AUTHOR=Wang Jun , Cai Ruanhong TITLE=Solar radiation stimulates release of semi-labile dissolved organic matter from microplastics JOURNAL=Frontiers in Marine Science VOLUME=Volume 10 - 2023 YEAR=2023 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2023.1284280 DOI=10.3389/fmars.2023.1284280 ISSN=2296-7745 ABSTRACT=Microplastics can release dissolved organic matter (DOM) into seawater under solar radiation exposure. However, the molecular composition and bioavailability of this DOM remain to be investigated.Here, two popular microplastics, low-density polyethylene (LDPE) and polystyrene (PS), were exposed to solar radiation in an artificial seawater for 10 days. The solar-induced LDPE-DOM and PS-DOM were molecularly characterized using ultra-high-resolution mass spectrometry, and were further incubated in a coastal microbial assemblage to examine their bioavailability. Results showed that solar radiation stimulated release of DOM from the microplastics. Dissolved organic carbon concentration analysis indicated that approximately 19.03 µg C L -1 and 3.85 µg C L -1 were released from each gram of LDPE and PS per day, respectively. Molecular composition analysis showed that both the LDPE-DOM and PS-DOM comprised a proportion of nitrogen-and sulfur-bearing molecules, and that the LDPE-DOM molecules were associated with lower molecular abundance and values of double-equivalent-bond and aromatic-index, but higher average hydrogen-to-carbon ratio than that in the PS-DOM. In addition, a proportion of the assigned formulas in LDPE-DOM (22.3%) and PS-DOM (55.8%) could be found in a coastal-DOM sample, suggesting their potential contribution to coastal DOM pool. The further incubation experiment showed that nearly 18.7% of LDPE-DOM and 9.5% of PS-DOM were utilized or transformed within 30 days. Still, a fraction of the solar-induced LDPE-DOM and PS-DOM resisted rapid microbial utilization, remained as semi-labile DOM. These results underlined unaccounted consequences of microplastic-derived DOM in coastal DOM pool.