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Demographic response of
osprey within the lower
Chesapeake Bay to fluctuations
in menhaden stock
Bryan D. Watts1,2*, Christine H. Stinson2, Peter K. McLean2,
K. Andrew Glass1,2, Michael H. Academia1,2

and Mitchell A. Byrd1,2

1Center for Conservation Biology, William & Mary, Williamsburg, VA, United States, 2Department of
Biology, William & Mary, Williamsburg, VA, United States
Forage fish support the largest fisheries in the world and play a vital role in marine

food webs by transferring energy from plankton to consumers within higher

trophic levels. Growing commercial demand for these species and concern for

the impact of over harvest on predator populations has driven a paradigm shift in

management objectives from maximizing economic return to the establishment

of ecosystem-based limits on harvest rates. How well current harvest policy

supports noncommercial species like piscivorous birds remains poorly

understood. We investigated the relationship between osprey breeding

performance within the lower Chesapeake Bay and a menhaden stock index

during a period (1974-2021) when the menhaden index fluctuated over 35-fold.

Reproductive rate (young/pair/year), brood provisioning (fish/10-h) and the

proportion of menhaden in the diet all declined during the study period.

Indicators of food stress including brood reduction and nest failure increased

during the study period. The population transitioned from reproductive surplus

(demographic source) to reproductive deficit (demographic sink). A significant

relationship between reproductive rate and the menhaden index suggests that

osprey population viability requires that the menhaden stock be restored to

1980s levels. Current ecological reference points based on the food

requirements of predatory fish are unlikely to protect the osprey population.

We suggest the establishment of menhaden or reproductive thresholds designed

to allow osprey to meet demographic targets (1.15 young/pair/year).
KEYWORDS

osprey, menhaden, Chesapeake Bay, reproductive rate, diet, fisheries, ecosystem-
based management
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1 Introduction

Forage fish are small pelagic schooling species (e.g. anchovy,

sardine, capelin, herring, menhaden) that support the largest

fisheries in the world by weight and play a significant role in

marine ecosystems by transferring energy from plankton to upper

trophic-level predators (Furness, 1982; Crawford et al., 2008;

Pikitch et al., 2012). Forage fish account for 30% of global

landings (17 million metric tons-yr) and demand for the protein

and oils produced from these fish continues to rise, placing

increasing pressure to harvest more (Alder et al., 2008; Food and

Agriculture Organization [FOA], 2012; Pikitch et al., 2014). These

fish account for $18.7 billion-yr in economic benefit, are important

to many cultures and serve significant roles within aquatic

ecosystems (Konar et al., 2019; Nissar et al., 2023). Public and

scientific concern about the impact of over harvesting forage fish on

predators including predatory fish, seabirds, and marine mammals

has grown in recent decades (Pikitch et al., 2004; McLeod and

Leslie, 2009; Link, 2010; Smith et al., 2011; Pikitch et al., 2018). This

concern has driven a paradigm shift in stock management from

single-species, maximum-sustained-yield models designed to

optimize harvest to ecosystem-based approaches focused on the

tradeoffs between commercial interests and the health of the

broader ecosystem (Dickey-Collas et al., 2014; Rice and Duplisea,

2014; National Marine Fisheries Service [NMFS], 2016). However,

evidence suggests that ecosystem-based estimates of sustainable

harvest may still be too high to support many predator

populations (Cury et al., 2011; Pikitch et al., 2012).

Atlantic menhaden (Brevoortia tyrannus) is a forage fish found

in western Atlantic waters from Nova Scotia to Florida and supports

the largest commercial fishery by weight along the east coast of the

United States (Ahrenholz, 1991; National Marine Fisheries Service

[NMFS], 2019). Most menhaden are landed using purse seines for

the reduction fishery where fish are processed into fish meal and oil

to be sold for animal feed, pet food, fertilizer, and dietary

supplements (Southeast Data Assessment and Review [SEDAR],

2020). Due to the decline of other species, menhaden are also the

focus of a growing bait industry where fish are caught by mixed

gear, frozen, and sold as bait for use in other commercial and

recreational fisheries. In addition to their commercial value,

menhaden are forage fish for a community of consumers

including predatory fish (Uphoff, 2003; Walter et al., 2003; Scharf

et al., 2004), birds (McLean and Byrd, 1991; Viverette et al., 2007;

Glass and Watts, 2009) and marine mammals (Smith et al., 2015).

Atlantic menhaden are regulated by the Atlantic States Marine

Fisheries Commission (ASMFC) and harvest policy has evolved in

recent decades from no management to maximum-sustained-yield

to the development of models designed to evaluate the tradeoffs

between commercial take and ecosystem services (Anstead et al.,

2021). This change in approach has resulted in the establishment of

the first harvest cap for the Chesapeake Bay (Atlantic States Marine

Fisheries Commission [ASMFC], 2005), a reduction in the initial

cap of more than 50% in less than 15 years and a consideration of

local depletion policy. However, the state-of-the-art ecosystem-

based model currently evaluates the maximum harvest of

menhaden that would allow for maximum harvest of striped bass
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(Morone saxatilis) effectively trading off the yield of a commercially

important forage fish against the yield of a commercially important

predatory fish (Chagaris et al., 2020). As part of the transition to an

ecosystem approach, scientists were tasked with developing

ecological reference points that could be used to track tradeoffs

between harvest and ecosystem services (Anstead et al., 2021).

Reference points are either stock or predator-dependent

conditions that facilitate the consideration of ecosystem services

in harvest decisions. Noncommercial species are not among the list

of ecological reference points designed to evaluate harvest impacts

and the relationship between allowable harvest and the viability of

these species remains poorly understood.

The osprey is an obligate piscivore (Poole, 1989; Poole et al.,

2002) that is considered to be a sensitive indicator of fish stocks

(Grove et al., 2009; Henny et al., 2010). Chesapeake Bay supports

one of the largest osprey breeding populations in the world (Henny,

1983). The population experienced dramatic declines in the post-

World War II era due to reproductive suppression (Truitt, 1969;

Kennedy, 1971; Wiemeyer, 1971; Kennedy, 1977) induced by

environmental contaminants (Via, 1975; Wiemeyer et al., 1975).

The population reached a low of 1,450 breeding pairs by the early

1970s (Henny et al., 1974). During the 1970s and 1980s

reproductive rates recovered (Watts and Paxton, 2007) and the

population doubled in size by 1995 (Watts et al., 2004). The rate of

recovery varied over an order of magnitude between geographic

areas of the Bay related to the depth of the earlier decline and likely

variation in prey availability (Watts and Paxton, 2007). Ospreys

within portions of the Chesapeake are believed to be menhaden-

dependent (McLean and Byrd, 1991). However, the demographic

and dietary response of osprey within these areas to fluctuations in

menhaden availability has not been evaluated.

Here we examine osprey reproductive performance, brood

provisioning and diet over a period (1974-2021) during which

menhaden stock fluctuated over 35-fold. We assess the

relationship between menhaden stock and the demographic

viability of osprey with respect to current harvest policy.
2 Methods

This study uses data from four generations of graduate students

(Stinson, 1976; McLean, 1986; Glass, 2007; Academia, 2022) who

studied different aspects of osprey foraging and nesting ecology

within the study area (1974-2021). Although the objectives of these

studies differed somewhat, there is a common methodology and set

of data allowing for broad comparisons across time periods. The

studies included six field seasons of osprey observations including

1974-1975 (Stinson, 1976), 1985 (McLean, 1986), 2006-2007 (Glass,

2007) and 2021 (Academia, 2022).
2.1 Study area

We conducted fieldwork with osprey within Mobjack Bay and

vicinity. Mobjack Bay is a broad (186 km2) sub estuary of the lower

Chesapeake Bay (Figure 1) that is formed by the convergence of four
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rivers (Severn, Ware, North, and East) all arising within the Coastal

Plain of Virginia. Waters are polyhaline (18-30 ppt) and microtidal

(amplitude < 1 m) with two tide cycles-d. The osprey population

within the study area reached a low of 15 breeding pairs by the early

1970s (Kennedy, 1971), had recovered to 87 pairs by 1995 (Watts

et al., 2004) and now includes approximately 100 breeding pairs

(Watts, unpublished data). The osprey population nesting within

the Chesapeake Bay is migratory. Osprey return to breeding

territories from South America in early to mid-March, lay

clutches in early April and fledge young from mid-June through

late-July (Stinson, 1976). Within the study area osprey primarily

nest on navigational aids, offshore duck blinds, boat houses,

abandoned docks and nesting platforms erected by citizens.
2.2 Osprey demography

The osprey is a long-lived species with associated high adult

survival and relatively high reproductive potential (Poole et al.,

2002). Annual adult survival has been shown to vary from 80 to 90%

across populations (e.g., Henny and Wight, 1969; Spitzer et al.,

1983; Postupalsky, 1989; Ryttmann, 1994; Wahl and Barbraud,

2014) with survival during the first year consistently lower and

ranging from 40 to 60% (e.g., Henny and Wight, 1969; Wahl and

Barbraud, 2014). Osprey exhibit delayed onset to reproduction. For

growing populations, recruitment into the breeding population

typically occurs during the fourth year with a smaller number
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entering the population during their third or fifth years (Kinkead,

1985). Age-at-first reproduction increases as populations reach

carrying capacity (Spitzer, 1980; Poole, 1989). For the Chesapeake

Bay, 1.15 (young/breeding pair/year) is the reproductive rate

estimated to be required to replace adult mortality (Poole, 1989).

The break-even rate likely fluctuates as the population of floaters

(birds of breeding age that do not hold territories) expands and

contracts through time. A reproductive rate above this range

(demographic source) allows the population to grow to capacity

or stabilize at capacity as the floater population expands. A

reproductive rate below this range (demographic sink) is not

sustainable and if maintained will result in a population decline

in the absence of immigration.

We monitored focal osprey nests (N = 75, 68, 132, 68 for

periods 1974-75, 1985, 2006-07 and 2021 respectively) weekly

during the nestling period by boat to determine breeding

performance. Each nest check used a mirror pole to examine nest

contents in order to determine the number of eggs and young

present. Weekly visits allowed us to determine clutch size and

fledging rate. We considered a nest to be active if a breeding attempt

was documented (eggs or young observed). We considered young

that reached six weeks of age to be of near fledging age. We

considered nests to be successful if they produced at least one

young that survived to six weeks of age. We considered annual

reproductive rate to be the mean number of young produced per

active breeding pair. We consider brood reduction to be the

difference between the number of young hatched and the number
FIGURE 1

Map of the Mobjack Bay study area used to study osprey breeding performance, provisioning and diet within the lower Chesapeake Bay (1974-2021).
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of young surviving to fledging age. We used a set of focal nests (N =

8, 7, 8, 13 for periods 1974-75, 1985, 2006-07, and 2021

respectively) during each period to quantify brood reduction.
2.3 Provisioning rate and diet

We observed osprey nests during the nestling period (May –

July) to estimate fish delivery rates. Provisioning rate and diet were

quantified using focal nests as outlined above during each time

period. During the 1970s and 1980s we observed offshore nests

(mean distance = 50 m) with binoculars and spotting scopes. In

later years we used digital video systems mounted 1 m above the

nest to estimate fish delivery rates. During all years, observations

were made from dawn to dusk. All fish delivered to nests were

recorded. During all periods except the 1970s an effort was made to

identify delivered fish to species.
2.4 Male time budget

During the nestling period, male ospreys alternate between

making hunting forays to provision young and perching on the

nest or favored perches near the nest site. During the 1970s and

1980s, we quantified time budgets by recording the amount of time

males perched near the nest. We used the time away from the nest

as an estimate of hunting activity. This may overestimate actual

hunting time.
2.5 Menhaden stock assessment

We used a hierarchical stock index to evaluate the relationship

between menhaden abundance and osprey nesting parameters over

the study period. No menhaden stock index has been developed that

is specific to the Mobjack Bay study area. Twenty-four fishery-

independent menhaden surveys are conducted along the Atlantic

Coast (Southeast Data Assessment and Review [SEDAR], 2022).

These surveys vary in objectives, methodology, and year of

initiation. The majority of the surveys do not extend back to the

1970s. A hierarchical analysis has been used (Conn, 2010) to merge

these efforts into a single index (1959-2021) and provide a posterior

mean and confidence interval (Southeast Data Assessment and

Review [SEDAR], 2022). We used the young-of-year abundance

index (YOY) because it is the only index that fully covers the study

period. Osprey use menhaden to provision young that typically

range from 10 to 25 cm (mean = 19.1 ± 0.37 SE, N = 253), (Watts

et al. unpub.). This size range suggests that osprey are primarily

using menhaden in the 2 to 4-year age classes (Schueller et al.,

2014). The Mid-Atlantic Adult Menhaden Relative Abundance

Index (MAD) does not cover the study period. However, the

hierarchical stock index used here is significantly correlated with

both the more local Maryland geometric mean catch index (N = 63,

Spearman Rank Correlation Coefficient = 0.61, p < 0.05) and the

MAD (N = 37, Spearman Coefficient = 0.4, p < 0.05).
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2.6 Statistical analysis

We evaluated trends in reproductive (all nests), provisioning

and diet (focal nests) parameters across the study period using a

one-way ANOVAwith period (1974-75, 1985, 2006-07, 2021) as the

grouping parameter and nests as samples. We evaluated each

parameter for deviations from normality (Kolmogorov-Smirnov

test) and homogeneity of variance (Levene test) to test for

compliance with ANOVA assumptions. We used Tukey’s

honestly significant difference test to make pairwise, post-hoc

comparisons between time periods for parameters where ANOVA

results were significant. We examined the relationship between

period and the proportion of young lost using the Freeman-Halton

extension of the Fisher’s exact test for a 2 X 4 contingency table

(Freeman and Halton, 1951). We examined the relationship

between mean reproductive rate and the Atlantic Menhaden

Relative Abundance Index using a simple linear regression. The

mean reproductive rate was used because we were interested in the

relationship between population-wide performance and

menhaden availability.
3 Results

Both the Atlantic menhaden relative abundance index

(Figure 2) and osprey reproductive performance (Table 1)

declined over the study period. The menhaden index declined

from a high of 4.1 in 1980 to 1.6 in 1985 and then remained

below 1.0 after 1990 and below 0.5 after 2005. Following the decline

during the late 1970s through 1980s, menhaden appear to have

reached a state change in the early 1990s and have remained low

since that time. Osprey reproductive rates were above maintenance

levels in 1975 and 1985 but by 2006 and 2021 productivity was well

below that required to sustain the population. For successful nests,

brood size fell from 2.0 in 1975 to 1.2 by 2021. The decline in

reproductive rates over the study period was due to brood

reduction. Clutch size did not differ between the time periods

(Table 1). However, the percentage of young lost between

hatching and fledging increased significantly (df = 3, c2 statistic =
10.2, p < 0.01) from 5.3% (1 of 18) to 12.5% (2 of 16) to 75% (18 of

24) to 76% (19 of 25) for 1974-75, 1985, 2006-07 and

2021 respectively.

Reproductive rate was associated with provisioning rate

(Figure 3). Significantly higher fish delivery rates were

documented for nests with more young compared with those

with fewer young or that failed (N = 36, df = 3, F-statistic = 4.8,

p < 0.05). Post-hoc tests revealed that this significant result was

driven by differences between nests that raised 3 young compared to

those that failed (Tukey’s honestly significant difference, p = 0.03).

A significant decline in provisioning rate (fish/10 hr) was observed

over the study period (Table 2). An interesting finding is that

although provisioning rate declined 34% between 1975 and 1985,

the proportion of the time budget that males spent hunting

increased from 57.0% to 70.1% suggesting that catch per unit

effort declined substantially. Between 1985 and 2021 the mean
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contribution of menhaden to osprey diet declined significantly from

67.3% to 24.7% to 30.2% for 1985, 2006-07 and 2021 respectively

(Table 1) with values for individual nests ranging from 48 to 83%

and 12.5 to 45.5% for 1985 and the later years respectively. This

change in diet composition resulted in a significant (83.3%) decline

in the delivery rate of menhaden to nests (Table 2). Changes in

mean reproductive rate coincide with declines in the menhaden

index (Figure 4). The response of mean annual reproductive rate for

osprey in the study area to menhaden availability (Atlantic

Menhaden Relative Abundance Index) was strong and significant

(F-statistic = 42.1, df = 1,4, p < 0.01, R2 = 0.91). The form of

the relationship (reproductive rate = 0.5289 + (0.3529)

(menhaden index)).
4 Discussion

The Atlantic menhaden has experienced several boom-and-bust

cycles since large-scale harvest was initiated in the 1850s (Anstead

et al., 2021). Although data are incomplete, the stock does not

appear to recover to prior levels following each bust event resulting

in a ratcheting down of the stock through time. The most recent
Frontiers in Marine Science 05
bust event began in the late 1980s and through the 1990s the stock

reached historically low levels. This event resulted in a narrowing of

the commercial industry, a change in policy on both state and

federal levels, and the introduction of an ecosystem-based approach

to menhaden management (Anstead et al., 2021; Drew et al., 2021).

Throughout this treatment, we have used the Atlantic Menhaden

Relative Abundance Index as a proxy for menhaden availability

within the study area because no fisheries-independent data exist on

this local scale. One of the problems with using a range-wide

abundance index is the inherent “masking” or averaging across

spatial variation in abundance. We are unable to evaluate the

correspondence between local menhaden abundance and the

range-wide index. However, osprey nesting observations including

a decline in both menhaden delivery rates and the importance of

menhaden in the diet suggest that the trend within the study area

has been consistent with the range-wide index.

Within a relatively short period of time the Mobjack Bay osprey

population transitioned from reproductive surplus (demographic

source) to reproductive deficit (demographic sink). The population

likely crossed this tipping point during the early 1990s coincident

with the bust event initiated in the late 1980s. The osprey is a long-

lived species and populations are expected to absorb short-term
TABLE 1 Mean (± standard error) estimates of osprey reproductive rate, clutch size, brood size, nests monitored (N) and one-way ANOVA results from
the lower Chesapeake Bay.

Parameter 1974-75 1985 2006-07 2021 F-statistic p value

Nests (N) 75 68 132 68

Clutch size 2.7 ± 0.08 3.0 ± 0.09 3.0 ± 0.27 2.7 ± 0.09 2.2 0.084

Reproductive Rate 1.7 ± 0.10 1.4 ± 0.11 0.8 ± 0.08 0.3 ± 0.11 34.9 <0.001

Brood Size 2.0 ± 0.10 1.8 ± 0.10 1.5 ± 0.09 1.2 ± 0.17 10.0 <0.001
fro
Estimated reproductive rate required for a stable population within the Chesapeake Bay is 1.15.
FIGURE 2

Chronosequence of Atlantic menhaden young of the year abundance index used as a proxy for menhaden availability within the study area. The
black line indicates posterior mean and the gray lines represent 95% confidence intervals around the mean.
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perturbations in prey availability. However, menhaden within the

Chesapeake Bay have not experienced a significant recovery back to

1980s levels since this initial decline. Based on internal

demographics (local demographics without immigration) the

Mobjack Bay osprey population is predicted to have experienced

an ongoing decline over the past two decades. The fact that the

population remains stable suggests that it is being “rescued” by

ongoing immigration from other subpopulations that are producing

a reproductive surplus. Subpopulations within lower salinity

reaches of the Chesapeake have sustained the most rapid growth

in recent decades (Watts et al., 2004; Watts and Paxton, 2007), have

some of the highest rates of productivity (Glass, 2007), and could be

the source of these immigrants. The combination of reproductive

deficit and population stability highlight the fact that population

surveys alone are not always the best indicator of local viability

(Pulliam, 1988). Spatial variation in forage fish abundance may

drive metapopulation dynamics for birds that are central-place

foragers and depend on key species (Staudinger et al., 2020).

Management strategies for fish stocks should be designed to

minimize risks of local depletion in order to protect higher

trophic-level consumers.
Frontiers in Marine Science 06
Food stress and subsequent brood reduction is widespread in

ospreys (e.g., Poole, 1982; Eriksson, 1986; Hagan, 1986; Steidl and

Griffin, 1991; Machmer and Ydenberg, 1998) and has been shown

to lead to reproductive deficits and population decline (Bowman

et al., 1989). Although ospreys are capable of catching a wide variety

of fish and often have diverse diets (Poole, 1989) populations

typically depend on one or two species during the nesting period

(Nesbitt, 1974; Eriksson, 1986; Harmata et al., 2007). Osprey within

Mobjack Bay appear to be menhaden-dependent. Eighteen fish

species have been identified within the diet of osprey during the

brooding period within this study area (McLean, 1986; Glass, 2007).

However, menhaden accounted for nearly 75% of fish provided to

broods by weight and energy content in 1985 (McLean and Byrd,

1991). None of the other species in the diet appear to be alternatives

to menhaden in terms of energy density except for American eel

(Anguilla rostrata) (McLean, 1986; Glass, 2007). American eels are

energy dense but have accounted for <3% of the diet.

It seems plausible that menhaden represent a keystone species

for osprey within the lower Chesapeake Bay in representing the only

prey species with high energy density that is capable of reaching a

population size required to allow osprey to reproduce above
TABLE 2 Mean (± standard error) estimates of osprey reproductive, provisioning and diet parameters, sample sizes (nests) and one-way ANOVA results
from the lower Chesapeake Bay.

Parameter 1974-75 1985 2006-07 2021 F-statistic p value

Nests (N) 8 7 8 4

Provisioning (fish/10 hr) 5.3 ± 0.50 3.5 ± 0.30 2.7 ± 0.30 1.4 ± 0.50 15.6 <0.001

Menhaden rate (fish/10 hr) ––––– 2.4 ± 0.32 0.7 ± 0.19 0.4 ± 0.32 17.9 <0.001

Menhaden (% of diet) ––––– 67.3 ± 4.07 24.7 ± 4.90 30.2 ± 6.93 19.4 <0.001
fro
Estimated productivity required for a stable population within the Chesapeake Bay is 1.15.
FIGURE 3

Relationship between mean provisioning rate and brood size (outcome of breeding attempt) for osprey pairs within the lower Chesapeake Bay. Focal
nests for all time periods (1974-75, 1985, 2006-07, 2021) were combined. Squares indicate means and error bars represent standard errors around
the mean.
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maintenance levels. A recent experimental menhaden-addition

study within the Mobjack Bay study area demonstrated that an

increase in provisioning rate resulted in a significantly higher

reproductive rate for treatment nests when compared to control

nests (Academia and Watts, 2023). Supplementation of nests with

63.4 g/d of menhaden pushed productivity to sustainable levels

while control nests remained below maintenance. The study

demonstrated that the pairs required 202.7 g/d of fish or 338.6

kcal/d in order to reach maintenance reproductive rates. Within the

historical context presented here, osprey have not achieved these

provisioning rates since the 1980s.

The energy demand of the osprey population is not on the scale

that would be expected to regulate menhaden numbers. The osprey

is a small-time menhaden consumer within the context of the

broader Chesapeake Bay ecosystem where populations of predatory

fish have the capacity to consume large quantities of menhaden

(Uphoff, 2003; Chagaris et al., 2020). Even during the period when

menhaden accounted for 75% of the osprey diet, the osprey

population would have consumed only 0.004% of the commercial

landings (McLean and Byrd, 1991). However, fluctuations in

menhaden stock have the capacity to regulate osprey populations

within areas where they are the primary prey. The overfishing and

ultimate collapse of the menhaden population in southern New

England has been implicated in the lack of osprey recovery back to

pre-DDT levels within specific locations that were believed to have

been heavily menhaden dependent during periods of high

population density (Bierregaard et al., 2014).

Ospreys have limited capacity to compensate for low prey

availability. Males hunt during the nestling period while females

attend to broods (Poole, 1989, Poole et al., 2002). Males provision

both the female and nestlings with the female consuming

approximately 30% of fish provided (McLean, 1986). Regardless of
Frontiers in Marine Science 07
energy demandmale osprey hunt only 60-70% (Stinson, 1976; McLean,

1986) of the day which limits their ability to make adjustments to either

high energy demand from broods or low prey densities (Stinson, 1978;

Jamieson et al., 1983; Eriksson, 1986). When a male’s capacity to meet

energetic needs is inadequate, sibling aggression and subsequent brood

reduction is the behavioral mechanism that adjusts brood size to

available food (Poole, 1982; Forbes, 1991; Machmer and Ydenberg,

1998). As provisioning declines below the needs of all brood mates,

larger, more aggressive siblings monopolize available food leaving

subordinates to starve. Continued reductions in provisioning will

ultimately lead to nest failure. These behavioral mechanisms link

prey availability to population viability. There appears to be an

energetic state space where male ospreys operate (Green and

Ydenberg, 1994) and, under low prey availability conditions, their

ability to reach demographic viability may be constrained.

The relationship between mean reproductive rate and the

Atlantic menhaden relative abundance index suggests that

reaching the demographic target (1.15 young/pair) required for

population maintenance would require an index value of 2.73. This

index value has not been realized since 1985 (Figure 2). This finding

is consistent with the independent finding from supplementation

that suggests that provisioning rates will need to return to 1980s

levels in order to reach stability. These findings are also consistent

with those reported for 14 seabird species within seven marine

ecosystems (Cury et al., 2011). Breeding seabirds that rely on forage

fish showed a response to changes in prey abundance and breeding

success began to decline when prey fell below 34.6% of the

maximum observed prey abundance.

The development of ecological reference points to inform

ecosystem-based fisheries management is in its infancy and

understandably the current menhaden model and associated

reference points focus on predatory fish of commercial interest
FIGURE 4

Relationship between mean reproductive rate (all nests monitored for each year) and menhaden stock index for osprey within the lower Chesapeake
Bay. Estimated reproductive rate required for a stable population within the Chesapeake Bay is 1.15. Squares indicate means and error bars represent
standard errors around the mean.
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(Chagaris et al., 2020; Anstead et al., 2021). Striped bass were chosen as

a reference because of the assemblage of predatory fish within the

ecosystem, they have been shown to be the most sensitive to menhaden

(Buchheister et al., 2017). A stated assumption of this approach is that

because striped bass are the most sensitive, setting harvest thresholds

that consider their requirements will effectively protect predators

(including birds) that are less sensitive. However, it seems unlikely

that the striped bass “umbrella” will protect bird populations. Osprey

likely fell below a critical demographic tipping point in the early 1990s.

Striped bass did not exhibit definitive signs of food stress until the late

1990s and continue to be used as an indicator of menhaden to the

present (Uphoff, 2003; Anstead et al., 2021). There is a clear mismatch

in terms of energetic demand and associated menhaden consumption

between predatory fish and piscivorous birds within the Bay. The three

dominant fish predators including striped bass, bluefish (Pomatomus

saltatrix), and weakfish (Cynoscion regalis) are capable of consuming

large portions of menhaden and at times exceed the commercial take

(Uphoff, 2003; Chagaris et al., 2020). If birds were added as equally

weighted consumers to the ecosystem model their consumption would

represent a rounding error in the broader consumption. Because

ospreys have little impact on the menhaden population but require

threshold menhaden densities in order to sustain a demographic

surplus, the development of an ecological reference point based on

either a biomass or reproductive rate threshold would be a better

strategy for protecting this population. Biomass thresholds are used to

ensure that predators have sufficient prey to meet population targets

(Pikitch et al., 2012). Such harvest triggers are being used within other

fisheries. For example, if breeding performance of the black-legged

kittiwake (Rissa tridactula) falls below a predetermined threshold a

change in management is triggered for the sandeel (Ammodytes

marinus) (International Council for Exploration of the Seas, 2008).

Similarly, if the body condition of Antarctic krill predators declines

below a set threshold, a reduction in fisheries quota is triggered

(Boyd, 2002).

A priority for future osprey-menhaden work within the lower

Chesapeake Bay is the development of a catch-per-unit-effort (CPUE)

model (prey capture/time spent hunting) for males provisioning

broods. Stinson (1976) recorded the duration of male hunting forays

and their success but did not record fish species captured. McLean

(1986); Glass (2007), and Academia (2022) recorded the delivery rate of

menhaden but did not link delivery rates to the duration and success of

male hunting events. Development of a CPUE model for menhaden

(and other fish species) would contribute to a better understanding of

the state space where osprey may meet demographic requirements

within the time available for hunting. A CPUE-demographic

framework could lead to a simple monitoring program based on

male hunting that would inform whether or not stock levels are

adequate to sustain a viable osprey population.
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