entirely (Koh et al., 2020).

Traditional methods are mainly based on signal processing and

digital filtering techniques, which involve preprocessing, filtering,

and noise reduction operations to suppress reverberation in

underwater sound signals (Singer et al., 2009). These methods
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often rely on domain knowledge and expertise to analyze and model

the reverberation characteristics, followed by the design of

corresponding algorithms for processing. While traditional

methods can reduce the impact of underwater reverberation, their

effectiveness is limited when dealing with complex reverberation

environments and signals.

AI methods, on the other hand, utilize machine learning and

deep learning techniques to learn and recognize reverberation

features and perform suppression automatically (Hao et al., 2023).

By training models with large amounts of data, AI methods can

possess more substantial generalization and adaptability, making

them capable of handling more complex underwater reverberation

environments and signals. Compared to traditional methods, AI

methods exhibit higher levels of automation and intelligence in

underwater reverberation suppression.

Traditional methods and AI methods can be combined in the

context of underwater reverberation suppression. Traditional

methods can provide basic processing techniques and approaches

for preprocessing and initial reverberation suppression, which AI

methods can further optimize and enhance (Yin et al., 2023). For

instance, traditional methods can be used for filtering and noise

reduction of underwater sound signals, and the processed signals

can be used as training data for training AI models to achieve better

reverberation suppression.

In the current research, some scholars have found that traditional

methods and artificial intelligence methods are complementary in

terms of underwater reverberation suppression and can be combined.

Other scholars have used AI alone to replace traditional methods and

improve reverberation suppression (Weiss et al., 2023).
3 Preliminary

After the signal is received, the received signal will be processed

by the active sonar system. In this part, the hardware implementation

of the processing will be reproduced by the following algorithm. At

the same time, the signals that generate the training set data will be

processed in the same way.

The active sonar device processes the received signal in the

following way. After the hardware receives the sonar signal, the

sonar signal will go through time-varying gain and automatic signal

gain control processing so that the long-distance echo signal power

is stronger and more convenient for subsequent processing. After

processing, the generated training set is closer to the actual data.

Figure 1 shows the signal state of each process.

The processing of the signal in the hardware device after

receiving is shown in Figures 1B–D, and the signal processing

process will be explained below.

The echo received by the active sonar system, and the generated

echo signal with target information in Section 4.1 are shown in

Figure 1A, and the circled position is the target echo.Time-Variable

Gain (TVG) Innami and Kasai (2012). According to the sonar

equation, it can be obtained that the echo margin of the sonar is

determined by the difference between the echo signal level and the

background interference level.
Frontiers in Marine Science 04
DT = (SL − 2TL + TS) − (NL − DI) (1)

In Eq. (1), DT represents the detection threshold and is the

strength of the echo signal received by the sonar, TL represents the

propagation loss because the active sonar is bidirectional, so 2TL

defines its complete propagation loss; SL represents the sound

source level; NL represents the noise level; DI represents the

directivity index; TS represents the target strength. For most

sonar systems, including multibeam sonar, the propagation loss

(TL) is compensated by the TVG device inside the receiver. The

ideal TVG curve should follow the expectation of sonar propagation

loss, i.e.

TL = 10log10r + ar (2)

In Eq. (2), r represents the action distance, and a is the loss

factor, a function of frequency. Figure 1B shows that the signal

passes through the TVG and that the distant signal is no longer

attenuated as the distance increases.

Signal Automatic Gain Control (AGC) (Zhang et al., 2017). In

practice, automatic gain control is typically implemented through

circuit design. However, AGC needs to be implemented for the

experimental simulation of the sonar data set. The signal

adjustment must be automatically adjusted based on the input

and output data size, which initially requires numerous

logarithmic operations. In order to implement these operations

are avoided, a simple comparison operation is used with a gain

lookup table instead. The algorithm can be described as follows.

20lg(G(n + 1)) − 20lg(G(n)) = −10lg((
R2

R02 )
m0
) (3)

The left side is transformed into the adjusted value between two

adjacent gain coefficients G(n + 1) and G(n) in dB format for better

clarity. Following the estimation of the average power of the output

signal, a comparison is made with the reference power to determine

the appropriate method for adjusting the gain coefficient based on the

outcome of this comparison. In Figure 1C, the AGC equalizes the

signal strength and partially suppresses reverberation through

processing. There are hardware limitations to consider in practical

usage. The hardware restricts the received signal and simulates how

the part of the signal that exceeds the limit would appear. Figure 1D

illustrates this simulation. Figure 1E displays the desired output result

of the network, which will be utilized to calculate the Jensen-Shannon

Divergence (JSD), aiming to bring the output result closer to it.

In both experimental and simulation data, some signals exhibit

peak clipping phenomena and cannot be restored to complete sine

waves, making traditional methods ineffective. After undergoing the

above (B), (C), and (D) processing and normalization, the simulated

signal has inputs with the same dynamic range.
4 Reverberation suppression in
RSWGAN-GP

In order to solve the problem of limited suppression effect in a

high reverberation environment, a reverberation suppression
frontiersin.org
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framework based on the Generative adversarial network is

proposed. A nonlinear mapping from the sonar detection signal

with reverberation to the sonar signal with reverberation

suppression is established, where the input data is the signal

propagation time series. The output is the corresponding time

series after reverberation suppression. Due to the scarcity of

actual data with reverberation signals, the training of RSWGAN-

GP will face the problem of overfitting, reducing its generalization

performance. To this end, the generation of virtual reverberation

data is implemented in this section by combining statistical

modeling and a multi-highlight model. The training data set is

expanded by mixing real and virtual reverberation data while

ensuring the consistency of its distribution pattern. Then, the

theoretical signal gain control was calculated by signal

propagation theory to form a time series signal for artificial

intelligence model learning. The implementation of this part is

shown in Figure 2.

The data generated in Part 4.1 is mixed with real data for Part

4.3, 4.4, and the gradient penalty part is invoked for training.
4.1 Underwater active sonar
reverberation simulation

Underwater reverberation consists of volume reverberation,

surface reverberation, and submarine reverberation. Sea surface

reverberation and submarine reverberation are collectively referred

to as interface reverberation.

To model the network, a significant amount of experimental

data is necessary. Therefore, in this paper, we will simulate sonar
Frontiers in Marine Science 05
reverberation data. The reverberation simulation comprises three

parts: the generation of reverberation, the simulation of echoes, and

environmental noise simulation.

As shown in Figure 3, at Point M, a non-directional signal is

emitted to activate the ring energizer.. The reverberation model is

illustrated in the figure. Point M represents the transducer, the

distance from M to the interface xoy is h, and the signal is emitted

without any specific direction. At time t, the ring of scatterers

contributing to the reverberation is inside the ring. (Sun

et al., 2010).

It is assumed that the number of scatterers generating

reverberation on the i-th ring is Q. The emitted signal is denoted

as s(t), and its strength is A. The length of theMA is represented by

r, and the wave number is k, where k = 2p f =c. The speed of sound

in the ocean is represented as c, and the scattering coefficient of the

q-th scatterer is Riq = aiqe
jyiq . Where r = ct=2,MB = c(t − T)=2, the

ring area S = pr(r2 −MB2). If the unit area is △ S, so the number

of scatterers contributing to the reverberation in the ith ring is N,

N = ½S=△ S�, and ½ � denotes the integer command, 1 ≤ q ≤ Q.

Therefore, the scattering characteristic function at time t can be

expressed as:

Pi(t) = o
Q

q=1

A
r
e−jkrRiq

1
r
e−ikr (4)

   =
A
r2 o

Q

q=1
e−j2kraiqe

jyiq (5)

where a represents the amplitude and y represents the

phaseain, a and y in are both random numbers following the
B

C D

E

A

FIGURE 1

Signal processing. (A) The echo received by the active sonar system. (B) The echo signal is processed by TVG. (C) The echo signal is processed by
AGC. (D) The echo signal received and processed by sonar. (E) Target echo signal hidden in sonar signal.
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Gaussian distribution with the constraint of, 0 ≤ aiq ≤ 1, 0 ≤ yiq ≤

2p . The process of generating reverberation involves convolving the

emission signal with the scattering characteristic function.

Therefore, the reverberation at time t can be expressed as the

following formula:

R(t) = s(t)⊗ Pi(t) (6)

Active sonar is utilized for detecting underwater targets, which

involves reverberation and capturing the target echo signal. When

the sonar signal hits the object, it generates a new echo through the

multi-point superposition of the target body, enabling the active

sonar to receive it (Hodges, 2011).

In addition to reverberation noise, target echo is an essential

component of active sonar signals. The sonar is assumed to have an

array of ½1⋯m⋯Z� elements for reception. The target echo signal

received by the m-th array element can be expressed as:

E(t) = o
Z

m=1
o
I

i=1
biS(t − tmi)exp½Wmi(t) + 2p fd(t) · (t − tmi) − yi� (7)

In Eq. (7) the coordinate of the m-th array element (xm, ym, zm)

is represented by a vector~rm. I represents the number of highlights

of the target, bi represents the reflection coefficient of the i-th

highlight, S(t) represents the envelope of the transmitted signal, tmi

represents the time delay experienced by the sound wave incident

on the i-th highlight and then reflected the m-th array element,

Wmi(t) represents the angular frequency change of the sound wave

irradiated to the i-th highlight and then reflected the m-th array

element, fd represents the Doppler shift, and yi represents the

random phase shift of the i-th highlight echo, uniformly distributed

between (0 ∼ 2p). Different objects can be simulated by adjusting

the number of highlights.

For environmental noise simulation, the spatial and physical

characteristics of the Marine environment are complex, and the

noise level depends on mixing multiple noise sources. This paper

adopts an AR modeling method to simulate and synthesize Marine

environmental noise (Chen et al., 2018). Firstly, an uncorrelated

Gaussian white noise sequence v(n) is generated, and the Marine

environmental noise can be obtained by passing v(n) through an AR
Frontiers in Marine Science 06
filter with a specific temporal correlation. Mark the Marine

environmental noise as W(n), then the generation process of

Marine environmental noise is shown in Eq. (8):

W(n) = −o
p

k=1

ap(k)W(n − k) + sυb0v(n) (8)

p represents the order of the AR filter, υ(n) Gaussian white

noise, and s 2
υ b

2
0 represents variance of Marine ambient noise.AR

filter coefficients ap(k) and b0 can be solved by Levinson-Durbin

(Diniz et al., 2010) method.

The data generated by the above three equations are normalized

respectively, and the corresponding weight is assigned. The

obtained signal is denoted as S(t), and the obtained signal is

shown in Figure 1A, where the signal marked in the yellow box

represents the echo position of the target.

  S(t) = R(t) + aE(t) + lW,  a , l ∈ ½0, 1� (9)

Here, a represents the trade-off between E(t) and R(t). l is an

adjustable parameter that controls the degree of the strength

fluctuation. Through the adjustment of parameters a and l,
enable diversity in the data set, the desired SIR (Signal to

interference ratio, 10loɡ(a2P(E(t))=P(R(t)))) and SINR (Signal to

interference plus noise ratio, 10loɡ(a2P(E(t))=½P(R(t)) + l2P(W)�)
) are achieved, where P represents power.

4.2 Implementation mechanism of the
generative adversarial network

GAN is an effective data generation network, including

Generator (G) and Discriminator (D). The G-analysis process is a

minimal game process, and the discriminator and generator finally

reach Nash equilibrium.

The adversarial training optimization process for generators

and discriminators can be expressed as follows:

min
G

 max
D

V(G,D) = Ex∼Pr ½log(D(x))� + E~x∼Pɡ ½log(1 − D(~x))� (10)

In Eq. (9), x is the actual data, Pr is the actual data distribution,

Pɡ is the generated data ~x = G(z) distribution. The objective
FIGURE 2

Reverberation suppression RSWGAN-GP construction.
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function expressed by minG maxD V (G,D) is to minimize the JSD

between the expectation data distribution Prand the generated data

distribution, provided that the D is optimal.

In that case, the JSD cannot measure the distance between the

generated and actual data distribution. Training the GAN by

optimizing the JSD will result in not finding the correct

optimization target, which is prone to the problem of unstable

training gradient and model collapse.

In order to solve the problems mentioned above, the

Wasserstein Generative Adversarial (Wasserstein GAN, WGAN)

network proposes to use Wasserstein distance as an optimization

method for training GANs. To satisfy the Lipschitz continuity,

WGAN limits the weights to a specific range to enforce the

Lipschitz continuity, but it is leads to poor generation results.

WGAN-GP is a gradient penalty-based WGAN. WGAN-GP

improves the Lipschitz continuity constraint by using gradient

penalty instead of weight clipping in WGAN.

The objective function of WGAN-GP is:

max  
D

V  (G,D) = Ex∼Pr ½D(x)� − E~x∼Pɡ ½D(~x)�

− lEx̂ −Px̂ ½( ∥∇x̂ D(x̂ ) ∥2 −1)
2� (11)

min  
G

L (G,D) = Ex∼Pr ½D(x)� − E~x∼Pɡ ½D(~x)� (12)

In the formula, l is the gradient penalty term coefficient, Px̂ is

the sampling distribution of the gradient penalty term, the

discriminator maximization maxD V (G,D), and the generator

minimization minG L(G,D).WGAN-GP provides a stable training

method that requires little parameter tuning to solve training

gradient disappearance and gradient explosion.
4.3 Reverberation suppression
generator network

In the previous step, the shape of processed data is ½B,N�,
meaning that there are B test data of length N. B is divided into

multiple b. Our goal is to separate a mixture signal S ∈ ½−1, 1�Nm�b

into K source signals S
0 1,…S

0 K with Sk ∈ ½−1, 1�Ns�B for all k ∈
f1,…,Kg, K is set to 1 by default in this paper, B as the batch size at

training time and Nm and Nsas the respectivenumbers of signal

length. For model variants with no extra input context, we have

Nm = Ns and make predictions for the echo part of the input. Here

we input the data S into the neural network structure and perform

feature extraction on the data. It is divided into two parts to

introduce the G network. The first part is the realization of data

crop and concat, and the second part will introduce the whole

generator network.

4.3.1 Data concatenation
It is challenging work to extract sonar signal features using one-

dimensional convolution. A well-designed deep network structure

is crucial for obtaining more valuable dataset recognition features.

As the number of network layers increases, training deep networks

becomes labor-intensive due to the common insurmountable
Frontiers in Marine Science 07
problem. To address this issue, optimizing data concatenation

when passing network parameters can be more effective. The

implementation of this approach in the paper is shown in Figure 4.

In Figure 4, the signal feature x is passed from the previous layer

and is processed by the conv1 … convn layers to obtain the data xn.

convy processes x through another branch line to obtain the result

convy(x). Then, the result xn ⊕ convy(x) is obtained, and

subsequent processing continues, done to prevent the loss of

original features after multiple convolutions. The convolution of

the branch is used to process the data and obtain the final data. In

Figure 4A, the data crop operation is equivalent to ⊕, which is the

operation of skip connect in Figure 4B.

The network construction will be built with network blocks and

have the u-net network structure. The network has ‘ + n layers, and

each layer is labelled ½1,…, ‘ − 1, ‘, ‘ + 1,…, ‘ + n�, where ‘ − n = 1.

For a stacked-layer structure (consisting of several stacked

layers), the learned feature is recorded as H(x‘−n) when the input

is x. When ‘ is 0, the accumulation layer only performs identity

mapping, and the network performance will not be degraded. It

allows the accumulation layer to learn new features based on the

input features, resulting in better performance. A convolutional

block of length ‘ + n can be expressed as:

x‘+n = Fd(x‘−n−1,w‘−n−1), n < 1, n ∈ N
x‘+n = Fu(x‘+n−1,w‘+n−1), n > 1, n ∈ N
x‘ = Fm(x‘,w‘), n = 1

:

8>><
>>:

(13)

  x‘+n = F(x‘+n,w‘+n)⊕ H(x‘−n) (14)

The convolution result can be obtained by iteratively

convolving the output x from y‘−n block to y‘+n−1 block, where ‘ +

n ranges from ‘ − n − 1 to ‘ + n − 1. The input and output of the
FIGURE 3

Reverberation model.
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formula are represented by x‘, and each residual unit typically

contains a multi-layer structure. Fd is the downsampling block

function, Fu is the upsampling block function, representing the

learned residual, and H(x‘) = xl represents the identity mapping.

The learned features from the shallow layer ‘ to the deep layer L are

expressed as:

  xL = xl +o
L−1

i=1
F(xi,wi) (15)

The determination of L depends on the shortest distance L
detected by the sonar, that is, the number of data pointsN processed

by the sonar equipment. The size of L can be solved by the formula

L = loɡ2(L � Fs=N � c), where Fs is the sampling rate of the active

sonar brother and c represents the speed of sound propagation in

water (m/s).

4.3.2 The generator network structure of
RSWGAN-GP

The generator side of RSWGAN-GP is called G, which is

constructed by a U-shaped network. It utilizes a one-dimensional

convolution network that convolves specifically on signals while

adding skip connections based on their original basis to enhance

accuracy in signal feature extraction, as shown in Figure 5.

As shown in Figure 5, the signal data S is directly input into the

encoder layer X1
En to start the one-dimensional convolution

operation. The network structure’s transmission process and

main characteristics are shown in the figure, where G isspecially

designed for processing sonar acoustic signals. The role of the

encoder is to transform the input sequence into a low-dimensional

representation that can capture the critical features of the input

sequence. The decoder transforms the encoding vector into the

target sequence and dynamically generates the content related to the

target, as shown at X3
De. The decoder receives the feature map from

the same-scale encoder layer X3
En directly. Its data scale will not
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change, still 96� 25600. The convolution of multiple neural

networks may weaken data features with the increase of

convolutional layers, so the data crop structure is utilized to

reduce the loss of information, as shown in Figure 4.

In the generation part of the RSWGAN-gp network, we

formulate the network running result X1
De as follows: let i indexes

the down-sampling layer along the encoder, N refers to the total

number of the encoder. The stack of feature maps represented by

Xi
De, is computed as:

Xi
De =

Xi
En,

H ½C D Xk
En

� �� �i−1

k=1
, C Xi

En

� �
,|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Scales :  1th∼ith

C U Xk
De

� �� �L

k=i+1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Scales :  (i+1)th∼Nth

0
BB@

1
CCA

i=L

i = 1,⋯   ; L − 1

8>>><
>>>:

(16)

Where function C( · ) denotes a convolution operation, H( · )

realizes the feature aggregation mechanism with a convolution

followed by a batch normalization and a Leaky-ReLU activation

function. D( · ) and U( · ) indicate up- and down-sampling

operation respectively, and ½, � represents the concatenation.
The convolution operation C of the signal is shown in the

following formula:

  Xi+1
j = (o

K

k
o
F

c=0
w i+1
c Xi

j+c) + bias (17)

Where Xl ,Xl+1 and w are inputs, outputs and weight

parameters, respectively; 1� F is the size of a single kernel; K is

the number of kernels. Here, the kernel size of 1� F is shared for

the whole input feature maps, called weight sharing.

It is worth mentioning that our proposed generator network is more

efficient with fewer parameters. As for the decoder of the generator part,

the depth of the feature map in a generation is symmetric to the encoder,

and thus Xi
De, also has 12� 2i, channels. The number of parameters in

ith decoder stage of Pi
De can be computed as:
B

A

FIGURE 4

Data concatenation. (A) There are changes in the signal data processing process. (B) Show the process of signal data transmission.
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Pi
De = DF � DF � d Xi+1

De

� �� d Xi
De

� �
+ d Xi

De

� �2+d Xi
En + Xi

De

� �� d Xi
De

� �h i

(18)

where DF is the convolution kernel size, d( · ) denotes the depth

of the nodes.

In G, the convolution with a stride of 1 maintains the output

length equal to the input length. A downsampling method D( · ) is

employed to increase the receptive field of the original data by ½1=2�.
The signal data SNm�B = ½s1, s2, s3, s4,⋯, sm−3, sm−2, sm−1, sm� i s

downsampled to ½s1, s3,⋯, sn−2, sn�. After convolving the data to

obtain its minimum scale, corresponding upsampling ½�2� is used
along with interpolation to restore the data to its original scale. The

signal is transformed from Sn to S
0
n after processing, while the signal

length remains unchanged.

The network is symmetric, with the first half using

downsampling and the second half using upsampling. The

network’s construction affects the length of data processing and

the shortest distance for processing sonar signals. When the

downsampling block has L layers, the number of input points is

at least 2L. An 11-layer symmetric network structure is used in the

experiments, so the minimum input signal points are 211 = 2048.

However, if only the signal data with a length of 2048 is input, it will

output only one value after 11 downsamplings, leading to less

feature representation. For XL
En to be greater than 1 in the middle

of the convolution, the data signal length for training should be at

least J = 2� 2048 = 4096. The shortest detection distance of

convolution is L, and its formula is as follows:

    L =
J

2� Fs
� c (19)

Where Fs stands for the sampling frequency, based on the

example calculation, we can determine that the shortest detection

range of the active sonar after processing is 12.3m in the network

constructed with an 11-layer downsampling block.
4.4 Reverberation suppression
discriminator network

This section describes the discriminator part of building the

adversarial network (D). The discriminator plays a crucial role in
Frontiers in Marine Science 09
the GAN. It helps the generator to generate more realistic signals

after the downsample (achieving unity in the frequency domain). It

improves the GAN’s ability to understand the training data, which

lays the foundation for generating higher-quality sonar signals. In

this will generate the signal S
0
n and the required E(Sn) input. In order

to improve the accuracy of D, a one-dimensional convolutional

discriminator network of SkipNet suitable for underwater acoustic

signals is constructed by referring to the DenseNet Gao et al. (2020)

structure. The main structure and the overall structure are

introduced in the following.

When training the network, the complexity of the GAN network

will bring problems such as long training time and difficulty in

discovering signal features. The discriminator network uses

traditional convolution to process longer underwater acoustic

signals, which requires the design of a deeper network, which

wastes time and may lead to feature disappearance and network

degradation problems. Introducing SkipNet blocks can reduce the

construction of network depth and training time. The skip

connection makes it a flexible and efficient neural network

architecture with good accuracy and resource efficiency performance.

In the more compact convolution, where rich features are less

readily available due to the limited number of parameters, the

different features that emerge from activation map-pings derived

from data points during model inference may indicate the existence

of a set of unique descriptors that are necessary to distinguish

between different classes of objects. In contrast, data points with low

feature diversity may need to provide sufficient unique descriptors

to make valid predictions, called random predictions. Random

prediction can negatively affect the optimization process and

impair the final performance. This paper presents a series of

Skipnet block models structured to fuse the previously convolved

information using a skip net whenever a portion of the convolution

passes to show the importance of diversity.

As shown in Figure 6, After downsampling the signal, the signal

features will be put into the next layer and skipnet for multiple

convolution. Finally, the results of two parts will be added. The

feature signal obtained by addition is subjected to the same

processing after downsampling once. This can be expressed using

the following formula:

x‘ = h‘(x‘−1) +H‘(H‘−1 ⋯H‘−n(x‘−n)) (20)
FIGURE 5

Generator network.
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In Eq. (20), X represents the feature data after the convolution

operation. h( · ) stands for SkipBlock, which can be expressed as

h  =  ( Downsampled jBN  j Conv j BN  j Activationj Downsampled ),

and H stands for the main convolution process. x‘ adds the results

above the main line and the sideline.

The RSWGAN-GP network uses convolution with a skip

network with skipBlock to implement the discriminative signal

network. Due to the difference between signal and image

processing, the feature extraction is carried out in the form of

one-dimensional convolution, and the subsequent dimension

reduction processing is transformed from pooling to down-

sampling processing, which is more suitable for the processing of

signal features Nakaoka et al. (2021). Figure 7 shows the

implementation of the discriminative signal network.

In the discriminator network, the generator G is initialized and

given a reverberation signal data vector as input. The generator

generates signals based on the mapping of the input vector, creating

generated data. The discriminator network then judges and

identifies the generated data, producing a classification probability

that results in a judgment (true or false). During discriminator

training, actual data is also inputted to train the discriminator. The

de-reverberation signal is labeled 1 (effective reverberation

suppression), while the signal without effective reverberation

suppression is labeled 0. The loss LDis generated based on the

generated result. In this paper, a non-densely connected network is

designed to avoid redundancy and too many parameters in the

signal processing network. The Desenet is designed without dense
Frontiers in Marine Science 10
connections. Sparse connections are used instead, maintaining the

same effect.

When the signal generated by the generator network meets the

requirements of the signal-to-reverberation ratio, the generator

network will stop training, and the final signal generator is the

underwater reverberation suppression model.
4.5 Loss functions

This section presents the calculation of reverberation suppression

loss for RSWGAN-GP. Due to the sinusoidal signal characteristics and

the influence of phase difference, the original WGAN-GP calculation

method cannot converge the training results. Therefore, a new method

is used to preprocess the loss calculation before training.

This paper gives the main parameters of the generation network

and the discriminant network used in the paper. The main

parameters of the network will be described in Tables 1, 2.

In Table 1, the signal input is 102400×1, and the data mapped

into the same scale by the generation network is also 102400×1. In

Table 2, the signal input is 102400×1, and the Classification

probabilities are formed after the convolution and linear layer

processing. The output scale is 1×1, which is used as the output

of the discriminator in GAN.

This paper uses the signal-to-reverberation ratio(SRR) to

evaluate the signal after reverberation suppression. The SRR will

be used to indicate the degree of signal suppression.
FIGURE 6

Discriminator SkipNet.
FIGURE 7

Discriminator network.
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SRR = 10loɡ10(
PSignal − Preverberation

Preverberation
) (21)

In Eq. (21), PSignal is the power of the activated sonar signal,

Preverberation is the power of the reverberation signal, and PSignal −

Preverberation is the power of the target echo signal. SRR can be used to

indicate the degree of reverberation suppression. Denote byR( · ) in

the following calculations.

The reverberation suppression network approach of RSWGAN-

GP introduces the Wasserstein distance on top of the reverberation

suppression model of GAN, and Eq. (22) shows the distance.

W(Pr , Pf ) = i n f
g
Q

(Pr ,Pf )

E(ŝ ,x̂ ),g ½∥R(ŝ ) −R(s0) ∥� (22)

In Eq. (22), E( · ) is the calculated expectation; ŝ is the desired

sonar signal after actual reverberation suppression, and s0 is the sonar
signal after raw reverberation suppression;

Q
(Pr , Pf ) isR(ŝ ) −R(s0)

, the set of joint probability distributions of the corresponding

expected signal Prprobability distribution and the generated signal

Pf ; inf ( · ) is the exact bound taken down; E(ŝ ,s0),g ½∥R(ŝ ) −R(s0) ∥�is
the expected value of the relative distance of the local discharge signal

under the set of joint probability distributions g .
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In Eq. (22), the lower exact expectation bound is difficult to find

so that the Wasserstein distance can be converted into the

Kantorovich-Rubinstein dual form. Eq. (23) shows the

Wasserstein distance’s dual structure.

W(Pr , Pf ) = sup
∥D ∥L≤1

Eŝ ,Pr ½D(ŝ )� − Es0 ,Pf ½D(s0)� (23)

In Eq. (23). D(x) is the distance cost function of discriminator

D; ∥D ∥L ≤ 1 indicates that the discriminator distance cost

function satisfies the 1-Lipschitz restriction. The GP in

RSWGAN-GP indicates the gradient penalty function to satisfy

the 1-Lipschitz restriction, and its loss function is shown in Eq. (19).

LG = −EZ∼Pz � ½D(G(Z))�
LD = −Ez ∼ Pz � ½D(G(Z))� − EX∼Pr � ½D(ŝ )� + GPjs0
GPjs0 = lEs0∼Ps0 ½( ∥∇x̂ D(x̂ jC) ∥p −1)2�

:

8>><
>>:

(24)

LGis the generator loss function; LDis the discriminator loss

function; G(Z) is the suppressed sonar signal generated by the

generator; PZ is the prior distribution of the input sonar signal Z;

GPjs0 is the gradient penalty term; l is the canonical term

coefficient; and ∥ · ∥P is the P-parameter.
TABLE 1 Generation network.

Num Layer Act./Norm. Output shape Num Layer Act./Norm. Output shape

0 Signal Latent vector – 102400×1
14

upsample Conv1d Datacrop12 LReLU/BN 50×576
50×288

1 Conv1d downsample LReLU/BN
-

102400×24
51200×24

15 upsample Conv1d Datacrop11 LReLU/BN 100×522
100×264

2 Conv1d downsample LReLU/BN
-

51200×48
26500×48

16 upsample Conv1d Datacrop10 LReLU/BN 200×504
200×240

3 Conv1d downsample LReLU/BN
-

26500×96
12800×96

17 upsample Conv1d Datacrop9 LReLU/BN 400×456
400×216

4 Conv1d downsample LReLU/BN
-

12800×120
6400×120

18 upsample Conv1d Datacrop8 LReLU/BN 800×408
800×192

5 Conv1d downsample LReLU/BN
-

6400×144
3200×144

19 upsample Conv1d Datacrop7 LReLU/BN 1600×360
1600×168

6 Conv1d downsample LReLU/BN
-

3200×168
1600×168

20 upsample Conv1d Datacrop6 LReLU/BN 3200×312
3200×144

7 Conv1d downsample LReLU/BN
-

1600×192
800×192

21 upsample Conv1d Datacrop5 LReLU/BN 6400×576
6400×288

8 Conv1d downsample LReLU/BN
-

800×216
400×216

22 upsample Conv1d Datacrop4 LReLU/BN 6400×264
6400×120

9 Conv1d downsample LReLU/BN
-

400×240
200×240

23 upsample Conv1d Datacrop3 LReLU/BN 12800×216
12800×96

10 Conv1d downsample LReLU/BN
-

200×264
100×264

24 upsample Conv1d Datacrop2 LReLU/BN 25600×168
25600×72

11 Conv1d downsample LReLU/BN
-

100×288
50×288

25 upsample Conv1d Datacrop1 LReLU/BN 51200×120
51200×48

12 Conv1d downsample LReLU/BN
-

50×288
25×288

26 upsample Conv1d Datacrop0 LReLU/BN 102400×72
102400×24

13 Conv1d LReLU/BN 25×288 27 Conv1d tanh 102400×1
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5 Experimental verification

This section validates the advancedness of the proposed model

and method. For this purpose, we conducted marine experiments to

verify that RSWGAN-GP can effectively suppress the reverberation

of sonar signals and collect actual data in the field for verification.

RSWGAN-GP, with other excellent reverberation suppression

methods, compared to prove the effectiveness of the reverberation

suppression method proposed. The following sections explain the

detailed description and summary of the experiments.

In the experiment, the active sonar with 30-element with a self-

receiving function is used to transmit a continuous wave (CW) signal

with a fs = 250kHz sampling rate and a f = 30kHz frequency. The size

of the training data set is 6000 data samples in total, among which 2520

actual sonar data samples are obtained through experiments, and 3480

data samples are generated by the underwater active sonar

reverberation simulation method. The simulation data and actual

data are randomly arranged, and the training set and the verification

set are in a 5:1 ratio. The actual data are used to verify the reverberation

suppression effect of the model obtained at the end of training. The

experiments were conducted in one of the bays in Qingdao. Figure 8

shows the experimental scenario.
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Figure 8A is a schematic diagram of the relative position of the

active sonar and the target during the test. In the figure, xh1 = 200m

is the shortest distance from the relative position, and xh2 = 300m is

the longest distance from the relative position, active sonar is at the

same position as the target at sea level ds = dt ∈ ½5, 10�. In

Figure 8B, the experiment in the harbor can minimize the error

caused by the ship’s swing caused by wind and waves. The

narrowest point of the harbor exit is 200m, and the target ship

tows the target at a distance of 200-300m from the active sonar.

Figures 8A, B show the experimental active sonar equipment and

the detected target, respectively. The detected target is a cylindrical

object with an internal cavity with a diameter of 533mm and a

length of 3m. The essential experimental data of the validation

method are obtained in sea trials.

The data are collected and used as the validation set to validate

each epoch in the training process. The active sonar of the signal is

subjected to reverberation suppression, and the signal change

during training is shown in Figure 9.

In Figure 9, the time domain diagram shows that the model is

trained by mixing simulation data with actual acquisition data, and

the trained model is used to process the experimental results of the

active sonar signal data of the ocean experiment. The figure shows

the results of sonar signal processing of model pairs produced by

different iterations. In the Epoch 1-50 iteration training process, the

processed sonar signal still has the phenomenon of signal chipping.

Still, it shows the state of strong reverberation, and the target

position cannot be visually observed from the time domain.

Starting from Epoch 60-100, the chipping phenomenon of the

echo signal disappears, the correct sinusoidal signal can be

restored, and the neural network can already find the desired

target feature state. From Epoch 110 onwards, the target can be

precisely located, and in subsequent training iterations, the target

echo feature can be highlighted while suppressing the strong

reverberation state during sonar propagation. When the model

training iteration is above Epoch 210, the target echo signal can be

observed macroscopically from the time domain diagram.

Reverberation changes in the middle state of the network as

shown below:

The above-processed feature map, which results from the

processing of the network XN
En = XN

De, results in a 288×25 feature

array. Feature array is where the network will generate features,

which will then be upsampled to recover the signal. In Figure 10,

some features of the signal increase and decrease as the epoch

increases, representing anti-reverberation operations. From

Figure 10A, it can be seen that the convolution features of the

signal at the beginning are dispersed to each corner of the array.

After iteration, some features weaken, as shown in Figure 10B,

which is reflected in the signal that the reverberation part begins to

weaken, and then the features disappear, as shown in Figure 10C.

Finally, the target echo features are enhanced, as shown in

Figure 10D, and the corresponding display in the echo signal

explored by sonar is the enhancement of the echo signal.

During the training process, convergence is achieved by

continuously correcting errors. The loss curve changes during the

training process of RSWGAN-GP, including the generator loss

curve and the discriminator loss curve, as shown in Figure 11.
TABLE 2 Discrimination network.

Num Layer Act./Norm. Output shape

0 Signal Latent vector – 102400×1

1
Conv1d Downsample LReLU/BN

-
102400×24
51200×24

2
Conv1d Downsample LReLU/BN

-
51200×48
26500×48

3
Conv1d

Downsamplee
LReLU/BN

-
26500×96
12800×96

4
Conv1d Downsample LReLU/BN

DataAdd
12800×120
6400×120

5
Conv1d Downsample LReLU/BN

DataAdd
6400×144
3200×144

6
Conv1d Downsample LReLU/BN

DataAdd
3200×168
1600×168

7
Conv1d Downsample LReLU/BN

Dataadd4
1600×192 800×192

8
Conv1d Downsample LReLU/BN

DataAdd
800×216
400×216

9
Conv1d Downsample LReLU/BN

DataAdd
400×240
200×240

10
Conv1d Downsample LReLU/BN

Dataadd7
200×264
100×264

11
Conv1d Downsample LReLU/BN

DataAdd
100×288 50×288

12
Conv1d

Downsamplee
LReLU/BN
DataAdd

50×288
25×288

13
Conv1d Downsample LReLU/BN

DataAdd
25×1
13×1

14 Linear sigmoid 1×1
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Figure 10 shows the training loss curves of RSWGAN-GP under

various weight decay and learning rate(lr) settings. Figure 10A is the

line chart of the generator loss variation, and Figure 10B is the curve

chart of the discriminator loss variation. By setting different

parameter values, rapid convergence of the network can be

achieved when weight decay and learning rate are set to 0.00001

and 0.0001, respectively. As shown in the figure, in the WGAN-GP

network, the generator loss continuously approaches 0, and the

discriminator loss continuously approaches 0. The loss of the

generator shows a rising trend, and the loss of the discriminator

shows a decreasing trend. During training, the generator and
Frontiers in Marine Science 13
discriminator are in a state of mutual competition, and their loss

values should fluctuate up and down. The trend shown in the figure

represents the main direction.

For applications where target detection will be performed after

signal processing, the difference between before and after signal

processing is shown in Figure 12.

Figure 12 shows the target position detection map after

nonlinear processors in matching fields on CW signal processing

Sun and Li (2019), where the target indicates the target’0s location,

which is about 204 m—the comparison between the original data

and the data after RSWGAN-GP processing is shown. In the
B

C D

A

FIGURE 8

Experimental environment and equipment. (A) Sonar and target underwater deployment status. (B) Sonar and target experiment terrain environment
and experiment method. (C) Active sonar equipment during the experiment. (D) Target equipment during the experiment.
FIGURE 9

Active sonar reverberation suppression changing graph.
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original data, before the target position, there is the influence of

reverberation on its judgment. When making a prediction, the

highest correlation position changes and the highest point in front

is judged as the target position. When comparing the red line with

the blue line, it is evident that the signal processed by RSWGAN-GP

can reduce the influence of reverberation when making target

judgments, increasing the success rate of target judgments. Here,

four contrasting points are selected, as shown in Table 3.

Among the data points, the first three are reverberation points,

and the comparison shows that the reverberation is well suppressed,

and the fourth is the target point. The SRR is improved after echo

suppression. The data comparison can prove that the well-trained

model can suppress the reverberation well, making the correlation

increase by 0.022 and the reverberation part decrease by 0.3

on average.

There are many excellent algorithms in water acoustics

reverberation suppression, here will use collected data for various

methods to compare with the method proposed in this paper. The

comparison results after processing the sonar signal are shown

in Figure 13.

In Figure 13A, the Original signal is unprocessed, the

reverberation power is 0.398, the signal echo power is 0.432, and

its SRR is 0.361dB, the highlighted red part indicates the position of

the target echo, which cannot be effectively identified from the

figure. 2D-AR PreWhitener is used to eliminate correlation and

frequency correlation in the signal Li et al. (2008) so that the signal

is flatter in the frequency domain, and the processed echo sonar

signal shows the position of the target echo. The least mean square
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filter (LMS) processes the echo signal Kim et al. (2000), and the

reverberation component is suppressed, decreasing amplitude.

Adaptive fractional Fourier transforms (FrFt) for suppressing

reverberation Yu et al. (2022), Although the reverberation is

partially suppressed, the actual impact is not apparent. The PCI-

SVM reverberation suppression method combines Principal

Component Inversion (PCI) and Support Vector Machine (SVM)

techniques Wang et al. (2021). This method selects suitable and

effective feature values through SVM to extract the main features for

reverberation suppression. The figure shows that this method

performs better than the previous ones. We present the impact of

the RSWGAN-GP method proposed in this paper. Compared to the

excellent methods, the reverberation component is effectively

suppressed, and the echo component is more visible and

prominent. The detailed data comparison is presented in Table 4.

Figure 13B compares SRR results processed by different

methods under different SINR environments. In actual use, the

reverberation signal processing SINR is between 0 dB and 10 dB. In

order to reflect the processing ability of a high reverberation

environment, the signal is mainly concentrated between -10 dB

and 10 dB (data comparison in the middle of the two blue colors in

the figure). As can be seen from the figure, RSWGAN-GP and PCI-

SVM methods are significantly superior to other methods. At the

same time, RSWGAN-GP is 3 dB higher than the PCI-SVMmethod

at SINR -10 dB, and the advantages become more evident as SINR

increases. The advantage of RSWGAN-GP is that it can learn many

high reverberation data to improve the processing ability of high-

reverberation data. In Figures 13A, B, we compare different
B

C D

A

FIGURE 10

The intermediate state of the network changes. (A) Initial network intermediate layer processing result. (B) After 50 iterations. (C) After 100 iterations.
(D) After 150 iterations.
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reverberation suppression methods to demonstrate the effectiveness

of RSWGAN-GP in suppressing reverberation.

Figure 14 shows the processing results and time-frequency

distribution of raw signal, AR pre-whitening, LMS, FrFt, PCI-

SVM and RSWGAN-GP, respectively. Experimental results show
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that the algorithm can effectively suppress reverberation and extract

target echo components under high SRR conditions. At the same

time, the time-frequency structure of the target highlight echo

remains unchanged. The processing results of the original signal

distribution are shown in Figure 14A. It can be seen that there is
B

A

FIGURE 11

Results for different parameters. (A) The discriminator loss varies with epoch. (B) The generator loss varies with epoch.
FIGURE 12

Matching field result.
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some substantial reverberation interference near the target echo, but

its energy is weaker than the target echo. The signal processed by

2D-AR PreWhitener, LMS, FrFt and PCI-SVM is shown in Figures

14B–E, and the target echo energy is still not obvious. As shown in

Figure 14F, the RSWAGN-GP processing results show that the

overall reverberation background has been effectively removed, and

only a tiny part of weak background interference remains near the

target echo.

The superiority of the proposed method can be seen in

Figures 12, 13, and the detailed parameters are listed here for

comparison, including reverberation amplitude, echo amplitude,

reverberation power, echo power and SRR. The specific parameters

are shown in Table 4.

The findings in Table 4 demonstrate that the RSWGAN-GP

method proposed in this study is the most efficient technique for

attenuating reverberation compared to the other methods evaluated.
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With a remarkable improvement in the reverberation ratio by 15dB,

RSWGAN-GP significantly enhances speech quality from 0.83dB to

16.79 dB. The PCI-SVM algorithm comes in a close second, mainly

when the optimal rank is 42, as determined by the SVM classification

experiment, resulting in a significant improvement in the SRR by

around 13dB. The 2D-AR PreWhitener, LMS, and FrFt techniques

also improve the reverberant environment by -0.024dB, -2.68dB, and

0.12dB, respectively. Nevertheless, their ultimate effects are less

substantial than those of RSWGAN-GP and PCI-SVM.

The effectiveness of the RSWGAN-GP method proposed in this

paper for suppressing reverberation in sonar signals is demonstrated

through experiments. Using experimental data from the ocean during

training shows that features are extracted and amplified during the

training iterations. By comparing the results of the algorithms, it is

evident that this method can significantly improve signal quality. The

improved SRR is 15.169 dB, demonstrating the method’s effectiveness

and superiority for reverberation suppression.
6 Conclusion

Reverberation suppression of echo signals is a crucial issue in

active sonar systems. This paper presents a novel RSWGAN-GP

method for suppressing reverberation in sonar signals using the

generative adversarial network. This reverberation suppression
TABLE 3 Target detection correlation comparison.

Num Before treatment After treatment Difference

1 0.417 0.205 -0.212

2 1 0.419 -0.581

3 0.553 0.32 -0.233

4 0.962 0.984 0.022
B

A

FIGURE 13

Sonar signal comparison of reverberation suppression methods. (A) Original signal diagram and signal diagram processed by 2D-AR Prewhitening,
LMS, Frft, PCI-SVM, RSWGAN-GP methods. (B) SRR changes with SINR after model reverberation suppression.
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network employs a one-dimensional convolutional network to

process the signal content. RSWGAN-GP refers to U-net and

DenseNet, using skip network structure and dense connection

network to suppress sonar signal reverberation efficiently.
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Comparison using actual collected data demonstrates the

effectiveness of the proposed method, which can effectively

suppress the active sonar reverberation signal, improving SRR by

approximately 10 dB, better than other methods.
TABLE 4 Experimental data comparison table.

Reverberation power Echo Power SRR(dB) Improve SRR(dB)

Original Data 0.398 0.432 0.361 0

2D-AR PreWhitener 0.096 0.087 0.35 -0.011

LMS 0.036 0.051 1.525 1.164

FrFt 0.086 0.094 0.414 0.053

PCI-SVM 0.0105 0.0562 7.2925 6.932

RSWGAN-GP 0.01 0.1265 11.021 10.659
B

C D

E F

A

FIGURE 14

Time-frequency distributions. (A) Signal original state .(B) After 2D-AR PreWhitener processing. (C) After LMS processing. (D) After FrFt processing. (E)
After PCI-SVM processing. (F) After RSWGAN-GP processing.
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Through several experiments, it was discovered that the

processing model trained by RSWGAN-GP has specific

requirements for the transmission pulse width. The transmission

pulse width of the signal needs to be adjusted for different detection

distances, but the model’s pulse width for echo signal processing is

not sensitive to the width. However, this relationship may be

specific to the dataset used. In future research, efforts will be

made to improve the model’s generalization capabilities to

process signals with different pulse widths efficiently.
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