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Anomaly detection in feature
space for detecting changes in
phytoplankton populations
Massimiliano Ciranni, Francesca Odone
and Vito Paolo Pastore*

MaLGa-DIBRIS, Università degli studi di Genova, Genoa, Italy
Plankton organisms are fundamental components of the earth’s ecosystem.

Zooplankton feeds on phytoplankton and is predated by fish and other

aquatic animals, being at the core of the aquatic food chain. On the other

hand, Phytoplankton has a crucial role in climate regulation, has produced

almost 50% of the total oxygen in the atmosphere and it’s responsible for

fixing around a quarter of the total earth’s carbon dioxide. Importantly,

plankton can be regarded as a good indicator of environmental

perturbations, as it can react to even slight environmental changes with

corresponding modifications in morphology and behavior. At a population

level, the biodiversity and the concentration of individuals of specific species

may shift dramatically due to environmental changes. Thus, in this paper, we

propose an anomaly detection-based framework to recognize heavy

morphological changes in phytoplankton at a population level, starting

from images acquired in situ. Given that an initial annotated dataset is

available, we propose to build a parallel architecture training one anomaly

detection algorithm for each available class on top of deep features extracted

by a pre-trained Vision Transformer, further reduced in dimensionality with

PCA. We later define global anomalies, corresponding to samples rejected by

all the trained detectors, proposing to empirically identify a threshold based

on global anomaly count over time as an indicator that can be used by field

experts and institutions to investigate potential environmental perturbations.

We use two publicly available datasets (WHOI22 and WHOI40) of grayscale

microscopic images of phytoplankton collected with the Imaging

FlowCytobot acquisition system to test the proposed approach, obtaining

high performances in detecting both in-class and out-of-class samples.

Finally, we build a dataset of 15 classes acquired by the WHOI across four

years, showing that the proposed approach’s ability to identify anomalies is

preserved when tested on images of the same classes acquired across a

timespan of years.
KEYWORDS

anomaly detection, deep features extraction, plankton image analysis, deep
learning, one-class SVM
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1 Introduction

The term plankton refers to drifter microorganisms that flow

passively in the water. It includes unicellular plants that contain

chlorophyll and perform photosynthesis (Winder and Sommer,

2012), named Phytoplankton, and generally millimetric or smaller

animals, called Zooplankton (Brierley, 2017). Phytoplankton

significantly impacts global climate regulation and has produced

around 50% of the total oxygen in the atmosphere (Benfield et al.,

2007). Moreover, it is responsible for approximately 45% of global

earth primary production (Uitz et al., 2010), with plankton diatoms

being responsible for fixing at least a quarter of the inorganic carbon

in the ocean on an annual basis (Brierley, 2017). Zooplankton

pastures on Phytoplankton, and is predated by fish and other

aquatic animals, collocating these fundamental organisms at the

core of the aquatic food chain. Importantly, Plankton organisms

can be regarded as a good indicator of climate change and

modifications (Hays et al., 2005) with high sensitivity, as subtle

environmental perturbations can be magnified by the responses of

biological communities (Taylor et al. , 2002). Plankton

microorganisms, in fact, may exhibit distinct physiological

modifications as a response to even slight perturbations in the

aquatic environment, resulting in changes at an individual and

population level. At an individual level, such physiological

alterations may correspond to morphological and behavioral

changes. To provide an example, when encountering chemicals

released by predators, numerous zooplankton physiologically

exhibit morphological and behavioral responses (Ohman, 1988).

On a population level, environmental changes may affect

biodiversity and species abundance, possibly reverting species

dominance (Hanazato, 2001). Recently, it has been proposed to

employ plankton as biosensors exploiting acquired images and

machine learning tools (Pastore et al., 2019; Pastore et al., 2022).

This involves establishing a baseline for the average plankton

morphology of known classes, included in an initial training set,

and using it to identify deviations, which could serve as indicators of

environmental changes, whether of human origin or natural.

In the last years, a massive amount of plankton images has been

gathered, thanks to technologically advanced automatic acquisition

systems (Benfield et al., 2007; Lombard et al., 2019). The availability

of such an increasingly large number of images makes manual

species identification and image analysis impractical (Alfano et al,.

2022), paving the way to machine learning-based solutions. The

majority of available works on automatic plankton image

classification involve supervised learning methods relying on

annotations. Hand-crafted descriptors based on shape, texture, or

multiscale visual features can be used alongside a trainable classifier:

for example in Sosik and Olson (2007), multiple hand-crafted

features are computed from raw images and then fed to an SVM

classifier, while in Zheng et al. (2017) feature selection is employed

on several sets of hand-crafted features to maximize features

importance, and multiple kernel learning (Gönen and Alpaydın,

2011) is adopted by the authors and provides improved

classification performances on different plankton image datasets,

with respect to comparable approaches. With the development and

diffusion of deep neural networks for vision tasks, deep learning-
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driven solutions have increasingly been adopted for plankton image

classification: in the last few years, the best-performing techniques

have been based on ensembles composed of many deep networks,

capable of yielding quasi-optimal classification performance on

annotated datasets of varying size (Lumini and Nanni, 2019;

Kyathanahally et al., 2021; Maracani et al., 2023). Recent works

related to plankton image analysis and classification experimented

with hybrid approaches, such as Semi-Supervised Learning applied

to population counting in Orenstein et al. (2020a), or classification

through Content-Based Image Retrieval (Yang et al., 2022). We can

also find two works employing anomaly detection and outlier-

exposure techniques to aid classifiers in taxonomic classification:

in Pu et al. (2021) the authors build a dataset of anomalies and a

custom loss to both improve classification performances and to

detect anomalous images; Walker and Orenstein (2021) employ

Hard-Negative-Mining and Background Resampling to improve the

detection rate of rare classes. Additionally, for the purpose of this

work, it is worth pointing out that in Orenstein and Beijbom (2017)

it is shown that pre-training deep neural networks on large-scale

general-purpose image datasets gives a better transfer-learning

baseline for plankton image classification over the one that could

be obtained by pre-training on in-domain planktonic image

datasets, even if of comparable size (Maracani et al., 2023). An

image-based machine learning framework for the usage of plankton

as a biosensor has been proposed in Pastore et al, 2019; Pastore et al,

2022). In Pastore et al. (2019) the authors extract a set of 128

descriptors from a subset of plankton images with 100 images for 10

classes, extracted from the WHOI dataset. The engineered

descriptors incorporate both shape-based features, including

geometric descriptors and image moments, and texture-based

features, such as Haralick and local binary patterns. The authors

employ a one-class SVM anomaly detection algorithm, proposing to

detect deviation from the average appearance for each of the

training classes, as an indicator of potential environmental

perturbations. In Pastore et al. (2022), a custom anomaly

detection algorithm, TailDeTect (TDT) is exploited to perform

novel class detection, starting from an available annotated set of

plankton images. The authors exploit a set of 131 hand-crafted

features, reaching a high accuracy in the novel class detection task,

for an in-house plankton dataset, acquired using a lensless

microscope and released in Pastore et al. (2020). An important

limitation of these works is the coarse granularity of the investigated

plankton dataset. A fundamental prerequisite for a machine

learning framework to be actually used in the task of suggesting

potential environmental changes using plankton images is

represented by the possibil ity of correctly separating

morphologically fine-grained classes, where the intra-class

morphological features are in the same order of magnitude as the

inter-class ones. Moreover, recent works on unsupervised learning

of plankton images (Alfano et al,. 2022), have shown that features

extracted by means of ImageNet pre-trained deep neural networks

provide an embedding leading to higher accuracy than hand-

crafted features.

In this context, we propose a semi-automatic approach where a

machine learning framework is designed to automatically detect

anomalies in the feature space extracted from acquired
frontiersin.org
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phytoplankton images, while an engineering pipeline is sketched to

exploit plankton’s feedback for revealing potential environmental

changes. Our machine learning framework consists in anomaly

detection algorithms coupled to features extracted from acquired

images by means of ImageNet pre-trained Vision Transformers,

relying on the possibility of detecting samples belonging to classes

with shape or morphology significantly different with respect to the

training ones. Such anomalies can be related to different main

sources, including (i) Morphological modifications potentially

linked to environmental changes human-made or natural; (ii) novel

classes (i.e., classes not included in the training set); (iii) image

artifacts (caused by different factors, including the acquisition

system and water condition). Besides, it is known that distribution

shifts for the same species across time are likely to happen (González

et al., 2017). Thus, wemay expect a certain number of anomalies to be

detected on a regular basis at the site of acquisition. We envision

determining critical situations corresponding to a significant increase

in the detected anomalies with respect to the average number of

anomalies per time. At this stage, we propose to have a human in the

loop, so that a selection of such anomalies may be provided to experts

in the field to actually discriminate between the different sources of

anomalies, potentially recognizing environmental threats. To

summarize, the main contributions of this paper can be regarded

as follows: (i)We introduce an anomaly detection-based approach for

detecting significant variations in acquired phytoplankton images,

potentially linked to environmental changes. Differently from the

state-of-the-art, we exploit a set of features extracted by an

ImageNet22K pre-trained vision transformer, coupled to a

dimensionality reduction algorithm based on PCA. Assuming the

availability of an initial annotated dataset, we propose to train one

anomaly detector for each of the available classes, further arranging

them in a parallel architecture, capable of detecting in-class samples

and global anomalies, that is, a sample that is simultaneously rejected

by all the trained anomaly detectors. The designed approach is

modular, allowing to add new classes by training a new
Frontiers in Marine Science 03
corresponding anomaly detector, without the need to re-train the

other detectors. We test the proposed approach on two fine-grained

publicly available plankton datasets (WHOI22 (Sosik and Olson,

2007) and WHOI40 (Pastore et al., 2020), containing grayscale

microscopic images of phytoplankton collected with the Imaging

FlowCytobot (IFCB) system typically used as benchmarks for

plankton image classification (Zheng et al., (2017); Lumini et al.,

2020; Kyathanahally et al., 2021). (ii) We build a phytoplankton

image dataset that we name WHOI15, considering 15 classes

including detritus among 4 different years of acquisition (from

2007 to 2010), proving that our anomaly detection algorithms can

generalize well in recognizing anomalies or a novel class in different

years of acquisition with respect to the training one. Exploiting the

concept of global anomalies, we sketch an engineering pipeline

capable of providing alerts representing phytoplankton changes

potentially related to environmental perturbations.

The remainder of the paper is organized as follows: in Sec. 2, we

describe the proposed approach and its main components. In Sec. 3,

we describe the datasets used in this work, providing experiment

details and results, later discussed in Sec. 4.
2 Methods

In this study, we introduce a novel approach for automatically

determining anomalies in phytoplankton images, that can be

further related to environmental changes. The designed method,

as depicted in Figure 1, consists of three key stages: (i) Feature

extraction and compression, (ii) Anomaly detection, and (iii)

Anomaly storage and analysis. Initially, we assume the availability

of a plankton image dataset with expert-provided labels. These

images are then processed using an ImageNet pre-trained Vision

Transformer to extract relevant features. The resulting high-

dimensionality descriptors are then compressed through Principal

Component Analysis (PCA) and further used to train an anomaly
FIGURE 1

Schematic representation of the pipeline proposed to perform environmental monitoring with plankton.
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detection algorithm for each of the classes available in the initial

training set. In the test phase, the same set of compressed

descriptors is extracted from previously unseen plankton images.

At this stage, the descriptors are fed to each of the trained anomaly

detectors. More details on the investigated anomaly detection

algorithms can be found in Sec. 3.3.1. For the anomaly detector i,

corresponding to the training classes i, the response is a score of

membership scorei, which may assume positive or negative values.

Intuitively, the lower the score, the more the anomaly detector is

confident in rejecting that sample and vice-versa. The entire set of

anomaly detectors is placed in a parallel architecture, and the one

providing the maximum score is selected, as shown in Figure 1. If

the maximum score is higher than a threshold t, then the sample is

recognized as belonging to the corresponding class, and thus, the

population count for the corresponding class is increased.

Otherwise, we treat the sample as a global anomaly, and we

propose to store it for further analysis. This implementation

strategy allows us to efficiently handle co-activations, which are

likely to happen, either for an abundance of detritus, fibers, and

noisy samples or just because of the fine-grained features typically

shown by plankton species.

In the following paragraph, we provide more details about each

of the three components of the proposed method.
2.1 Feature extraction and compression

Our main idea is to detect and quantify plankton response to

environmental threats as significant deviations from the average

appearance of plankton microorganisms, inferred from acquired

images. To support this objective, the first phase of the proposed

approach consists in the extraction of highly discriminative features

for plankton images, capable of detecting changes in the visual

characteristics of planktonic images with the highest

possible resolution.

Inspired by recent works (Salvesen et al., 2022; Alfano et al.,

2022; Maracani et al., 2023; Pastore et al., 2023), we exploit a

transfer learning framework to extract our set of phytoplankton

descriptors. In such an approach, a large-scale dataset (source) is

used to learn knowledge that is later transferred to the dataset of

interest (target). We adopt a Vision Transformer (ViT-L16) pre-

trained on ImageNet22K as a feature extractor, resulting in 1024

deep features per image. Additionally, we reduce the dimensionality

of the obtained descriptors with PCA, in an attempt to temper the

curse of dimensionality (Bellman, 1966; Verleysen and

Francois, 2005).
2.2 Anomaly detection

The deep features extracted by means of the pre-trained Vision

Transformer are used for training a set of anomaly detection

algorithms. We train a separate detector for each class available in

the training set. The trained detectors are later organized into a

parallel architecture, and during testing, each test image is fed to
Frontiers in Marine Science 04
every individual anomaly detector. Each anomaly detector provides

a membership score corresponding to the fed image. At this stage,

we have two possible outcomes: (i) the maximum score is higher

than or equal to a threshold t. In this case, the image is classified as

belonging to the class corresponding to the detector, and the

population counts for that class are updated (ii) the maximum

score is lower than a threshold t. The test image is rejected, labeled

as a global anomaly, and stored for further analysis. See Sec. 3.3.1

for more details on the investigated anomaly detection algorithms.

The threshold t is an important hyperparameter, that we tune with

an automatic procedure. See section 3.2.3 for more details.
2.3 Anomaly storage and alert

The detected global anomalies are stored and anomaly counting

is updated. The number of anomalies as well as the evolution of

population counts in time can be regarded as measurable feedback

for the environmental monitoring task objective of our work.

Describing the engineering framework for measuring the designed

feedback is out of the scope of this work. However, we envision the

possibility of setting an automatic alert when the anomaly

frequency is higher than a threshold, that may be set by field

experts through preliminary in situ tests. Images triggering

anomalies are stored as well, allowing offline expert analyses to

get better insights from the generated alerts.
2.4 Evaluation metrics

Our approach is based on the concept of anomaly detection,

where one anomaly detector is trained for each distinct class

available in the training set. Therefore the performances of our

method can be measured through binary evaluation metrics.

Specifically, given a sample belonging to training class k, we

identify two possible outcomes: (i) the sample is recognized by

the detector Ak (it brings the maximum membership score in the

anomaly detector k, and such score is higher than the threshold t,
see Sec. 2.2). In this case, the sample is regarded as a True Positive

(TP); (ii) the sample is rejected by all the trained detectors and it is

treated as a False Negative (FN).

At this stage, we employ a leave-one-out approach, removing

the detector Ak from our parallel architecture for each training class

k, with two additional outcomes: (iii) the sample is recognized as in

class by any of the remaining anomaly detectors. We refer to this

sample as a False Positive (FP); (iv) the sample is correctly rejected

by all the detectors. In this case, the sample is labeled as a True

Negative (TN).

Therefore, exploiting the TP, FP, FN and TN definitions

provided above, we select the Sensitivity (True Positive Rate or

TPR), the Specificity (True Negative Rate or TNR) and the False

Negative Rate (FNR) as reference metrics for our method,

computed as described in Equations 1-3:

Sensitivity (TPR)  : =
True Positives

Total Number of  Positive Samples
=

TP
TP  +  FN

(1)
frontiersin.org

https://doi.org/10.3389/fmars.2023.1283265
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ciranni et al. 10.3389/fmars.2023.1283265
Specificity (TNR)  : =
True Negatives

Total Number of  Negative Samples
=

TN
TN  +  FP

(2)

FNR  : =
False Negatives

False Negatives  +  True Positives
=

FN
FN  +  TP

(3)

It is worth noticing that a last important source of errors is

represented by misclassified samples, that is, samples recognized by

the incorrect anomaly detector. The rate of such misclassifed

samples can be obtained from the described metrics, as 1 -

(Sensitivity + FNR). In the computation of sensitivity, the FN

include both the misclassified and the uncorrectly rejected samples.
3 Experiments

3.1 Datasets description

In this section, we describe the datasets we employed in this work

for training the components of our pipeline, testing overall

performance, and assessing the effectiveness of the proposed

approach.

The images we used for our experiments come from theWHOI-

Plankton Dataset (Sosik and Brownlee, 2015), a large-scale dataset

containing grayscale microscopic plankton images from 103

different classes, acquired with IFCB by the Woods Hole

Oceanographic Institute. We exploit two publicly available subsets

commonly used as benchmarks in the plankton image analysis

community: WHOI22 and WHOI40 (Sosik and Olson, 2007;

Orenstein and Beijbom, 2017; Lumini and Nanni, 2019; Pastore

et al., 2020; Pastore et al., 2023).

The two subsets (Sections 3.1.1 and 3.1.2) are used to tune and

evaluate the performance of the different anomaly detection

algorithms we consider in our analyses and to select the most

appropriate number of principal components to retain for the

dimensionality reduction of the deep pre-trained features.

Additionally, we manually extract a selection of phytoplankton

images from the full WHOI dataset belonging to different years of

acquisitions, with the aim of analyzing the evolution in time of a
Frontiers in Marine Science 05
microorganism reference population. A detailed description of the

obtained set can be found in Section 3.1.3. Sample images for the

three datasets used in our work are depicted in Figure 2.

3.1.1 WHOI22
WHOI22 constitutes a set of planktonic images gathered

between 2005 and 2006 at the Woods Hole Oceanographic

Institute, subsequently published in 2007 (Sosik and Olson, 2007).

This collection encompasses 22 distinct categories of

phytoplankton, containing 300 instances per category. The images

are presented in grayscale and vary in dimensions. The dataset is

partitioned into two sets: a training set and a test set, each

comprising 3,300 samples (150 images for each category),

summing up to a total of 6,600 data points. It is worth noting

that this dataset is characterized by a fine granularity between

different classes, coupled with its exceptional image quality owing to

the high-quality acquisit ions, which capture intricate

morphological particulars.

3.1.2 WHOI40
WHOI40 refers to a specific subset introduced in Pastore et al.

(2020), composed of phytoplankton image acquisitions primarily

spanning the period from 2011 to 2014. This set provides 40 distinct

categories (some of which align with those found in the WHOI22

dataset) for a total of 4,086 samples. Similar to WHOI22, the images

are in grayscale and come with varying dimensions, but a

predefined test set is not available. This dataset is not as fine-

grained as WHOI22, but provides many more classes and therefore

it brings different challenges to overcome.

3.1.3 WHOI15 (2007-2010)
In this work, we build a phytoplankton image dataset from the

available WHOI large-scale collection, considering samples

acquired across four years, from 2007 to 2010. Among the 22

classes available in the WHOI22 dataset, we observe that 15 of them

appear with a sufficient number of samples for each of the

acquisition years between 2007 and 2010. Specifically, this is

observed for the classes labeled as Asterionellopsis, Chaetoceros,
FIGURE 2

Images from WHOI15 (2007-2011), in their appearance once square-resized to become compatible input for deep neural networks. One example
for each distinct class is depicted. From upper left to bottom right: Asterionellopsis, Chaetoceros, Cylindrotheca, Dactyliosolen, Dinobryon, Ditylum,
Licmophora, pennate, Phaecystis, Pleurosigma, Pseudonitzschia, Rhizosolenia, Skeletonema, Thalassiosira. Images from WHOI22 and WHOI40 come
from the same superset, the WHOI-Plankton dataset, and exhibit a similar appearance.
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Cylindrotheca, Dactyliosolen, Detritus, Dinobryon, Ditylum,

Licmophora, Pennate, Phaeocystis, Pleurosigma, Pseudonitzschia,

Rhizosolenia, Skeletonema, Thalassiosira. From the 15 classes, we

randomly pick a maximum of 500 images, for each class and for

each year in that specific time span. With this procedure, we obtain

a single dataset that is the union of four different sets, one for each

year in the period 2007-2010.

The final dataset has a total of 24,666 images, with an uneven

distribution across classes and years. Regarding the number of

samples per year, 5841 samples come from 2007, 6323 from

2008, 6696 from 2009, 5,806 from 2010. The exact number of

images per class and year are represented as histograms in the

Supplementary Material.
3.2 Experiment details

The software implementation of the experiments supporting the

proposed methodology is realized using the Python programming

language (Python Software Foundation, 2023), with the aid of

dedicated machine-learning and deep-learning libraries

and frameworks.

Specifically, the deep neural networks adopted in this work are

implemented in PyTorch (Paszke et al., 2019), while the weights

learned through pre-training the networks on ImageNet come from

both Torchvision and TIMM models repositories (Maintainers and

Contributors, 2016; Wightman, 2019).

Regarding the anomaly detectors and PCA routines, we rely on

the scikit-learn library (Pedregosa et al., 2011), which provides

efficient and reliable implementations of many state-of-the-art

machine learning algorithms. Generic numerical computing

operations and data manipulation are implemented with the aid

of NumPy (Harris et al., 2020) and Pandas (Pandas Development

Team, 2023).

The following dedicated subsections discuss the experimental

setup regarding feature extraction and the training and testing of

our pipeline’s components.

3.2.1 Feature extraction
Images belonging to the dataset of interest are first resized to a

224x224 pixel resolution and normalized to obtain input RGB

values between 0 and 1, in order to render them compatible with

the input requirements of the available pre-trained deep neural

networks. Additionally, they are also standardized with respect to

the RGB color distribution of ImageNet, as in transfer-learning

scenarios we desire to shift input image distribution closer to the

one learned by the deep neural network during its pre-training. This

is obtained by subtracting ImageNet’s RGB color mean from input

images and further dividing their values by ImageNet’s standard

deviation. At this stage, images are ready to be fed to the deep

feature extractor, which is obtained by removing the fully-

connected classification-head from the original model. Given a set

of N input images, the deep feature extractor produces a feature

vector f  ∈  RD for each of them (with D usually in the order of

103), resulting in a final set of deep pre-trained featuresF  ∈  RN�D

. Before actually performing feature extraction, we gather three
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separate sets of images Xtr, Xval and Xte: in the case of WHOI22, the

test set corresponds to the already pre-defined test set, while for

WHOI40 and WHOI15 (2007-2010), we hold-out (Yadav and

Shukla, 2016) 20% of samples as a test set, performing an

additional hold-out with an 80/20 ratio, to separate a proper

validation set from the remaining images. We then obtain three

sets of deep pre-trained features by feeding the three disjointed sets

Xtr, Xval and Xte to the deep feature extractor, Ftr, Fval and Fte. As a

final step before applying dimensionality reduction to these sets of

features, we first proceed to apply min-max normalization and

standardization, extracting the normalization values from Ftr.
3.2.2 Dimensionality reduction
The three sets of deep pre-trained features Ftr, Fval and Fte

undergo dimensionality reduction through PCA, for which we retain

the first 50 principal components. The associated linear projection is

computed from the training data by fitting PCA on Ftr and then we

apply it to Ftr, Fval and Fte. By doing so, we obtain the final features

that are used for training and evaluating the anomaly detectors. We

indicate such features as Ztr ∈ RN�50, Zval ∈ RN�50  and Zte ∈
RN�50. In order to test the importance of this specific step and to

search for the best possible number of components, we run our

analyses also with the plain deep pre-trained features coming from

the employed neural network without any kind of compression, and we

test several alternatives for the number of components to retain as well.

Details on this particular step are outlined in Section 3.3.3.
3.2.3 Training and evaluation
As we are dealing with datasets equipped with labels provided

by field experts, our data includes also an associated vector Y

containing integer values associated with the class to which each

sample belongs. In our case, the pre-trained deep features with

reduced dimensionality Ztr belonging to the extracted training set,

are used alongside their associated label vectors Ytr to train one

anomaly detector per each available class. If the dataset has K classes

we instantiate K anomaly detectors, denoted as {Ak | k ∈ [1,K]}, and

each detector Ak is trained only on the zi ∈ Ztr such that Ytri = k. In

our approach, a test image is fed to the set of trained anomaly

detectors A. From each anomaly detector, we extract the

membership score, exploiting the decision function method in the

scikit-learn implementation (e.g., the signed distance to the

separating hyperplane, in the case of the one-Class SVM). The

maximum anomaly score is selected, and if it is higher than or equal

to a threshold t, the sample is assigned to the corresponding class,

otherwise it is identified as a global anomaly and stored for further

analyses or computations. The threshold t is tuned with the

following automatic procedure, exploiting the extracted validation

set Fval. Ideally, the higher the threshold, the higher the Specificity,

and vice-versa. Thus, we perform a grid search to identify the best

trade-off between Sensitivity and Specificity. We evaluate candidate

thresholds in the interval [−1,1] with a step of 0.05. The negative

samples to measure the Specificity are obtained with a leave-one-out

approach. Thus, for each of the available classes k and for each of

the candidate thresholds, we measure the Sensitivity, as the number

of samples belonging to class k correctly detected by the anomaly
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detector Ak as in class, and the Specificity, corresponding to the

number of samples belonging to k rejected when only the remaining

anomaly detectors Ajj j  ≠  k
� �

are considered. The threshold t is
then selected as the one minimizing the absolute difference between

the average Sensitivity and the average Specificity.
3.3 Results

In this section, we highlight and comment on the results

obtained throughout our experiments. This includes also the

intermediate results regarding the tuning of the hyperparameters,

as well as the final measured performances on all the considered

datasets, including the proposed test ranging through different years

of acquisition.

3.3.1 Performance evaluation across different
anomaly detection algorithms

The anomaly detection algorithm is a core element of the

proposed approach. We consider four different algorithms,

LocalOutlierFactor (LoF) (Breunig et al., 2000), Isolation Forest

(IFO) (Liu et al., 2008), Robust Covariance estimator (RC)

(Rousseeuw and Driessen, 1999), and One-Class SVM (Scholkopf

et al., 1999) (with a Radial Basis Function kernel Vert et al., 2004),

comparing them in terms of performances on the WHOI22 and the

WHOI40 datasets, in the experimental setting previously described.

A crucial parameter shared by the evaluated methods is the

contamination factor, which controls the prior knowledge

regarding the proportion of out-of-distribution samples among

training data. The contamination amount is selected among five

possible different values, namely: 1%, 5%, 7.5%, 10%, and 15%,

choosing the value that maximizes the performances on the

validation set. Table 1 shows the obtained results on the

WHOI22, while Table 2 reports the results corresponding to the

WHOI40 dataset.

The one-class SVM algorithm with a contamination parameter

equal to 0.075 overall brings the best average performances (with

respect to the training classes) for both validation splits of the two

datasets (see Tables 1, 2). For this reason, we use the one-class SVM

with a contamination parameter of 0.075, while t is set to t = −0.05

for WHOI22 and to t = −0.10 for WHOI40. This configuration

brings the test performances reported in Table 3, corresponding to a

Sensitivity of 0.839 for WHOI22 and 0.870 for WHOI40. We also

report a score of 0.094 for WHOI22 and 0.085 for WHOI40 in

terms of FNR, while Specificity reaches 0.782 and 0.840 for the two

datasets respectively.

3.3.2 Impact of the deep feature extractor on
the performance

We perform a comparative study on the deep feature extractor

used to obtain the set of descriptors fed to the anomaly detectors.

Our objective is to empirically prove that the pre-trained ViTL-16

used in this study as a feature extractor leads to the best

performances, in terms of highest anomaly detection accuracy

when used as input, compared to other deep neural networks. In
Frontiers in Marine Science 07
detail, we compare Sensitivity, FNR, and Specificity on our target

datasets, when using different pre-trained deep neural networks to

extract features representing the input to the one-class SVM

anomaly detectors. We compare four ImageNet-1K pre-trained

CNNs, namely MNASNet 1.3 (Tan et al., 2019), ResNet101 (He

et al., 2015), EfficientNetB1 (Tan and Le, 2019), DenseNet201

(Huang et al., 2016), three ImageNet-1K pre-trained Vision

transformers (SwinV2-T (Liu et al., 2021), DeiT-B (Touvron

et al., 2021), and ConViTB (d’Ascoli et al., 2021)), and a vision

transformer pre-trained on ImageNet-22k (ViT-L16 (Dosovitskiy

et al., 2020), our selected model), with Tables 4, 5 reporting the

obtained results. The ViTL-16 pre-trained transformer provides the

best representation. In the case of WHOI22, it brings an

improvement in Sensitivity of 1.7% over the DenseNet-201, and

of 6% in Specificity over ConViT-B, which are the second best-

performing models in terms of the two individual metrics.

Considering the performances on WHOI40, DenseNet-201 is the

second best-performing model in terms of both Sensitivity and

Specificity but the ImageNet-22k pre-trained ViTL-16 achieves a

1% higher Sensitivity, and a sensible improvement in Specificity of

13% over the best-performing alternative.

3.3.3 Ablation study on dimensionality reduction
In our experiments, we involve the usage of a PCA

dimensionality reduction algorithm with 50 components. In this

section, we provide an ablation study to empirically experiment

with the impact of dimensionality reduction on performance. We

test the usage of the original deep pre-trained features, as well as

different numbers of principal components used for projecting

features in the associated lower-dimensional space, on our target

datasets. Specifically, we compare Sensitivity, FNR, and Specificity

when using the plain features extracted from the ViTL-16 encoder,

with dimensionality equal to 1024, and the features obtained

through PCA reduction with a number of principal components

varying between 10 and 200, as input for the one-class SVM

anomaly detectors. The performances measured in our

experiments are outlined in Table 6 for the WHOI22 dataset and

(Table 7) for the WHOI40 one. A PCA with 50 components is

confirmed to lead to the best performances for both datasets.

3.3.4 Comparison with state-of-the-art multi-
class classification methods

WHOI22 is a popular benchmark dataset exploited in several

works focusing on plankton image classification (Lumini and

Nanni, 2019; Kyathanahally et al., 2021; Maracani et al., 2023).

Even if the general framework of classification is different from the

one faced in this work, in this paragraph we provide a comparison

in an attempt to frame our results with respect to the existing state-

of-the-art. To do so, it is possible to focus only on the Sensitivity,

which measures the correct predictions per class, ignoring the

results of the leave-one-out approach that is instead used to

evaluate the Specificity (i.e., to measure the number of correctly

predicted anomalies). Exploiting different ensembles of CNNs or

transformers, in Maracani et al. (2023) the authors report a test

accuracy of 0.966 on the WHOI22, while in Kyathanahally et al.
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TABLE 1 Performance across different anomaly detection algorithms and contamination parameters on a hold-out validation set from the training set
of the WHOI22 dataset.

WHOI22 Cont. (%) Best t Sensitivity FNR Specificity

LOF

1.0 0.200 0.724 ± 0.188 0.176 ± 0.147 0.759 ± 0.239

5.0 0.100 0.742 ± 0.137 0.168 ± 0.115 0.759 ± 0.246

7.5 0.050 0.803 ± 0.100 0.111 ± 0.073 0.733 ± 0.267

10.0 0.050 0.748 ± 0.110 0.173 ± 0.098 0.764 ± 0.245

15.0 -0.000 0.795 ± 0.106 0.114 ± 0.081 0.727 ± 0.266

SVM

1.0 -0.000 0.778 ± 0.102 0.166 ± 0.067 0.826 ± 0.197

5.0 -0.000 0.778 ± 0.100 0.165 ± 0.064 0.825 ± 0.200

7.5 -0.050 0.827 ± 0.098 0.110 ± 0.054 0.789 ± 0.190

10.0 -0.050 0.814 ± 0.092 0.127 ± 0.049 0.803 ± 0.215

15.0 -0.100 0.798 ± 0.089 0.142 ± 0.059 0.817 ± 0.176

IFO

1.0 0.050 0.756 ± 0.144 0.105 ± 0.084 0.424 ± 0.256

5.0 0.050 0.548 ± 0.142 0.380 ± 0.138 0.836 ± 0.169

7.5 0.050 0.414 ± 0.129 0.539 ± 0.146 0.905 ± 0.112

10.0 -0.000 0.756 ± 0.140 0.062 ± 0.056 0.276 ± 0.208

15.0 -0.000 0.730 ± 0.088 0.111 ± 0.076 0.406 ± 0.245

COV

1.0 -0.250 0.688 ± 0.302 0.002 ± 0.007 0.188 ± 0.230

5.0 -0.250 0.830 ± 0.144 0.039 ± 0.031 0.545 ± 0.322

7.5 -0.250 0.782 ± 0.159 0.082 ± 0.052 0.652 ± 0.294

10.0 -0.050 0.773 ± 0.145 0.124 ± 0.094 0.718 ± 0.295

15.0 -0.250 0.691 ± 0.122 0.255 ± 0.109 0.858 ± 0.224
F
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With this procedure, we selected the best algorithm, contamination, and threshold (t) to be later employed on the test set, which for WHOI22 is natively available. The best overall result is
highlighted in bold.
TABLE 2 Performance across different anomaly detection algorithms and contamination parameters on a hold-out validation set from the
WHOI40 dataset.

WHOI40 Cont. (%) Best t Sensitivity FNR Specificity

LOF

1.0 0.150 0.710 ± 0.293 0.150 ± 0.177 0.722 ± 0.306

5.0 0.050 0.804 ± 0.165 0.095 ± 0.080 0.720 ± 0.290

7.5 0.050 0.772 ± 0.175 0.138 ± 0.120 0.801 ± 0.237

10.0 0.050 0.756 ± 0.164 0.167 ± 0.132 0.833 ± 0.221

15.0 -0.000 0.800 ± 0.124 0.121 ± 0.078 0.777 ± 0.259

SVM

1.0 -0.000 0.794 ± 0.143 0.182 ± 0.122 0.948 ± 0.079

5.0 -0.050 0.863 ± 0.114 0.103 ± 0.083 0.871 ± 0.162

7.5 -0.100 0.882 ± 0.106 0.083 ± 0.069 0.840 ± 0.196

10.0 -0.100 0.860 ± 0.111 0.108 ± 0.082 0.872 ± 0.163

15.0 -0.200 0.865 ± 0.103 0.103 ± 0.074 0.849 ± 0.191

IFO

1.0 0.050 0.690 ± 0.208 0.100 ± 0.100 0.416 ± 0.292

5.0 0.050 0.583 ± 0.220 0.396 ± 0.215 0.964 ± 0.063

7.5 -0.000 0.853 ± 0.100 0.040 ± 0.048 0.406 ± 0.258

(Continued)
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(2021) a value of 0.961 is obtained, and (Lumini and Nanni, 2019)

reports a test accuracy of 0.958. With a sensitivity of 0.839, our

method shows a drop of ∼ 12% with respect to state-of-the-art

classification accuracy. This is somehow expected, bearing in mind

that in our experiments we tune our algorithm’s components to

balance the trade-off between Sensitivity and Specificity. The aim of

our work is in fact not to maximize the multi-class classification

performance, but rather to design a method capable of detecting

anomalies in a feature space of reference, starting from

phytoplankton images, while maintaining a reasonable

classification performance. Additionally, it is worth underlining

that in Lumini and Nanni (2019); Kyathanahally et al. (2021);

Maracani et al. (2023), the authors use ensembles of at least four

deep neural networks, that need to be trained on the target plankton

image dataset. In our work, instead, we use a single pre-trained

transformer as a feature extractor (with no further training), and we

only train one anomaly detector per class, significantly reducing the

computational burden of the proposed method.

3.3.5 Temporal analysis through anomaly
detection in feature space

Our best-performing pipeline involves the usage of one-class

SVM anomaly detectors, with input represented by the 50 principal

components computed on ImageNet-22K pre-trained ViTL-16

features extracted from plankton images. At this stage, we exploit

the WHOI15 dataset to test the ability of the proposed approach to

generalize over time. In this dataset, we select 15 classes that are

acquired for 4 consecutive years in the large-scale WHOI dataset

(see Sec. 3.1.3). Thus, we can test the performance of our pipeline

across time in a realistic scenario, where the same classes are

acquired across different years. This experiment is helpful to have

insights into the natural in-time variability of a group of interesting

classes, and we expect our anomaly detection algorithms to be able
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to recognize with reasonable accuracy samples of their respective

class, even if they are acquired in different years with respect to the

ones used for training. We train a single one-class SVM algorithm

for each of the 15 available classes for each one of the 4 years of the

acquisition included in the dataset we built, and we perform the

automatic extraction of a dedicated threshold t for each year on the

respective validation sets. Later, we test the trained algorithms on

the test set extracted from the year corresponding to the training

samples, and for each one of the available subsequent years. For

instance, for images acquired in 2008, we train the detectors on the

2008 training set, we derive t from 2008’s validation set, and

evaluate the performance on the test data acquired in the same

and the following years (2008, 2009, and 2010). Table 8 shows the

obtained results.

In experiments in which the training year and the testing year

coincide, we can see that the performances are comparable with those

obtained on WHOI22 and WHOI40. This is indicated on the

diagonal of (Table 8), where Sensitivity has a minimum of 0.82 in

2010 and a maximum of 0.859 in 2009. Regarding Specificity, we can

observe a minimum of 0.773 in 2007 and a maximum of 0.856 in

2009, while FNR is close to 0.10, with a minimum of 0.075 in 2007. A

drop in Sensitivity is observed when the test year differs from the

training one. This is somewhat to be expected due to the distribution

shift in the images across time. Among the multiple possible reasons,
TABLE 2 Continued

WHOI40 Cont. (%) Best t Sensitivity FNR Specificity

10.0 -0.000 0.823 ± 0.118 0.048 ± 0.056 0.442 ± 0.303

15.0 -0.000 0.791 ± 0.137 0.119 ± 0.095 0.675 ± 0.255

COV

1.0 -0.250 0.475 ± 0.335 0.022 ± 0.040 0.250 ± 0.299

5.0 -0.250 0.444 ± 0.235 0.480 ± 0.214 0.886 ± 0.156

7.5 -0.250 0.027 ± 0.133 0.973 ± 0.133 1.000 ± 0.000

10.0 -0.250 0.025 ± 0.125 0.975 ± 0.125 1.000 ± 0.000

15.0 -0.250 0.021 ± 0.099 0.979 ± 0.099 1.000 ± 0.000
With this procedure, we selected the best algorithm, contamination, and threshold (t) to be later employed on the test set, which for WHOI40 is a disjointed hold-out subset of the full dataset.
The best overall result is highlighted in bold.
TABLE 3 Results of the best configurations for the test sets of the two
datasets, WHOI22 and WHOI40.

Dataset Sensitivity FNR Specificity

WHOI22 0.839 ± 0.083 0.094 ± 0.029 0.782 ± 0.228

WHOI40 0.870 ± 0.107 0.085 ± 0.076 0.840 ± 0.211
TABLE 4 Ablation on WHOI22 regarding the best pre-trained model for
deep feature extraction.

Pre-
Trained Model

Sensitivity FNR Specificity

MNASNet 1.3 0.767 ± 0.158 0.080 ± 0.037 0.528 ± 0.256

ResNet-101 0.768 ± 0.105 0.091 ± 0.037 0.514 ± 0.249

EfficientNet-B1 0.803 ± 0.117 0.078 ± 0.031 0.568 ± 0.262

DenseNet-201 0.822 ± 0.084 0.082 ± 0.026 0.631 ± 0.252

SwinV2-T 0.804 ± 0.094 0.085 ± 0.035 0.659 ± 0.251

ConViT-B 0.805 ± 0.088 0.110 ± 0.035 0.722 ± 0.212

DEiT-B 0.802 ± 0.112 0.088 ± 0.026 0.614 ± 0.263

ViTL-16 (22k) 0.839 ± 0.083 0.094 ± 0.029 0.782 ± 0.228
Best results are highlighted in bold.
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we can include per-class populations, which are not the same for all

classes across years, naturally occurring fluctuations that may be hard

to infer from a single year of training, as well as potential factors

related to the acquisition system.

The highest drop involves the experiment in which the detectors

are trained on images from 2007 and tested on 2010 corresponding to

a decrease of 0.21 in Sensitivity. For the other training years, the drops

in Sensitivity are around 0.18, with an average Sensitivity always

above 0.65. The decrease in Sensitivity is associated with an increase

in the FNR, generally ranging between 0.20 and 0.25 in tests run on

subsequent years. Specificity, instead, shows little differences over

time or even improves in some cases, suggesting that the pipeline is

able to correctly recognize the presence of completely novel objects

and instances with respect to the training set.
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To give more insights into the individual classes and

distribution shifts across years, we perform an experiment where

we train our anomaly detection algorithm on a joint dataset

including years 2007, 2008, and 2009, while testing on the

samples from 2010. In this experiment, we obtain an average

Sensitivity of 0.768, 0.135 in FNR, and an average Specificity of

0.725, improving significantly the overall performances on the

unseen year with respect to the previous experiments. The lowest

Sensitivity is measured for the class Ditylum, confirming the

behavior observed in the results reported in Figure 3. Regarding

the Specificity, the most problematic classes are Skeletonema and

Thalassiosira, similarly to what obtained with the individual years

experiments. Nonetheless, the increase in Sensitivity suggests that a

more diverse set of examples and periodic retraining with more

recent acquisitions may be helpful to keep the system up to date

with respect to the naturally occurring modifications in the

observed populations.
4 Discussion

Plankton organisms can play an important role in assessing

environmental perturbations, as they react to even slight changes in

the environment with physiological modifications in morphology

and behavior. In this work, we propose a machine learning

framework to perform anomaly detection in phytoplankton

images, with the aim to support the detection of perturbations in

the environment by monitoring changes in the microorganisms’

morphology. We propose a method based on anomaly detection

algorithms, trained on top of deep pre-trained features, extracted by

means of a vision transformer pre-trained on ImageNet22K.
TABLE 5 Ablation on WHOI40 regarding the best pre-trained model for
deep feature extraction.

Pre-
Trained Model

Sensitivity FNR Specificity

MNASNet 1.3 0.814 ± 0.155 0.076 ± 0.073 0.551 ± 0.306

ResNet-101 0.811 ± 0.125 0.089 ± 0.054 0.631 ± 0.292

EfficientNet-B1 0.831 ± 0.130 0.063 ± 0.062 0.580 ± 0.290

DenseNet-201 0.860 ± 0.124 0.068 ± 0.062 0.715 ± 0.283

SwinV2-T 0.816 ± 0.133 0.084 ± 0.072 0.579 ± 0.301

ConViT-B 0.833 ± 0.138 0.073 ± 0.063 0.676 ± 0.255

DEiT-B 0.840 ± 0.144 0.075 ± 0.060 0.659 ± 0.254

ViTL-16 (22k) 0.870 ± 0.107 0.085 ± 0.076 0.840 ± 0.211
Best results are highlighted in bold.
TABLE 6 Ablation on Feature Compression algorithm and impact of dimensionality reduction on performances for the WHOI22 dataset.

WHOI22 Z Sensitivity FNR Specificity

Original Features – 0.737 ± 0.098 0.172 ± 0.041 0.680 ± 0.277

PCA

10 0.776 ± 0.148 0.050 ± 0.028 0.514 ± 0.298

20 0.832 ± 0.108 0.071 ± 0.031 0.688 ± 0.290

50 0.839 ± 0.083 0.094 ± 0.029 0.782 ± 0.228

200 0.827 ± 0.103 0.096 ± 0.032 0.717 ± 0.259
Z indicates the number of principal components selected for the compression.
Best results are highlighted in bold.
TABLE 7 Ablation on Feature Compression algorithm and impact of dimensionality reduction on performances for the WHOI40 dataset.

WHOI40 Z Sensitivity FNR Specificity

Original Features 0 0.776 ± 0.116 0.165 ± 0.094 0.755 ± 0.275

PCA

10 0.823 ± 0.147 0.041 ± 0.047 0.561 ± 0.324

20 0.844 ± 0.136 0.069 ± 0.053 0.726 ± 0.291

50 0.870 ± 0.107 0.085 ± 0.076 0.840 ± 0.211

200 0.858 ± 0.115 0.098 ± 0.077 0.788 ± 0.253
Z indicates the number of principal components selected for the compression.
Best results are highlighted in bold.
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Assuming an initial training set is available, we first design a parallel

architecture composed of one anomaly detection algorithm per

available class. When a test image is fed to each of the detectors, we

select the detector providing the maximum membership score. If

such score is above an automatically determined threshold, we

consider the sample as in class, and update the population count for

the corresponding class. Otherwise, we treat the sample as a global

anomaly, storing it for further analysis and updating the anomaly

count. At this stage, we propose to exploit our approach to suggest

potential critical situations, which may be related to environmental

perturbations, by using a threshold on the number of global

anomalies per time. This threshold is likely to depend on the

specific site of sample acquisition, and needs to be tuned by

experts in the field. We perform comparative studies on the deep

feature extractor and different anomaly detectors in terms of

performances on two publicly available benchmark datasets, the

WHOI22 (Sosik and Olson, 2007), and the WHOI40 (Pastore et al.,

2020). Our experiments show that the best performances

correspond to the adoption of a one-class SVM algorithm trained

on top of the first 50 principal components computed on features

extracted with a ViTL-16 pre-trained on ImageNet22K. The usage

of a pre-trained neural network for feature extraction makes our

approach very efficient, as the only training process regards the

anomaly detectors. To provide a reference on the time needed for

the computation, we consider the experiments on the WHOI22

dataset. The feature extraction with ViTL-16 requires an average of

0.032 ± 0.003 seconds per image, while the detectors average

training time per class, is 6.26 ± 2.62 milliseconds. The

computational times are averaged among 10 different runs, on a

laptop with AMD Ryzen 9 6900 HS, with 16 GB of RAM and a GPU

NVIDIA RTX 3080, with 8 GB of VRAM. Feature extraction is

performed on the GPU.
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We then build a dataset containing 15 classes acquired from

2007 to 2010 in the WHOI large-scale dataset (Sosik and

Brownlee, 2015), which we refer to as WHOI15. Our aim is to

exploit the WHOI15 to evaluate the generality of our solution

across samples acquired in different years. Thus, we train our

pipeline on the images acquired in one year, evaluating the

performances on the test set of the same year and the data

acquired in the following years. A drop in Sensitivity is

observed, in general, when testing on classes acquired across

different years, with no impact on the Specificity, evaluated with

a leave-one-out approach. The performances are similar to the

benchmark datasets (WHOI22 andWHOI40) when our method is

trained on the training set of one year, and tested on the test set

corresponding to the same year. We hypothesize that the drop in

Sensitivity across different years may be related to natural

fluctuations, difficult to infer from a single year of training, as

well as potential changes related to the water conditions and the

acquisition system. Nonetheless, the average Sensitivity has a

minimum value of 0.63, with a high deviation with respect to

individual classes (see Table 8). A limitation of the dataset used in

this work is the relatively low number of available images per class,

with a severe imbalance in some years of acquisition. The highest

number of images for training is 400 per class (with a minimum of

36, see Supplementary Material for more details), which is likely

not enough for actually covering intra-class variance in

appearance, which may be high for specific classes. To further

investigate in this direction, we perform an experiment where the

2010 samples are used for testing, and the remaining years’ images

are used for training. We select the 2010 dataset as a test because it

shows the highest drop in Sensitivity in our previous experiment.

We obtain a significant improvement in average Sensitivity, and a

general trend more similar to the single-year experiment, where
TABLE 8 Average Sensitivity, FNR, and Specificity of the parallel OneClass-SVMs trained on the reduced deep pre-trained features coming from
WHOI10 from different years and tested on the same type of features extracted from images coming from subsequent years of WHOI’s acquisitions,
starting from 2007 up to 2010.

Test Year
Train Year

2007 2008 2009 2010

2007

Sensitivity 0.841 ± 0.176 0.662 ± 0.110 0.669 ± 0.151 0.634 ± 0.179

FNR 0.075± 0.083 0.225 ± 0.117 0.247 ± 0.110 0.258 ± 0.115

Specificity 0.773 ± 0.108 0.788 ± 0.134 0.861 ± 0.095 0.795 ± 0.148

2008

Sensitivity – 0.835 ± 0.112 0.656 ± 0.178 0.657 ± 0.186

FNR – 0.103 ± 0.070 0.265 ± 0.150 0.208 ± 0.091

Specificity – 0.820 ± 0.172 0.842 ± 0.126 0.732 ± 0.108

2009

Sensitivity – – 0.859 ± 0.067 0.683 ± 0.173

FNR – – 0.093 ± 0.048 0.206 ± 0.102

Specificity – – 0.856 ± 0.126 0.777 ± 0.168

2010

Sensitivity – – – 0.823 ± 0.192

FNR – – – 0.095 ± 0.060

Specificity – – – 0.791 ± 0.190
The first row reports results from training on the train features from 2007 and testing on the test set of each available following year. The upper-triangular form of this table derives from the fact
that we do not test on past years but only on the test sets of the same and following years of acquisition.
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training and evaluation are performed on the same year. These

results suggest that periodic re-training and cumulating training

samples across time could help maintain high performances in the

designed method. Nonetheless, some classes still show a drop in

Sensitivity (e.g., Ditylum) or Specificity (e.g., Skeletonema and
Frontiers in Marine Science 12
Thalassiosira) with respect to the average. Exploring the images of

these classes, we realized that they are more blurred and less

detailed in the 2010 dataset than in the other years of acquisition.

Regarding the aim of the designed method, it is worth stressing

that our anomaly detection approach intends to detect significant
FIGURE 3

Per-class performances of the proposed approach in the experiments involving the WHOI15 dataset, simulating different years of acquisition and
testing. Top Left, Top Right, Middle Left, and Middle Right depict experiments in which training and test procedures involve single years; the specific
years are outlined in the upper part of each figure. Bottom: Results from training on the years 2007, 2008, and 2009, while testing on features
extracted from 2010 acquisitions, simulating the accumulation of samples through time in order to test on newly acquired data.
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variations of phytoplankton images in a feature space of reference.

However, such deviations can be related to different sources,

including novel classes (not included in the initial training set),

plankton morphological modifications due to environmental

changes, and a possible source of errors caused by image

distortions or noise. Yet, an automatic disentanglement of the

different sources of anomalies is not possible with our proposed

approach. However, we sketch a possible pipeline to handle the

different sources of anomalies. First, we propose to measure the

average number of anomalies in a certain period of time and situ of

acquisition. We can indeed expect a systematic amount of errors

related to image distortions or noise, or simply related to intrinsic

algorithm mistakes, in such a period of time. For this reason, we

propose to set a threshold on the number of detected anomalies with

respect to the average number of anomalies per time. Only if the

number of anomalies is higher than this threshold, an alert should be

emitted. At this point, we envision a human in the loop that can

manually identify signaled anomalies. As further support for the

human expert, a possibility could be to group the features

corresponding to the anomalies using clustering algorithms, as the

one described in Pastore et al. (2023), where plankton images are

shown to be clustered with high accuracy. Sample images belonging

to each of the detected clusters could be reviewed by the expert,

providing a label, that can be used to train new anomaly detectors, in

the case of novel classes. Finally, in this work we focus on

phytoplankton microscopic images acquired with IFCB. However,

it’s worth underlining that plankton image analysis may include

several subdomains and imaging devices over phytoplankton and

IFCB, for instance, zooplankton images acquired with diverse

acquisition systems and modalities, such as silhouette grayscale

images acquired with the In Situ Ichthyoplankton Imaging System

(ISIIS) (Cowen et al., 2015), grayscale scan images collected with

ZooScan (Elineau et al., 2018), and color dark field images obtained

with devices as the Scripps Plankton Camera (SPC) (Orenstein et al.,

2020b), and the Imaging Plankton Probe (IPP) (Li et al., 2021), just to

name a few. We expect our method and designed pipeline to be in

general applicable to such different sources and types of images,

nonetheless, further experiments and tests are required to assess the

generality and the specific performances of the proposed anomaly

detection approach with respect to the identified domains.

Even if further research is necessary to prove the accuracy of the

proposed approach in actually detecting plankton responses related

to changes in the environment, we believe that this work may be a

stepping stone towards the fundamental aim of using plankton as a

biosensor, supporting the detection of potentially critical situations

and environmental perturbations.
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