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The spring phytoplankton bloom is a critical event in temperate oceans typically

associated with the highest productivity levels throughout the year. To

investigate the bloom process in the Yellow Sea, daily data on physical,

chemical, and phytoplankton taxonomic group biomass, calculated via the

chemotaxonomic approach, were collected from late March or early April to

late May between 2018 and 2020 at the Socheongcho Ocean Research Station.

During early spring (late March to mid-April), phytoplankton biomass increased,

accompanied by a decrease in nutrient levels, with Bacillariophyceae and

Cryptophyceae being the dominant groups. As water temperature increased, a

pycnocline began to develop in late April, leading to a peak of the phytoplankton

bloom dominated by chlorophytes and Cryptophyceae. Network analysis

suggested that this phytoplankton bloom was caused by the onset of vertical

stratification induced by increased sea surface temperature. The chlorophyte

peak induced phosphate limitation above the pycnocline, resulting in succession

to Prymnesiophyceae and Dinophyceae. Following pycnocline formation,

phytoplankton biomass below the pycnocline was dominated by

Bacillariophyceae and Cryptophyceae, with decreasing or fluctuating trends

depending on phosphate concentration. Apart from these general patterns,

2019 and 2020 both had distinctive traits. The 2019 data revealed lower

phosphate concentrations than the other 2 years, leading to a smaller

chlorophyte peak at the surface compared to 2018 and extreme phosphate

limitation above the pycnocline. This limitation resulted in decreased biomass of

late successional groups, including Prymnesiophyceae and Dinophyceae.

Pycnocline formation was delayed in year 2020, and stratification was

significantly weaker compared to the previous 2 years. Due to the pycnocline
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delay, the surface chlorophyte peak did not develop and no succession to late

successional groups was observed. Instead, high levels of Bacillariophyceae and

Cryptophyceae biomass were observed throughout the water column with no

surface bloom. Thus, among various environmental factors, increasing surface

water temperature and phosphate concentrations play pivotal roles in

shaping phytoplankton bloom dynamics. Distinct yearly variation points to the

broader impacts of climate shifts, emphasizing the need for continued

marine monitoring.
KEYWORDS

phytoplankton, spring bloom, Yellow Sea, chemotaxonomy, Socheongcho Ocean
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1 Introduction

Phytoplankton play a critical role in the Earth’s ecosystem,

serving as the base of the marine food web and significantly

contributing to the global carbon cycle (Hilligsøe et al., 2011;

Harris, 2012; Winder and Sommer, 2012; Worden et al., 2015;

Basu and Mackey, 2018). One of the key processes in phytoplankton

dynamics is the spring bloom, i.e., a rapid increase in phytoplankton

biomass that occurs in temperate and polar regions when

conditions become favorable after the winter season. The spring

bloom is driven by multiple factors, including increased light

availability, rising water temperatures, water column stabilization,

and the accumulation of high nutrient concentrations due to low

utilization throughout the winter (Sommer et al., 2012; Hashioka

et al., 2013; Olita et al., 2014; Rumyantseva et al., 2019).

Among these factors, vertical stabilization of the water column

has been identified as the primary factor triggering initiation of the

phytoplankton spring bloom. However, there remains controversy

regarding whether depth-associated parameters such as the mixed

layer depth (MLD) play a critical role or whether the strength of

vertical mixing is the key determinant of bloom initiation

(Sverdrup, 1953; Huisman et al., 1999; Behrenfeld et al., 2013;

Rumyantseva et al., 2019). To elucidate the mechanism underlying

phytoplankton spring bloom initiation in the Yellow Sea, time-

series data were collected regarding phytoplankton biomass,

nutrient concentrations, conductivity–temperature–depth (CTD)

sensor readings, and environmental factors that influence

vertical mixing (e.g., wind speed, wave height, and surface

water temperature).

Considering that the duration of the spring phytoplankton

bloom is typically > 1 month, it can be challenging to devise a

strategy for sampling and data collection. Traditional research

vessel-based approaches have limitations in the acquisition of

time-series data from a fixed location. Previous research has

utilized fixed ocean stations, such as Station ALOHA (A Long-

Term Oligotrophic Habitat Assessment) located north of Hawaii in

the Pacific Ocean, to overcome these limitations (Karl et al., 2001;

Bidigare et al., 2014; Karl and Church, 2017; Van den Engh et al.,

2017; Karl and Church, 2019). In this study, a fixed station, the
02
Socheongcho Ocean Research Station (S-ORS), was utilized for the

collection of time-series data in the Yellow Sea.

The Yellow Sea is one of the world’s most productive

continental shelves and undergoes dynamic changes in water

temperature, stratification, nutrients, and ecological traits (Kim

et al., 2019). Therefore, utilizing S-ORS, we collected time-series

datasets to investigate the spring bloom process in the Yellow Sea.

To confirm whether a bloom pattern present in a given year is

unique or repetitive, we conducted a 3-year study of this process

from 2018 to 2020.

In addition to the investigation of environmental factors driving

the spring bloom, we examined changes in phytoplankton groups in

response to changes in environmental conditions, which drive shifts

in community composition and the dominance of specific taxa

during the bloom period. Because phytoplankton groups play

diverse roles in biogeochemical cycles, analyses of phytoplankton

community composition and function are essential for elucidating

Earth’s systems (Barton et al., 2013; Eggers et al., 2014; Litchman

et al., 2015; Weithoff and Beisner, 2019; Nissen et al., 2021).

Therefore, the identification of factors that drive these changes, as

well as the ecological and biogeochemical consequences of the

spring bloom, is important for efforts to understand the impacts

of climate change and other anthropogenic stressors on

marine ecosystems.

To analyze the phytoplankton community, we used a

chemotaxonomic approach, allocating chlorophyll a (Chl-a)

concentrations to major phytoplankton groups using the

CHEMTAX program (Mackey et al., 1996). CHEMTAX is widely

used for phytoplankton community structure analysis due to its

advantage of directly allocating Chl-a , an indicator of

phytoplankton biomass, to various phytoplankton groups.

Building upon the CHEMTAX approach, we employed

multivariate analysis to interpret the phytoplankton spring bloom

process. Dynamic factor analysis (DFA), a type of state-space time-

series analysis, was used to examine this time-dependent process in

surface waters and to elucidate the mechanism underlying the

phytoplankton bloom process. Additionally, redundancy analysis

(RDA) was performed for all data points to elucidate the overall

pattern of community succession. Through the investigation of
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time-series data related to the spring phytoplankton bloom process

from 2018 to 2020, we aim to provide insights into the spring

succession patterns of phytoplankton communities in this

important and dynamic marine ecosystem.
2 Materials and methods

2.1 Research site and period

The study was conducted at S-ORS (Figures 1, 2), located in the

Yellow Sea (37°25’23.3’’N, 124°44’16.9’’E), with a water depth of

50m. Yellow Sea is a semi-enclosed sea surrounded by the Korean

Peninsula and China. The research was conducted during the spring

season, which begins in late March or early April and ends in late

May, over a period of 3 years. Further details regarding the sampling

and research periods for each year are provided in Table 1.
2.2 Sample collection

Seawater was collected daily using a rosette sampler attached to

a CTD recorder (SBE 19plus V2; Sea-Bird Scientific, Bellevue, WA,

USA), except when unavoidable issues such as extreme weather

conditions prevented sampling. We generally collected water

samples at five depths: 0, 10, 20, 30, and 40 m. However, the

sampling depths were slightly modified to include the sub-surface

chlorophyll maximum (SCM) layer if present. Identification of the

SCM was conducted using a fluorescence sensor equipped on the

CTD. This process was conducted during daylight hours at low tide

to account for the significant tidal ranges found in the Yellow Sea.

After obtaining the water sample, we followed appropriate

methods to collect pigment and nutrient samples. First, we

filtered 1 L of seawater through GF/F filters (Whatman PLC,

Maidstone, UK) and then collected the filter paper for pigment

sampling, while the filtrate was collected for dissolved inorganic

nutrients. All samples were stored in a deep freezer on site and then
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transported on dry ice to the laboratory, where they were stored in

another deep freezer until analysis.
2.3 Determination of pigment
concentrations using high-performance
liquid chromatography

The process of measuring pigment concentrations was

described by Hyun et al. (2022), and we followed their detailed

procedure. To maximize extraction efficiency, the filter papers were

freeze-dried prior to extraction, soaked in 4 ml of an aqueous

acetone solution (5:95 v:v), wrapped with aluminum foil to

prevent exposure to light, and stored in a refrigerator at 4°C

for 24 hours. The extracts were filtered again using 0.2-μm

polytetrafluoroethylene syringe filters (Hyundai Micro, Seoul,

Korea) to remove particles that may damage the HPLC system.

After filtration, 1 ml of each filtrate was transferred into brown

amber vials and 400 μl of HPLC-grade water was added.

The pigments were separated and measured using an HPLC

system (LC-2030c 3D; Shimadzu Corporation, Kyoto, Japan)

following a modified version of the protocol described by Zapata

et al. (2000). Specifically, the separation of pigments was performed

through reverse-phase chromatography using a C8 column (150 ×

4.6 mm, 3.5 μm particle size, 100 Å pore size; Waters Corporation,

Milford, MA, USA). The concentrations of the separated pigments

were measured using the 440-nm chromatogram detected with a

photodiode-array detector. Additionally, the purity of each peak

was confirmed through measurement of wavelengths from 370 to

800 nm.

The factors used to convert peak area to pigment concentrations

were determined on an annual basis prior to analysis when the C8

column was replaced for maintenance. This process involved

analysis of standard pigments (DHI LAB, Hørsholm, Denmark)

and the generation of a calibration curve. Additionally, to facilitate

peak identification, a mixture of standard pigments was evaluated

(first and last samples daily) during HPLC operation.
2.4 Chemotaxonomic analysis

The processes used to determine the Chl-a concentration and

composition for each taxonomic group were conducted using

CHEMTAX software (version 1.95) and the Bayesian

Compositional Estimator (BCE) tool. In chemotaxonomic

analysis, the inclusion of either too many or too few taxa can

introduce substantial error into the results. To mitigate this possible

source of error, taxa included in the calculation were carefully

selected based on the examination of corresponding next-

generation sequencing (NGS) data. The method used for NGS

analysis strictly adhered to the procedures outlined by Choi et al.

(2016); Yang et al. (2021), and Hyun et al. (2022).

Although the selection of taxa is an important aspect of

chemotaxonomic analysis, the statistical methods used also have

inherent limitations. CHEMTAX is underdetermined, which can

introduce bias (Latasa, 2007; Van den Meersche et al., 2008),
FIGURE 1

Location of the Socheongcho Ocean Research Station (S-ORS; blue dot).
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whereas BCE has issues with reproducibility (Hyun et al., 2022).

Therefore, this study utilizes a combination of these methods to

address these issues: the underdetermined bias of CHEMTAX can

be dealt with by constraining the pigment ratio variation range

(Hyun et al., 2022), while BCE is appropriate for obtaining a range

of coefficients rather than exact coefficient values. Therefore, we

first determined the pigment variation range using BCE; the initial

ratios and ratio limit matrices (RLMs) were obtained based on that

range. Finally, CHEMTAX analysis was conducted with the initial

ratios and RLMs to assess taxonomic composition.

Prior to the CHEMTAX analysis, the samples were pre-

clustered based on sampling date into 14 clusters. This process

was used to prevent decreased precision of both CHEMTAX and

BCE analyses caused by the inclusion of too many samples in a

single run. BCE analysis was conducted using the BCE package

(Van den Meersche and Soetaert, 2022) in the R programming

language (R Core Team, 2022). The starting pigment ratio was

obtained by reconstructing the pigment ratio statistics of Roy et al.

(2011), and is presented in Supplementary Table S1.

For each cluster, 100,000 iterations were conducted with a burn-

in length of 35,000. An updated covariance value of 100 was applied,

and the jump length was finely adjusted separately for each cluster

to avoid autocorrelation in the trace plot and achieve an acceptance

rate of 30–80%. Detailed information about the pre-clustering,
Frontiers in Marine Science 04
adjusted jump length, and resulting acceptance rate for each

cluster is provided in Supplementary Table S2. For settings that

are not listed in the Supplementary Material, we used the defaults

provided in the BCE package.

The initial ratios and RLMs used for CHEMTAX analysis were

based on the 99% confidence intervals produced by the BCE

analysis of pigment ratios. CHEMTAX analysis was conducted

with the following settings, which were adapted from Latasa

(2007): iteration limit of 5,000, epsilon limit of 0.0001, initial step

size of 25, step ratio of 2, cutoff of 30,000, and bounded

relative weighting.

To visualize the station location and results, which include Chl-a

concentrations for each phytoplankton group, CTD, and nutrient

data, we used the Ocean Data View software (Schlitzer, 2022).
2.5 Environmental factors associated with
vertical mixing

Wind speed, wave height, atmospheric temperature, and sea

surface temperature (SST) data were collected by sensors equipped

on S-ORS. Specific details of the equipment are presented in

Supplementary Table S3. The locations of sensors in S-ORS are

depicted in Figure 2.

Wind speed, atmospheric temperature, and SST data were

collected on a minute-by-minute basis, then averaged to obtain

daily average values. Significant wave height was continuously

calculated throughout each day, rather than averaged.

The stratification, MLD, pycnocline depth, and density gradient

of the pycnocline were calculated based on the vertical CTD profile

for each day. Water column stratification was determined as the

sigma-t difference between the bottom (at 40 m) and surface waters.
FIGURE 2

Images of S-ORS, including observation facilities used in this research.
TABLE 1 Start and end dates of sample collection during each year.

Year Start date End date Duration

2018 March 25th May 26th 63 days

2019 April 4th May 20th 47 days

2020 March 26th May 18th 54 days
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The MLD was defined as the shallowest depth at which sigma-t

exceeds the surface value by more than 0.03 kg/m³ (de Boyer

Montégut et al., 2004). Because of CTD instrument instability

near the surface, we used the value at 5 m as a proxy for surface

density. The density gradient was determined as the density

difference relative to the depth 1 m above, and the pycnocline

was defined as the depth with the maximum density gradient on a

particular day.

Pearson’s correlation-based network analysis was conducted

between Chl-a and the parameters associated with vertical mixing

to examine how those factors influence the spring bloom process.

For this network analysis, data collected after the Chl-a peak were

excluded to focus on the bloom formation process, rather than the

bloom decrease process.
2.6 Multivariate analysis and
time-series analysis

To elucidate the process through which environmental variables

affect the biomass of each phytoplankton group, multivariate

analysis to explain the patterns is needed. Statistical analysis was

conducted using the R programming language (R Core Team,

2022). RDA was performed to identify significant distribution

patterns of phytoplankton group biomass in relation to

environmental factors. This analysis was conducted using the

Vegan package (version 2.6-2) (Simpson et al., 2022).

Time-series analysis was conducted to address time-dependent

mechanisms that are difficult to explain with RDA. DFA was

performed on surface water samples using the MARSS package

(Holmes et al., 2012; Holmes et al., 2021a; Holmes et al., 2021b) and

the results were visualized using the ggplot2 package (Wickham,

2016). For the DFA model, we established the observation equation

[Equation (1)] and state space equation [Equation (2)]:

yt = Gat + m + Dxt + et (1)

at = at−1 + ht (2)

where yt represents the phytoplankton biomass of each group at

time t, formatted as a 6 × n matrix in which rows represent the six

phytoplankton groups analyzed with CHEMTAX, while columns

represent samples. a represents the state value, which is a latent

factor influencing the observed variables; it is a 5 × n matrix because

we included five state space variables. G represents the factor

loadings that link the observed variables to the state space, and is

a 6 × 5 matrix. μ indicates the intercept, and  x represents the five

covariates included in the model: temperature, salinity, nitrate,

phosphate, and silicate. D represents factor loadings linking the

covariates with the observed variable. ϵ and h are error terms for the

observation and state space, respectively. For ϵ, an optimized

diagonal and unequal matrix is used, while for h an identity

matrix is employed.

The number of state spaces is determined by comparing the

corrected Akaike information criterion (AICc) for one to five state

spaces and selecting the smallest AICc, which was obtained with five

state spaces. To identify covariates to include in the model, we
Frontiers in Marine Science 05
tested multiple physical and chemical environmental variables,

including the nitrogen to phosphorus (NP) ratio. Through the

comparison of AICc values, we selected five covariates. To

prevent the model from being underdetermined, we constrained

some elements of the G, μ, and D matrices. The designs for these

matrices are shown in (3). gi,j,  ai,  di,j are the parameters calculated

by the model, while the 0 values remain unmodified.

G =

g11 0 0 0 0

g21 g22 0 0 0

g31 g32 g33 0 0

g41 g42 g43 g44 0

g51 g52 g53 g54 g55
g61 g62 g63 g64 g65

2
666666666664

3
777777777775

,m =

0

0

0

0

0

a6

2
666666666664

3
777777777775

,D =

d11 d12 d13 d14 d15

d21 d22 d23 d24 d25

d31 d32 d33 d34 d35

d41 d42 d43 d44 d45

d51 d52 d53 d54 d55

d61 d62 d63 d64 d65

2
666666666664

3
777777777775

(3)
3 Results

3.1 Physical characteristics

The physical characteristics of the water column during the

spring research periods of 2018, 2019, and 2020 were investigated in

this study (Figure 3). The temperature of the water during the 2018

sampling period ranged from 4.43 to 15.10°C, with a steady increase

over time. Initially, no significant temperature differences were

observed with depth. However, the surface temperature increased

rapidly, resulting in the development of a thermocline in late April

that persisted around a depth of 15 m for most of May. The 2019

research period exhibited a similar pattern, with a water

temperature ranging from 6.45 to 15.76°C and a thermocline

forming at a shallower depth of around 10 m. In contrast, the

2020 season displayed significant differences, with a much narrower

temperature range between 6.78 and 11.32°C and a shallow

thermocline that developed only toward the end of the

research period.

During the 2018 and 2019 research periods, salinity showed

decreasing trends, ranging from 31.136 to 32.632 PSU and 31.647 to

32.313 PSU, respectively. However, the 2020 research period

exhibited a distinct trend, with salinity remaining relatively

constant between 32.086 and 32.405 PSU throughout the

study period.

In early spring of 2018 and 2019, when sampling began, no

significant density differences were found, indicating a well-mixed

environment at the start of sampling.

The pycnocline began to form in late April and persisted until

the end of the research period. In contrast, during 2020, the

pycnocline was not well developed until the end of the study

period, allowing for greater vertical mixing.

The temperature–salinity (T-S) diagram presented in Figure 4

provides a clear representation of the observed trend. Salinity was

highest in 2020, followed by 2019 and then by 2018. However,

potential temperature, rather than salinity, was the primary driver

of the observed vertical density differences. In 2018, potential

temperature was lowest during the early spring season and

gradually increased over time, thereby contributing to the
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observed vertical density difference. Potential temperature

increased more rapidly in 2019, resulting in a vertical density

difference similar to that observed in 2018. The trend in 2020

differed significantly, with potential temperature being highest at

the start of the research period and surface potential temperature

being lowest at the end of the study period among the 3 years,

resulting in a relatively small vertical density difference.
3.2 Distributions of inorganic nutrients

The concentrations of nitrate, phosphate, and silicates, which

are major inorganic nutrients utilized by marine primary producers,

exhibited a common pattern of high levels in early spring followed

by steady decreases ~ over time (Figure 5). The rate of decrease in

nutrient concentrations was highest above the pycnocline,
Frontiers in Marine Science 06
especially for phosphate, resulting in an increase in the NP ratio

of surface water after pycnocline formation and indicating

phosphate limitation in the upper water column. In 2020, no

significant pycnocline formed, resulting in a more uniform

nutrient pattern throughout the water column, which may have

impacted the phytoplankton community.

During early spring of 2018, which had the lowest water

temperature among the 3 years studied, nutrient concentrations

exhibited fluctuations rather than a steady decrease. The

concentration of nitrate ranged between 4.85 and 8.30 μM, that of

phosphate ranged between 0.44 and 0.93 μM, and that of silicate

ranged between 2.64 and 6.39 μM prior to 20 April. Subsequently,

nutrient concentrations decreased significantly, particularly in

surface waters, with the concentration of nitrate ranging between

0.52 and 10.83 μM, that of phosphate ranging between 0.16 and 1.24

μM, and that of silicate ranging between 0.21 and 4.18 μM until the

end of the 2018 study period. Extreme values of the NP ratio

(typically > 30 with a maximum value of 55.0) were observed in

surface water between 26 April and 16 May as phosphate became

limited. These extreme events occurred in surface waters only after

the pycnocline formed, and the average NP ratio for the entire 2018

sampling period was 15.02 ± 6.82.

Among the years studied, 2019 had the lowest phosphate

concentrations, which showed a tendency to decrease shortly after

the research period began. The concentration of nitrate fluctuated

between 2.11 and 26.27 μM. The concentration of phosphate ranged

between 0.02 and 0.57 μM, and that of silicate ranged between 0.25

and 5.91 μM. These concentrations resulted in high NP ratios, with

an average of 26.98 ± 24.15. Extreme values were observed in

surface waters, with a maximum of 225.68.

In 2020, a similar decreasing trend in nutrient concentrations

was observed, with less significant vertical differences compared to

the previous 2 years. The concentration of nitrate ranged between

0.60 and 8.37 μM, that of phosphate ranged between 0.06 and 1.28

μM, and that of silicate ranged between 0.12 and 10.60 μM. The

average NP ratio during this season was 18.55 ± 14.85, and no

extreme values were observed in surface water.
FIGURE 4

Temperature–salinity diagram for 1-m bin-averaged conductivity-
temperature-depth (CTD) data for all dates. Blue, green, and red
dots represent data from 2018, 2019, and 2020, respectively.
FIGURE 3

Contour plots of temperature, salinity, and density for each year. The x-axis represents time (days), and the y-axis represents water depth (m).
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The NP ratios were generally distributed near the 16:1 line, with

only a few outliers (Figure 6). Extremely high NP ratios were

typically observed in surface waters after pycnocline formation,

but no clear distributional trend of extremely low ratios was

observed. Furthermore, most data from 2019 fell above the 16:1

line, indicating an overall pattern of phosphate limitation during

that year.
3.3 Distributions of phytoplankton
groups revealed through the
chemotaxonomic approach

The Chl-a concentrations of the phytoplankton groups are

shown in Figure 7. Throughout the 3-year study period, several

common trends were observed. Bacillariophyceae and Cryptophyceae

were the dominant phytoplankton groups throughout the study,

with their biomass increasing as concentrations of nutrients,

particularly phosphate, decreased throughout the water column in

the early period. As the pycnocline developed, large increases in

chlorophytes and cryptophytes were observed near the water

surface, while the biomass of Bacillariophyceae decreased

throughout the water column, as did the that of Cryptophyceae

below the pycnocline. Slight increases in Prymnesiophyceae and

Dinophyceae occurred above the pycnocline just after the

chlorophyte bloom. Synechococcus exhibited an overall pattern

similar to that of Bacillariophyceae, although it had much lower

biomass than the other groups. Table 2 provides the average

concentrations and concentration ranges of Chl-a for each group

and year.

In the early spring period of 2018, Bacillariophyceae was the

dominant group; its biomass showed the opposite trend to the

nutrient concentrations, particularly phosphate. This finding

suggests that during the early spring season, the top-down effect
Frontiers in Marine Science 07
outweighed the bottom-up effect (i.e., phytoplankton uptake

controlled nutrient levels). After the pycnocline developed, the

biomass of Bacillariophyceae was rapidly replaced with

chlorophytes in the surface water. On 7 May, the peak of the

bloom, chlorophytes contributed 8,437 ng L−1 of the total of 10,101

ng L−1 Chl-a; Bacillariophyceae accounted for only 700 ng L−1 in the

same sample. Above the pycnocline, cryptophytes were the second

most abundant group during this period. Thereafter, the biomass of

Prymnesiophyceae and Dinophyceae increased, while the three

major groups decreased simultaneously above the pycnocline.

Despite the increase, the biomass of Prymnesiophyceae and

Dinophyceae did not exceed that of the three major groups.
FIGURE 6

Nitrogen to phosphorus (NP) ratios for all samples. Blue, green, and
red dots represent data from 2018, 2019, and 2020, respectively.
Solid line is a 16:1 line.
FIGURE 5

Contour plots of nitrate, phosphate, and silicate concentrations, and NP ratios, for each year. The x-axis represents time (days), and the y-axis
represents depth.
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In 2019, at the beginning of the research period, Bacillariophyceae

and Cryptophyceae were the two major groups, in accordance with

2018. The biomass of these two taxa increased throughout the water

column as levels of phosphate and silicate decreased, and this

increase continued until the pycnocline began to develop. One
Frontiers in Marine Science 08
difference in this trend from 2018 is that the biomass of all other

groups increased simultaneously. The surface chlorophyte and

Cryptophyceae bloom occurred after the pycnocline had

developed, but its scale was much smaller than in 2018; 2,095 ng

L−1 Chl-a was derived from chlorophytes, and 1,869 ng L−1 from
FIGURE 7

Contour plots of Chl-a concentrations for each phytoplankton group, for each year, calculated by chemotaxonomic analysis. The x-axis represents
time (days), and the y-axis represents water depth (m). Consistent scales are used where possible for ease of comparison; however, the 2018
chlorophyte bloom necessitated a unique scale.
TABLE 2 Average concentrations and concentration ranges of chlorophyll a (Chl-a) for each phytoplankton group and year.

Groups
Average concentration (ng L-1) Concentration range (ng L-1)

2018 2019 2020 2018 2019 2020

Chlorophytes 393±771 227±192 152±61 67-8,437 32-2,095 56-494

Bacillariophyceae 701±353 538±297 768±385 40-2,886 59-1,640 121-2,128

Cryptophyceae 557±259 666±349 810±386 65-1,726 116-1,869 177-2,083

Prymnesiophyceae 70±35 65±33 93±46 0-289 9-239 14-368

Dinophyceae 76±28 65±26 95±47 0-191 10-209 21-441

Synechococcus 47±19 53±22 58±27 0-116 6-122 15-145

Total Chl-a 1,844±1,088 1,613±719 1,977±806 286-10,101 290-4,700 441-4,730
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Cryptophyceae, out of the total 4,700 ng L−1 Chl-a. After that

period, a slight increase in Prymnesiophyceae and Dinophyceae

biomass was observed, as in 2018, but the extent and duration of

these increases were smaller.

During 2020, no bloom of chlorophytes and Cryptophyceae in

the surface water was observed, as the pycnocline was not present

during the 2020 research period. Instead, high levels of

Bacillariophyceae and Cryptophyceae biomass persisted longer

throughout the water column compared to the other 5 years.

Consequently, the maximum Chl-a value during 2020 was

observed in the bottom water (40 m) on 27 April, whereas in the

other two years the maximum value occurred in the surface water

during the extreme biomass increase of the chlorophytes; of the

4,730 ng L−1 of Chl-a, 2,090 ng L−1 was from Bacillariophyceae and

1,959 ng L−1 was from Cryptophyceae. Around 15 May, a surface

Chl-a increase was detected as the pycnocline began to form, which

was much later than in the other 2 years studied. However, the

extent of this increase was smaller (maximum value, 3,590 ng L−1

Chl-a), as the available nutrients had been consumed by

Bacillariophyceae and Cryptophyceae. Instead of chlorophytes

and Cryptophyceae accounting for most of the biomass, all

groups excluding Bacillariophyceae increased simultaneously.
3.4 Relationships among vertical mixing
parameters and resulting nutrients and
phytoplankton Chl-a concentrations in
each taxonomic group

Network analysis was conducted between the parameters

associated with vertical mixing and the resulting nutrient and

Chl-a concentrations for each phytoplankton group. For this
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analysis, only surface data prior to the Chl-a peak were included

to focus on the bloom formation process. Table 3 presents

Pearson’s correlation coefficients (r) between Chl-a and each

variable. Additional network analysis was conducted to

investigate interrelationships among variables (Figure 8). Only

correlations with r< −0.45 or r > 0.45 were included in the network

analysis plot.

Among the factors influencing mixing, wave height and wind

were strongly correlated with each other (r = 0.79), but were rarely

linked with other variables, the sole exception being the correlation

between pycnocline depth and wave height (r = 0.45). In contrast,

atmospheric and sea surface temperatures (SSTs) were related to

seven other nodes spanning multiple categories. However, only two

edges connected vertical mixing parameters with these two

temperatures: one between MLD and atmospheric temperature

and another between stratification and SST. Surface density,

which had the most connections, was related to three factors

affecting mixing, three vertical mixing parameters, two nutrient

factors, and Chl-a content of one specific taxonomic group.

Total Chl-a was linked with density, stratification, salinity, and

the density gradient in the pycnocline. However, when segmented

into groups, Chlorophytes correlated solely with stratification, while

Cryptophyceae associated with seven factors, excluding the biomass

of other taxonomic groups. The Bacillariophyceae, which is one of

the main group for the spring S-ORS only shows the correlation

between other taxonomic groups but the other environment factors,

while Prymnesiophyceae have connected with density, SST, and

atmosphere temperature but not with vertical mixing or nutrients.

Dinophyceae and Synechococcus each correlate with two specific

phytoplankton groups but not connected with other environmental

factors. Notably, the mixed layer depth does not have any

connections with any phytoplankton group.
TABLE 3 Pearson’s correlation coefficients between vertical mixing-related environmental factors and surface Chl-a concentrations.

Wind
speed

Significant
wave height

Atmospheric
temperature

Sea surface
temperature

Stratification
Mixed
layer
depth

Pycnocline
Density

gradient in
pycnocline

Beam
attenuation

Significant wave
height

0.79

Atmospheric
temperature

-0.15 -0.27

Sea surface
temperature

-0.05 -0.01 0.72

Stratifictaion -0.09 -0.13 0.44 0.46

Mixed layer
depth

-0.11 0.03 -0.49 -0.37 -0.58

Pycnocline 0.37 0.45 -0.18 -0.13 -0.14 0.12

Density gradient
in pycnocline

-0.00 -0.07 0.39 0.36 0.73 -0.67 -0.09

Beam
attenuation

0.11 0.08 0.23 0.35 0.32 -0.05 -0.02 0.31

Surface
Chlorophyll a

0.15 0.10 0.39 0.31 0.49 -0.28 0.03 0.53 0.50
f
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3.5 Multivariate analysis of phytoplankton
Chl-a concentrations for each group and
related environmental variables

To explore the relationship between phytoplankton community

structure and key environmental variables, we performed RDA

(Figure 9). Prior to the development of the pycnocline, when

physical characteristics such as low temperature, high density,

and elevated salinity were consistent, most of the sample data

clustered near the center of the RDA1 axis. However, data points

with higher temperatures, particularly those collected near the

surface after the development of the pycnocline, shifted toward

the first quadrant. The density gradient of the pycnocline emerged

as a predominant factor explaining the variance in data points away

from the surface. The placement of the data points appears to align

with the directions of the variables. However, distinctions between
Frontiers in Marine Science 10
years for data collected below the surface were not readily apparent

on the triplot.

With respect to phytoplankton groups, chlorophytes tended to

be present at high levels when the temperature, pycnocline density

gradient and NP ratio were high, and salinity was low.

Prymnesiophyceae had high abundance when the temperature

was high and nutrient concentrations were low. Bacillariophyceae

and Cryptophyceae had high biomass when both the NP ratio and

pycnocline density gradient were low. However, Cryptophyceae

favored higher temperatures than Bacillariophyceae. Dinophyceae

exhibited a preference for low pycnocline density gradient, but to a

lesser extent than Bacillariphyceae and Cryptophyceae, and they

thrived at intermediate nutrient and temperature levels.

Synechococcus biomass appeared to increase at high salinity and

MLD, along with a low NP ratio and pycnocline density gradient.

However, the biomass of Synechococcus was too low for accurate

determination of the trend in their distribution.
3.6 DFA of surface Chl-a for each group

RDA reveals the overall pattern of phytoplankton biomass

across environmental gradients, but does not elucidate the

mechanisms occurring throughout the study period. Therefore,

we conducted time-series analysis to reveal these mechanisms.

The DFA model was employed for this analysis. Figure 10

compares the actual and model-expected values. The overall trend

accurately predict by model, with only minor discrepancies

observed for extreme values.

Plots used for model diagnostics are presented in

Supplementary Figure S1. These plots confirm that there was no

time-dependent pattern among the residuals and that the

assumption of normal distribution was approximately met,

although with some degree of tailing, indicating the failure of

prediction for extreme values. No significant autocorrelation was

detected among the residuals. These diagnostics demonstrate that

the DFA model established here is valid, despite its failure to predict

extreme values accurately.
FIGURE 9

Redundancy analysis triplot illustrating relationships between
phytoplankton community structure and major environmental
variables. Blue, green, and red dots represent data from 2018, 2019,
and 2020, respectively; purple crosses indicate phytoplankton groups.
FIGURE 8

Network analysis of surface Chl-a concentrations for each phytoplankton group and variables related to vertical mixing, based on Pearson’s
correlation analysis, assessed using correlation coefficients (r). Only relationships with r< −0.45 or r > 0.45 are shown. Edge thickness indicates
correlation strength.
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Table 4 shows the coefficients obtained by the DFA model. The

factor loadings for covariates show how environmental factors affect

the biomass of each phytoplankton group. Each loading indicates the

correlation between an environmental factor and the biomass of a

group. Most phytoplankton groups have negative correlations with

phosphate and nitrate concentrations. Overall, two groups appear in

this analysis: one with larger negative factor loadings for phosphate and

temperature, and one with smaller negative or positive loadings for

phosphate and temperature. The first group includes chlorophytes,
Frontiers in Marine Science 11
Bacillariophyceae, and Cryptophyceae, while the second group

comprises Prymnesiophyceae, Dinophyceae, and Synechococcus.

Silicate had positive factor loadings for all groups. The loadings

for Bacillariophyceae, Prymnesiophyceae, Dinophyceae, and

Synechococcus ranged between 2 and 4, whereas chlorophytes and

Cryptophyceae had high loadings of 35 and 24, respectively.

Bacillariophyceae and Cryptophyceae have negative loadings for

nitrate, similar to phosphate. Chlorophytes exhibit the largest

positive loading.
FIGURE 10

Comparison of actual and expected values obtained from the DFA model. Points represent actual values, line represents expected values, and gray
shaded area indicates the 95% confidence interval of the model.
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4 Discussion

4.1 Applicability of time-series analysis
based on data from fixed station S-ORS

DFA is a state-space model used for time-series analysis that

fuses two multiple linear regressions, a covariate component and a

state-space component. The covariate component explains the

effects of environmental factors included in the model on

phytoplankton biomass, whereas the state-space component

captures the impacts of time-dependent environmental

fluctuations that are not included as covariates in the model.

These elements may be excluded from the model as a result of

practical concerns such as ensuring model validity (e.g., to prevent

excessive explanatory variables from undermining model

robustness) or challenges associated with data collection.

Unaccounted factors can range from the influence of zooplankton

grazing and the physiological state of cells to atmospheric effects.

The factor loadings for the biomass of various phytoplankton

groups, i.e., the covariate component, are shown in Table 4. These

loadings are analogous to multiple linear regression slopes, and they

provide substantial insights. For example, Bacillariophyceae had the

lowest factor loading for temperature but the highest for salinity, which

suggests a preference for unstable water columns that explains its

dominance in early spring and persistence in waters beneath the

pycnocline post-surface bloom. Although Cryptophyceae also had

low factor loading for temperature and high factor loading for

salinity, its values were less extreme than those of Bacillariophyceae.

This difference may allow Cryptophyceae to contribute significantly to

surface blooms in conditions where Bacillariophyceae struggles to

survive. In contrast, Chlorophytes appear to thrive in relatively stable

water columns. Their lowest factor loading for phosphate implies

higher phosphate consumption, compared to other groups, and their

positive factor loading for nitrate suggests that, although they consume

nitrate, they consume it in lower amounts than phosphate. This finding

suggests that chlorophyte surface blooms lead to surface phosphate

limitation. The remaining three taxonomic groups appeared to favor

more stable water columns and demonstrated higher resilience to low-

phosphate environments, as inferred from their factor loadings.

A notable trend was observed in the state-space component of

the DFA model: the state contribution (State loading � State space;

Gat) was significantly correlated with the group biomass of the
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previous day (chlorophytes: r = 0.68, Bacillariphyceae: r = 0.36,

Cryptophyceae: r = 0.75, Prymnesiophyceae: r = 0.58, Dinophyceae:

r = 0.72, Synechococcus: r = 0.54). This result indicates that, in

addition to environmental impact, the biomass of the previous day

contributes significantly to that of the following day.

Those patterns were not elucidated through network analysis.

Bacillariophyceae, Dinophyceae, and Synechococcus had no edges

connected with any environmental factors, which indicates that

network analysis failed to explain the trend of the phytoplankton

group along the environmental gradient. Thus, the network analysis

was unable to reveal the combined effect of multiple variables, as it

was based on single-correlation analysis. Network analysis has its

strengths, although it failed to clarify the link between the

environment and phytoplankton response in this study. Because

our network analysis was conducted based on correlations between

variables, it identified patterns that are typically difficult to discern

through DFA and RDA due to multicollinearity. For example,

network analysis revealed that stratification and density gradients

in the pycnocline directly impacted the phytoplankton community,

whereas the MLD showed no direct correlation. Moreover, our

analysis also showed that wind and wave height have a much

weaker impact on water stratification than temperature increases.

Although RDA is frequently utilized for analyzing phytoplankton

communities, based on a combination of elements from multiple

linear regression and PCA, its effectiveness can be compromised by

data loss. Specifically, it often captures only overarching trends. In the

RDA model employed in this study, the r2 value was only 0.19,

indicating significant data loss during the multiple linear regression

phase. The subsequent PCA stage further accentuated this loss, with

the RDA1 and RDA2 axes accounting for 46.89% and 32.32% of the

variance, respectively, and representing an additional data loss of

20.79%. This oversimplification can be misinterpreted if the results

are not carefully reviewed. For example, in the triplot, the pycnocline

density gradient appeared to be positively correlated with the

pycnocline depth and NP ratio, and to be negatively correlated

with MLD; however, none of these inferences are true.

Therefore, it is clear that time-series data analysis can reveal

detailed patterns that were not discerned through RDA or network

analysis, which are primary analytical methods in community

ecology. In this study, the time-series dataset was acquired at the

fixed station S-ORS. As demonstrated in our research on the spring

phytoplankton bloom pattern, S-ORS is a valuable facility for
TABLE 4 Dynamic factor analysis (DFA) model results: factor loadings for covariates obtained from the DFA model.

Groups
Factor loadings for covariates

Temperature Salinity Nitrate Phosphate Silicate

Chlorophytes -11 11 14 -709 35

Bacillariophyceae -75 28 -10 -237 3

Cryptophyceae -40 8 -4 -179 24

Prymnesiophyceae 8 -2 1 -90 4

Dinophyceae -1 1 -1 -45 2

Synechococcus 1 -15 -15 5 2
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acquiring time-series datasets, and will contribute significantly to

our understanding of oceanic processes.
4.2 Initiation of the surface phytoplankton
bloom process

As shown in Table 3 and Figure 8, there were concurrent

increases in phytoplankton biomass and parameters associated with

weakened vertical mixing. However, in contrast to previous research

suggesting that the formation of a shallow MLD above the critical

depth initiates phytoplankton bloom in spring (Sverdrup, 1953;

Rumyantseva et al., 2019), network analysis revealed that depth-

associated parameters such as MLD and pycnocline depth did not

directly affect the increase in phytoplankton biomass in early spring.

Instead, parameters such as stratification and the density gradient in

the pycnocline were more strongly correlated with Chl-a

concentrations, relative to any other factors related to vertical mixing.

Weakened vertical mixing appears to result from an increase in

SST, which is driven by increases in solar radiation and atmospheric

temperature. Wind speed and wave height appear to have minimal

impact on vertical mixing intensity or MLD, but they show weak

correlations with pycnocline depth. Therefore, in the Yellow Sea, we

concluded that the increase in biomass in spring results from

weakened vertical mixing, which is caused by increased SST.

However, when Chl-a was divided into groups, the reactions to

vertical mixing appeared to differ among groups. Chlorophytes, the

dominant group within the surface bloom, appeared to be have

direct interaction only with stratification, and Cryptophyceae, the

second most dominant group in the surface bloom, exhibited

complex interactions with stratification, atmosphere temperature,

SST, density, pycnocline density gradient, and phosphate and

silicates contents. As surface phytoplankton are associated with

stratification, and most edges linked with Cryptophyceae are

associated with vertical mixing, the surface phytoplankton bloom

appears to have been initiated by the onset of vertical mixing. This

finding is consistent with the concepts underlying the critical

turbulence hypothesis (Huisman et al., 1999).

However, the biomass increase that occurred below the surface

water before the surface bloom must be interpreted differently.

Bacillariophyceae, the dominant group under the pycnocline, had

no network edges connected with environmental factors. However,

the RDA revealed strong preferences for a weak pycnocline density

gradient and low temperature. This result is consistent with the

DFA factor loadings on temperature and salinity. Therefore, we

conclude that Bacillariophyceae prefers environmental conditions

with active vertical mixing.

Although DFA analysis revealed that the increasing biomass of

Bacillariophyceae was coupled with rapid nutrient consumption, we

were unable to explain the faster consumption rate than that observed

in the previous bloom, based on our data. However, the DFA state

contribution showed a linear relationship with the biomass of the

previous day, and Bacillairophyceae had the weakest correlation (r =

0.36). Thus, unlike other phytoplankton groups, the biomass of

Bacillariophyceae was more substantially affected by the unknown

variable than the biomass of the previous day or vertical mixing.
Frontiers in Marine Science 13
One strong possible explanation for this discrepancy is the

disturbance and recovery hypothesis (Behrenfeld et al., 2013),

which argues that in winter, phytoplankton–grazer interactions

tend to become unbalanced as the relative water temperature

increase alters the division and mortality rates of both

phytoplankton and grazer. However, as our study did not collect

data on grazers, this hypothesis cannot be tested using our data.

However, interactions above and below surface blooms must occur

based on different mechanisms, as different groups induce the

bloom from each direction.
4.3 Phytoplankton spring bloom
succession pattern observed repeatedly
across years

The overall pattern of the spring bloom observed at S-ORS is

illustrated in Figure 11. During the early spring season, the biomass

of all phytoplankton groups is low, consisting mostly of

Bacillariophyceae and Cryptophyceae. As temperature increases,

the biomass of those taxa begins to increase, coinciding with

decreasing concentrations of nutrients, especially phosphate, from

the surface to bottom water.

This pattern shifts when the surface temperature increases and

the thermocline begins to develop in late April or early May. A rapid

increase in chlorophyte biomass occurs during this period. The

consistent timing of the chlorophyte bloom, along with the small

negative factor loading for temperature, suggests that the stability of

the water column may be an important contributor to the increase

in chlorophyte biomass. Cryptophyceae also increase in biomass

during this period, while Bacillariophyceae do not. The biomass of

Bacillariophyceae above the pycnocline decreases during this

period, while their biomass below the pycnocline either decreases

or fluctuates both during and after this period. This pattern is

caused by the preference of the Bacillariophyceae for a turbulent

water column over a stable water column, as shown by DFA and

RDA. The availability of phosphate appears to be a critical

determinant of Bacillariophyceae biomass.

As the DFA model indicates, chlorophytes have the highest

consumption rate of phosphate, but not as much nitrate. The

chlorophyte bloom above the pycnocline leads to depletion of

phosphate, resulting in extremely high N:P ratio values. This stress,

stemming from phosphate limitation as evidenced by the extreme N:

P ratio, leads to a subsequent decrease in the biomass of nutrient-

demanding groups such as chlorophytes, Bacillariophyceae, and

Cryptophyceae (Egge, 1998; Lafarga-De la Cruz et al., 2006; Lin

et al., 2016; Ramos-Rodriıǵuez et al., 2017; Tragin and Vaulot, 2018;

Andersen et al., 2020). While their preference for phosphate over

nitrate might vary based on environmental and physiological states,

given the clear phosphate limitation in the surface water, it’s

reasonable to infer that this limitation restricts their biomass. This

trend is coupled with a slight increase in Prymnesiophyceae and

Synechococcus, which have lower nutrient demand. The

Dinophyceae, known to be nutrient-demanding, also increase their

biomass in this period. Lin et al. (2016) summarized the factors

contributing to the rise of Dinophyceae in nutrient-limited late
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spring: their motility allows them to migrate vertically (Sinclair and

Kamykowski, 2008; Hall and Paerl, 2011), accessing deeper nutrient-

rich waters; their ability to utilize DOP and DON (Sunda et al., 2006;

Burkholder et al., 2008); their capacity for phagotrophy; and their

defense mechanisms that deter grazing (Sunda et al., 2006; Hong

et al., 2012; Waggett et al., 2012; Hardison et al., 2013).

In 2019, the phosphate concentration was the lowest compared to

the other two years. Consequently, the nitrate concentration did not

decrease as significantly as it did in the other years. This is likely

because phosphate limitation hindered the utilization of nitrate by

phytoplankton. As phosphate limitated the surface chlorophyte peak

appears to be smaller in 2019 than 2018. Furthermore, the surface

increases of Prymnesiophyceae, Dinophyceae, and Synechococcus

immediately after the chlorophyte peak appears to be less

significant and somewhat delayed compared to 2018. These

patterns indicate that concentrations of nutrients (e.g., phosphate)

and temperature are the major factors that determine phytoplankton

community composition, consistent with multiple recent studies

(Skákala and Lazzari, 2021; Hyun et al., 2023; Zhang G. et al., 2023).

Overall, the concentration of phosphate appears to be the most

significant determinant of the magnitude and timing of the spring

bloom. The increase in temperature, which results in the formation

of a pycnocline and induces the chlorophyte bloom, is another

important factor during this period. However, in 2020, the

temperature increase in surface water was further delayed,

resulting in a distinct pattern.
4.4 Differences in spring bloom
patterns among 3 years and their
environmental drivers

While the difference between 2018 and 2019 is generally limited

to phosphate concentration, 2020 exhibited significantly different

physical characteristics, leading to a different spring bloom pattern.

The formation of a pycnocline, which initially induces a chlorophyte
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bloom above it that later switches to less phosphate-demanding

groups, was significantly delayed (until mid- to late May) in 2020.

As a result, no chlorophyte bloom occurred, which prevented

phosphate limitation. This absence of phosphate limitation allowed

for a longer period of high Bacillariophyceae and Cryptophyceae

biomass throughout the water column compared to the previous 2

years. As the pycnocline began to develop in mid-May, the biomass of

all phytoplankton groups increased simultaneously, but the

maximum chlorophyll concentration in surface water was much

lower than in the other 2 years.

Overall, a phytoplankton spring bloom anomaly occurred in

2020 due to weakened stratification (Kim et al., 2023a). According

to a previous studies, this weakened thermal stratification was

primarily induced by latent heat flux release driven by strong

northwesterly winds in April 2020, accompanied by anticyclonic

and cyclonic circulation patterns over Siberia and the East Sea (Kim

et al. 2022; Kim et al., 2023b). The anomaly was also influenced by

warm winter temperatures. The prevailing northwesterly winds

generated a cold surface anomaly, which increased vertical water

column mixing, resulting in a weakened phytoplankton spring

bloom. These factors combined to create conditions that were not

conducive to a healthy spring bloom in the Yellow Sea.

Climate change may have played a role in the weakened

stratification observed in the Yellow Sea in 2020. Climate change

can affect ocean temperature, currents, and atmospheric conditions,

all of which can impact ocean stratification patterns. Further

research is needed to clarify the complex interactions among

these factors and their potential impacts on marine ecosystems.

In the era of big data in marine science, characterized by an

explosion of in situ observations, quantitative remote sensing

products, techniques for managing uncertainties in marine

remote sensing data, and efforts to connect historical and modern

datasets are particularly important for accurate monitoring of the

spatial and temporal distributions and variabilities of

phytoplankton community composition (Mélin, 2019; Brewin

et al., 2023; Zhang Y. et al., 2023).
FIGURE 11

Schematic diagram of the spring bloom at S-ORS.
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5 Conclusions

This study elucidated the intricate dynamics of the seasonal

phytoplankton bloom in the Yellow Sea. We found that the

initiation of the phytoplankton spring bloom process is closely

associated with weakened vertical mixing, which is driven by

increased SST. Our research revealed a consistent pattern of

phytoplankton spring bloom succession across years; changes in

phosphate concentration and temperature played significant roles.

However, the year 2020 exhibited a unique pattern due to delayed

pycnocline formation and weakened stratification, highlighting the

potential impacts of climate change on this process. These findings

underscore the complex interplay between physical and biological

factors in terms of shaping phytoplankton dynamics; they suggest

that further research is needed to clarify these interactions and

potential impacts on marine ecosystems.

Taxonomically, chlorophytes and Cryptophyceae, which

dominated the surface bloom, interacted directly with

stratification. Bacillariophyceae, which was dominant beneath the

pycnocline, appeared to prefer turbulent water conditions. As the

surface water became nutrient-limited, there was a shift to late

successional groups such as Dinophyceae, Prymnesiophyceae,

and Synechococcus.
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(2013). Phytoplankton competition during the spring bloom in four plankton functional
type models. Biogeosciences 10 (11), 6833–6850. doi: 10.5194/bg-10-6833-2013

Hilligsøe, K. M., Richardson, K., Bendtsen, J., Sørensen, L.-L., Nielsen, T. G., and
Lyngsgaard, M. M. (2011). Linking phytoplankton community size composition with
temperature, plankton food web structure and sea–air CO2 flux. Deep Sea Res. Part I:
Oceanographic Res. Papers 58 (8), 826–838. doi: 10.1016/j.dsr.2011.06.004

Holmes, E. E., Scheuerell, M. D., and Ward, E. J. (2021a) Analysis of multivariate
time-series using the MARSS package (version 3.11.4) [R package]. Available at: https://
CRAN.R-project.org/package=MARSS/vignettes/UserGuide.pdf.

Holmes, E. E., Ward, E. J., and Kellie, W. (2012). MARSS: multivariate autoregressive
state-space models for analyzing time-series data. R J. 4 (1), 11. doi: 10.32614/RJ-2012-002

Holmes, E. E., Ward, E. J., Scheuerell, M. D., and Wills, K. (2021b) MARSS:
Multivariate Autoregressive State-Space Modeling. (version 3.11.4) [R package].
Available at: https://CRAN.R-project.org/package=MARSS.

Hong, J., Talapatra, S., Katz, J., Tester, P. A., Waggett, R. J., and Place, A. R. (2012).
Algal toxins alter copepod feeding behavior. PloS One 7 (5), e36845. doi: 10.1371/
journal.pone.0036845

Huisman, J., van Oostveen, P., and Weissing, F. J. (1999). Critical depth and critical
turbulence: two different mechanisms for the development of phytoplankton blooms.
Limnology oceanography 44 (7), 1781–1787. doi: 10.4319/lo.1999.44.7.1781

Hyun, S., Cape, M. R., Ribalet, F., and Bien, J. (2023). Modeling cell populations
measured by flow cytometry with covariates using sparse mixture of regressions. Ann.
Appl. Stat 17 (1), 357. doi: 10.1214/22-AOAS1631

Hyun, M. J., Won, J., Choi, D. H., Lee, H., Lee, Y., Lee, C. M., et al. (2022). A
CHEMTAX study based on picoeukaryotic phytoplankton pigments and next-
generation sequencing data from the ulleungdo–dokdo marine system of the east sea
(Japan sea): improvement of long-unresolved underdetermined bias. J. Mar. Sci. Eng.
10 (12), 1967. doi: 10.3390/jmse10121967

Karl, D. M., Björkman, K. M., Dore, J. E., Fujieki, L., Hebel, D. V., Houlihan, T., et al.
(2001). Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea
Res. Part II: Topical Stud. Oceanography 48 (8-9), 1529–1566. doi: 10.1016/S0967-0645
(00)00152-1

Karl, D. M., and Church, M. J. (2017). Ecosystem structure and dynamics in the
North Pacific Subtropical Gyre: new views of an old ocean. Ecosystems 20, 433–457. doi:
10.1007/s10021-017-0117-0

Karl, D. M., and Church, M. J. (2019). Station ALOHA: A gathering place for
discovery, education, and scientific collaboration: station ALOHA: A gathering place
for discovery, education, and scientific collaboration. Limnology Oceanography Bull. 28
(1), 10–12. doi: 10.1002/lob.10285

Kim, Y. S., Jang, C. J., Noh, J. H., Kim, K.-T., Kwon, J.-I., Min, Y., et al. (2019). A
Yellow Sea monitoring platform and its scientific applications. Front. Mar. Sci. 6, 601.
doi: 10.3389/fmars.2019.00601

Kim, G.-U., Lee, J., Kim, Y. S., Noh, J. H., Kwon, Y. S., Lee, H., et al. (2023a). Impact
of vertical stratification on the 2020 spring bloom in the Yellow Sea. Sci. Rep 13 (1),
14320. doi: 10.1038/s41598-023-40503-z

Kim, G.-U., Lee, K., Lee, J., Jeong, J.-Y., Lee, M., Jang, C. J., et al. (2022). Record-
breaking slow temperature evolution of spring water during 2020 and its impacts on
spring bloom in the Yellow Sea. Front. Mar. Sci. 562. doi: 10.3389/fmars.2022.824361

Kim, G.-U., Oh, H., Kim, Y. S., Son, J.-H., and Jeong, J.-Y. (2023b). Causes for an
extreme cold condition over Northeast Asia during April 2020. Sci. Rep. 13 (1), 3315.
doi: 10.1038/s41598-023-29934-w
Frontiers in Marine Science 16
Lafarga-De la Cruz, F., Valenzuela-Espinoza, E., Millán-Núnez, R., Trees, C. C.,
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