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F29280, Plouzané, France, 3National Oceanography Centre, Southampton, United Kingdom, 4Ifremer,
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The ocean is the main heat reservoir in Earth’s climate system, absorbing most of

the top-of-the-atmosphere excess radiation. As the climate warms, anomalously

warm and fresh ocean waters in the densest layers formed near Antarctica spread

northward through the abyssal ocean, while successions of warming and cooling

events are seen in the deep-ocean layers formed near Greenland. The abyssal

warming and freshening expands the ocean volume and raises sea level. While

temperature and salinity characteristics and large-scale circulation of upper

2000 m ocean waters are well monitored, the present ocean observing

network is limited by sparse sampling of the deep ocean below 2000 m.

Recently developed autonomous robotic platforms, Deep Argo floats, collect

profiles from the surface to the seafloor. These instruments supplement satellite,

Core Argo float, and ship-based observations to measure heat and freshwater

content in the full ocean volume and close the sea level budget. Here, the value

of Deep Argo and planned strategy to implement the global array are described.
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Additional objectives of Deep Argo may include dissolved oxygen

measurements, and testing of ocean mixing and optical scattering sensors. The

development of an emerging ocean bathymetry dataset using Deep Argo

measurements is also described.
KEYWORDS

deep ocean, ocean observation, ocean heat content (OHC), sea level (SL), ocean
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1 Introduction

Earth’s Energy Imbalance (EEI), the rate of net solar energy

absorbed by the Earth, shows an increased trend in the past two

decades at least partly as a result of increased atmospheric

greenhouse gases (GHG; Loeb et al., 2021). Unless GHG

emissions are sharply reduced, global warming is likely to exceed

1.5-2°C above pre-industrial levels. The 1.5°C threshold was

recognized in the Paris Agreement as synonymous with extreme

weather events, warmer ocean waters, and sea level rise, threatening

human safety and ecosystem health (Allen et al., 2019). Due to its

high heat capacity, the ocean delays the atmospheric warming,

absorbing about 90% of the EEI (von Schuckmann et al., 2023).

Together, the expansion of seawater from increasing temperature,

import of continental water from Greenland and Antarctic ice sheet

mass loss, and the melt of mountain glaciers, have resulted in a

global mean sea level (GMSL) rise of 15-25 cm over 1901-2018 (1.28

to 2.17 mm per year; Fox-Kemper et al., 2021). The rate of rise has

accelerated in the past two decades (Nerem et al., 2018) and reached

3.58 ± 0.25 mm per year over 2005-2015 (Llovel et al., 2019). Model

projections indicate that this acceleration is likely to continue

through the century (Fox-Kemper et al., 2021), increasing the

extent and severity of flooding and coastal erosion (Martyr-Koller

et al., 2021). Current estimates of global ocean heat content (OHC)

inferred from sea-going platforms and sea level change assessed

from satellite altimetry, lack the desired spatial resolution and

precision to generate accurate projections of EEI response to

climate policies (Meyssignac et al., 2019; Palmer, 2017; WCRP

Global Sea Level Budget Group, 2018).

While the ocean sampling of the upper 2000 m has dramatically

increased due to the revolutionary contributions of autonomous

platforms, the status of deep-sea observing has remained

fragmentary (Meyssignac et al., 2019; von Schuckmann et al.,

2023) and opportunistic. Although the deep ocean below 2000 m

represents half of the total ocean volume, only 10% of historical

temperature and salinity profiles extend below 2000 m (Garcia et al.,

2019). Because deep-ocean measurements are unevenly distributed

in space and time, regional-to-global and seasonal-to-interannual

variations are poorly resolved, and spurious patterns of ocean

temperature and salinity fluctuations can occur (Johnson and

Lyman, 2020). Global decadal variations in deep-ocean volume

due to temperature (thermosteric) changes contribute 10% of the

GMSL budget (Chang et al., 2019) but the impact is significantly
02
higher (~30%) in the Southern Ocean where abyssal warming is

strongest (Purkey and Johnson, 2010). The GMSL budget closes

between 2005 and 2015 when using an approximate estimate of

decadal variation of the ocean volume due to density (steric)

changes (Llovel et al., 2019; Chen et al., 2022), but appears no

longer closed between 2016 and 2019 (Chen et al., 2020). While part

of the non-closure of the GMSL budget after 2015 can be explained

by salty drift of conductivity-temperature-depth (CTD) sensors on

some Argo floats, potential drift of satellite altimeters, and noise

contamination of Gravity Recovery and Climate Experiment

(GRACE/GRACE-FO) accelerometer measurements, the sparse

sampling of the deep ocean, especially in the Southern

Hemisphere, is likely another contributor (Barnoud et al., 2021).

Even during 2005-2015 when the sea level budget closes at the

global scale, a mismatch between sea level from altimetry and the

sum of GRACE mass addition, Argo upper-ocean steric sea level,

and shipboard deep-ocean steric sea level is observed at local to sub-

basin scale (Royston et al., 2020).

General circulation models are essential tools to monitor and

forecast the influence of ocean-atmosphere coupling on weather

and climate (Stammer et al., 2019; Lellouche et al., 2021), but model

drift in the deep ocean limits their ability to predict ocean heat and

freshwater content (Palmer et al., 2011). Correction techniques

developed to force model fields towards specific deep-ocean

conditions have shown discrepancies in simulated ocean

temperature and salinity compared with observations (Uotila

et al., 2019). The addition of global and frequent deep-ocean

observations improves the representation of deep-ocean processes

and can prevent unrealistic drifts (Palmer, 2017). Furthermore,

deep-ocean observations decrease uncertainties in water mass

properties (Gasparin et al., 2019; Gasparin et al., 2020), reduce

bias in upper-ocean decadal predictability (e.g., Sévellec and

Fedorov, 2013; Levin et al., 2019), and improve the consistency of

assimilated in situ and satellite observations (Abdalla et al., 2021).

Partly owing to the decrease in oxygen solubility with ocean

warming, dissolved oxygen (DO) concentrations have decreased

(Schmidtko et al., 2017) and oceanic regions with low-oxygen

concentration, termed quasi-permanent oxygen minimum zones

(OMZs), have grown over the last five decades. The spread of these

inhospitable areas decreases biological diversity, reduces

physiological adaptation, and depletes fish stocks (Garçon et al.,

2019). Earth model simulations predict an expansion of OMZs

(Busecke et al., 2022) and intensification of oxygen decline from the
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surface to abyssal depths in the next decade (Kwiatkowski et al.,

2020). Due to the scarcity of deep-ocean oxygen observations, the

response of low-oxygen habitat size and distribution to physical and

biogeochemical processes remains poorly understood (Levin, 2018;

Oschlies et al., 2018), and the ability of marine biogeochemical

models to simulate the response and feedback of marine ecosystems

to climate change is limited (Séférian et al., 2020).

Deep Argo is an ongoing expansion of the Argo Program using

autonomous robotic floats with the ability to cycle between the

surface and the seafloor every 10 days, and transmit data via

satellites (Roemmich et al., 2019a). Deep Argo is the deep

component of the OneArgo design, endorsed by the U.N. Ocean

Decade (Owens et al., 2022). At present, there are ~200 Deep Argo

floats sampling some of the deepest regions of the ocean (Figure 1).

The Argo community recommends increasing the number of active

deep floats to form a 5° x 5° global array of 1200 Deep Argo floats in

the seasonally ice-free global ocean deeper than 2000 m. The

capacity of the fully-implemented Deep Argo array to reduce

errors in decadal trends of deep OHC and deep-ocean thermal

expansion (Johnson et al., 2015; Meyssignac et al., 2019) is

recognized by the EEI community (von Schuckmann et al., 2020;

von Schuckmann et al., 2023) and the World Climate Research

Program (WCRP) global sea level budget group (WCRP Global Sea

Level Budget Group, 2018; Cazenave et al., 2019). Other benefits of

Deep Argo are to establish relationships between fluctuations of the

deep meridional overturning circulation and changes in ocean

temperature and salinity and their representations in ocean

reanalyzes and forecasts (Gasparin et al., 2020). The value of

adding sensors on Deep Argo floats to assess full-depth ocean

oxygen content, mixing, and sediment transport, and the capacity of

Deep Argo floats to improve global ocean bathymetry are under

study. Deep Argo floats are expected to play a key role in the Deep

Ocean Observing Strategy (DOOS) initiative, a growing effort by the
Frontiers in Marine Science 03
scientific community to improve the deep-ocean observing system

(Levin et al., 2019).
2 Requirements and technology status

2.1 Float and sensor requirements

In accordance with Argo’s practices, Deep Argo data are shared

publicly in near real-time, usually in less than 24 hours. A further

quality-controlled version is made available within 6 months on the

two Argo Global Data Assembly Centers (GDAC) in netCDF files,

as well as inserted onto the Global Telecommunications System

(GTS) in the Binary Universal Form for the Representation (BUFR)

format. For consistency with the Core Argo mission, Deep Argo

floats operate on a nominal 10-day cycle between the surface and

the seafloor (4000-m or 6000-m depth, depending on the float

model). For Deep Argo floats profiling on descent and ascent,

measurements on ascent should be collected at least in the upper

1000 m to provide near real-time data to ocean forecasting and

seasonal prediction communities.

Required accuracies for Deep Argo salinity, temperature, and

pressure measurements are to approach ±0.002 PSS-78, ± 0.001°C,

and ±3 dbar respectively (Roemmich et al., 2019a), in line with

shipboard measurements from the Global Ocean Ship-Based

Hydrographic Investigations Program (GOSHIP; Katsumata et al.,

2022). It is recommended that technology development continues

to reach targeted values. With salinity accuracy target five times

more stringent than Core (0-2000 m) Argo (Wong et al., 2020),

Deep Argo can efficiently supplement the high-quality shipboard

reference database used for Core Argo quality control and has

therefore the capacity to improve the post-calibration of salinity

measurements. The accuracy, precision, and vertical resolution of
FIGURE 1

Locations of the 197 Deep Argo floats active in May 2023. This figure shows locations of 4000 m capable Deep Arvor and Deep NINJA, and 6000 m
capable Deep SOLO and Deep APEX floats, color coded by national program. The background colors indicate ocean bottom depth: <2000 m
(white), 2000-3000 m (light gray), 3000-4000 m (light blue), 4000-5000 m (blue), and >5000 m (dark gray). Data courtesy of OceanOPS.
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the Deep Argo CTD sensor influence the temperature-salinity

relation, and estimates of steric height and vertical stratification

as outlined below.

Steric height is vital for sea level budget analyses (Cazenave

et al., 2019) as well as geostrophic circulation studies (Zilberman

et al., 2020). Errors the size of Deep Argo target accuracies ( ± 0.002

PSS-78, ± 0.001°C, and ±3 dbar) applied to full-depth (0–6000 m)

profiles at 20°S in the Brazil Basin result in sea level errors of about

±0.9, ± 0.1, and ±0.06 cm, as well as depth-integrated transport

errors (assuming zero velocity at the bottom) of ±5.1, ± 0.6, and

±1.5 106 m3 s-1 for salinity, temperature, and pressure, respectively.

With these targeted values, salinity accuracy has the largest impact

on sea level, geostrophic velocity, and transport error budgets.

Mean temperature-salinity relations are used to diagnose deep

water-mass distributions (Johnson, 2008) and ocean circulation

(Zilberman et al., 2020), and their variations are important in

monitoring changes in deep and bottom water properties and

formation rates (Purkey et al., 2019). Again, salinity accuracy is

likely the limiting factor, but decadal changes in the temperature-

salinity relationships of Antarctic Bottom Water (e.g. van Wijk and

Rintoul., 2014) and the constituents of North Atlantic Deep Water

(Yashayaev, 2007) near their sources are several times Deep Argo

target accuracies, and therefore easily quantifiable.

Stratification variations on small vertical scales are needed to

estimate mixing related to internal waves and tides (Whalen et al.,

2012), while vertical stratification on longer length scales is

appropriate to study features such as variability in the pycnocline

between deep and bottom waters, which may change ocean mixing

and diffusion rates (Zhang et al., 2021). For compatibility with Core

Argo sampling recommendation in the upper 2000 m, Deep Argo

float longevity, and ocean mixing parameterizations, the

recommended vertical resolution of Deep Argo profiles is 2-dbar

bin-averaging in the upper 2000 m, and may increase to 10-dbar, or

even 25-dbar, vertical resolution below 2000 m.
2.2 Readiness of float and
sensor technology

Deep Argo float technology has been extensively tested in

regional pilot arrays (Figure 1). Several float designs have proven

their ability to collect deep-ocean profiles to 4000 m (e.g., Deep

NINJA and Deep Arvor) and 6000 m (e.g., Deep SOLO and Deep

APEX) (Kobayashi et al., 2013; Petzrick et al., 2014; Le Reste et al.,

2016; Roemmich et al., 2019b) and new float designs are under

development to further increase the diversity of the Deep Argo fleet.

Deep Argo CTD sensor specifications of temperature, salinity,

and pressure accuracies approach the targeted values described in

section 2.1, and specifications of stability are compatible with the

Deep Argo targets. Both extended-depth SBE41-CP and SBE61

models from SeaBird Scientific (SBS) are operational. A pilot Deep

Argo CTD instrument from RBR is under testing. The ability of the

SBE61 to reach the targeted temperature accuracy of ±0.001°C has

been demonstrated from comparisons of shipboard rosette-

mounted SBE-61 CTDs with shipboard (SBE-911) CTD

observations (Roemmich et al., 2019a). Work has been achieved
Frontiers in Marine Science 04
to improve our understanding of the impact of temperature and

pressure variations on conductivity and pressure measurements

(Kobayashi et al., 2021). A compressibility correction of the

conductivity cell used on the extended-depth SBE41-CP and

SBE61 has been successfully implemented, reducing salinity bias

observed in the field from comparisons of Deep Argo-mounted

extended-depth SBE41-CP and SBE-61 with shipboard reference

profiles to ±0.002 PSS-78 (Foppert et al., 2021; Walicka et al., 2022),

consistent with the Deep Argo target. Once the pressure dependent

salinity bias is adjusted, a time-varying correction of salinity can be

applied as long as salinity drift is linear in time (Owens and Wong,

2009; Cabanes et al., 2016). A description of quality control

procedures and best practices for analysis of Deep Argo

temperature, salinity and pressure is provided in the report by

Walicka et al. (2022). New pressure sensors with accuracy and

stability specifications exceeding the Deep Argo target are

undergoing testing in the field. Although reaching the ambitious

accuracy targets described in section 2.1 across all Deep Argo CTD

sensors is a challenging task, ongoing work is showing great

potential for success. To that end, it is essential that research

institutions continue independent assessment of sensor accuracy

and stability, the sensor’s ability to maintain targeted accuracy over

the float lifetime, using Deep Argo float comparisons with high-

quality shipboard reference data, and maintain collaborative work

with the industry to optimize calibration and data quality control

procedures. Maintaining a diversity of distinct Deep Argo floats and

sensors from several manufacturers is encouraged to avoid supply

chain issues, and to effectively identify, understand, and resolve

potential float and sensor failure.
3 Value of Deep Argo data

The amount of deep-ocean profiles collected from Deep Argo

floats in the South Australian, Australian Antarctic, Southwest

Pacific, and Brazil basins in less than 7 years approaches that of

deep-ocean data accumulated from ships over the past 70 years

(Figure 2). This new dataset has enabled breakthroughs in our

understanding of OHC, ocean circulation, and sea level change.

For instance, strong decadal-scale warming rates of the cold and

dense Antarctic Bottom Water (AABW) that spreads over much of

the abyssal ocean (depth > 4000 m) have been quantified combining

Deep Argo data with historical data in the Brazil Basin (Johnson

et al., 2020), and Argentine Basin (Johnson, 2022) with trend

estimates that are up-to-date and several times more certain than

those from repeat hydrography alone (Figures 3A, B). Deep Argo

data alone are measuring shorter time-scale trends, such as

accelerated warming in the bottom waters of Southwest Pacific

Basin since 2014 (Johnson et al., 2019), with increasing certainty as

the record length increases (Figure 3C). Other scientific advances

using Deep Argo data with other data sources include a warming-

to-cooling reversal of the Lower North Atlantic Deep Water

observed in the subpolar North Atlantic in the mid-2010s

(Desbruyères et al., 2022; Figure 3D).

Small clusters of Deep Argo floats have demonstrated their

ability to detect the reversal of a long-term freshening trend in the
frontiersin.org
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Australian Antarctic Basin, at higher temporal and spatial

resolution than historical shipboard CTD occupations (Thomas

et al., 2020; Foppert et al., 2021). By providing simultaneous

temperature and salinity profiles over broad swaths of ocean

basins, Deep Argo has proven effective at mapping large-scale

circulation pathways of dense water masses formed near

Antarctica (Thomas et al., 2020; Foppert et al., 2021), in the

subpolar North Atlantic Ocean (Racapé et al., 2019; Petit et al.,

2022), and in the Southwest Pacific Ocean (Zilberman et al., 2020;

Figures 4A, B) with unprecedented detail. Seasonal fluctuations in

the recirculation of the Deep Western Boundary Current of the

Southwest Pacific Basin, and associated forcing mechanisms, were

detected for the first time (Zilberman et al., 2020; Figures 4C), as

was a slowdown of flow of AABW into the Argentine Basin

(Johnson, 2022). In the North Atlantic Ocean, Deep Argo profiles

have been added to the In Situ Analysis System (ISAS, Gaillard

et al., 2016; Kolodziejczyk et al., 2021) to provide monthly gridded

fields of full-depth temperature and salinity, and to improve
Frontiers in Marine Science 05
estimates of subannual-to-annual full-depth regional steric sea

level change. Deep Argo data have even been used to describe

regional patterns of deep internal wave activity (Johnson, 2022).

The fully implemented global Deep Argo 1200-float array will

diminish the spread in plausible regional-to-basin-scale OHC

trends of the deep ocean due to sparse historical sampling, while

filling temporal gaps at subseasonal to interannual time scales not

often sampled by repeat hydrographic sections (Desbruyères et al.,

2016). Deep Argo thermosteric and halosteric sea level sampling

will decrease the observed regional-to-basin-scale mismatch

between sea level from altimetry and the sum of GRACE mass

addition, Argo upper-ocean steric sea level, and shipboard deep-

ocean steric sea level (Royston et al., 2020). Deep Argo has the

capacity to reduce errors in global decadal trends of deep OHC from

±0.04 to ±0.006 W m-2 (Meyssignac et al., 2019) and deep-ocean

thermal expansion from ±0.73 to ±0.1 mm decade-1 (Johnson et al.,

2015; Desbruyères et al., 2016). As the array expands, Deep Argo

will become increasingly useful to improve knowledge of the
B

A

FIGURE 2

The sampling density per 5° latitude by 5° longitude of temperature and salinity profiles deeper than 2000 m. (A) Deep Argo profiles in regional pilot
arrays deployed between 2014 and 2023. (B) Historical non-Argo profiles from the World Ocean Database (WOD) 2018 collected between 1950 and
2023 (Garcia et al., 2019).
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regional-to-basin-scale structure and subseasonal-to-interannual

fluctuations of the large-scale deep-ocean circulation, and advance

understanding of the drivers for these changes. In particular, Deep

Argo will provide a new means to validate numerical model

projections of the impact of meltwater release from Greenland

and Antarctica on the deep-ocean overturning circulation

(Swingedouw et al., 2022; Li et al., 2023; Zhou et al., 2023).
4 Global implementation

To be sustainable, it is essential that the global implementation

of the Deep Argo array stems from achievable long-term resources

of international Argo partners and production capability of the float

and sensor manufacturers. Since each Deep Argo float replaces a

Core Argo float in the OneArgo design (Roemmich et al., 2019a;

Owens et al., 2022), a minimum lifetime of at least 4 years,

approaching the averaged 5.5-year Core Argo float longevity, is

desired across all Deep Argo float models (Zilberman et al., 2019).

Assuming an averaged Deep Argo float longevity of 4 years,

implementing a 1200-float global array size would require 300
Frontiers in Marine Science 06
float deployments per year among all international partners.

Some active Deep Argo float models have already achieved a

longevity exceeding 5 years. Engineering advances will continue

to increase the averaged Deep Argo float lifetime in order to reduce

the size of annual float deployments needed to re-seed the array.

The fully implemented Deep Argo array will require additional

support from international Deep Argo partners as the averaged

capital purchase of Deep Argo floats across all active models is two

to three times that of Core Argo. The data quality control and

deployment costs for Deep and Core Argo floats are similar.

Additional recommendations should be considered in order to

optimize deep-ocean sampling cost and efficiency. Prior to reaching

the 1200-float design target, Deep Argo float deployments should

prioritize deep (> 2000 m) regions of the subpolar North Atlantic,

Southern Ocean, and tropical oceans, and abyssal (> 4000 m) plains

of the ocean interior, where highest deep-ocean temperature

fluctuations have been observed. Deep Argo floats deployed in

these regions may park at depths greater than 1000 m to minimize

float dispersion, hence optimizing their value. For instance,

programming parking depth to coincide with reduced background

flow such as within 500-m above the seafloor in abyssal plains, and
B

C D

A

FIGURE 3

Mean deep-ocean temperature trends using Deep Argo. Temperature trends are shown in (m°C yr−1) vs. pressure (lines) with 5–95% confidence
limits (shading). (A) Temperature trends in the Argentine Basin computed by comparing all pairs of Deep Argo temperature profiles collected from
January 2021 to April 2023 with nearby historical profiles collected from 1972 to 1998 (blue, updated following Johnson, 2022) and computed from
repeat hydrography sections carried out in the Argentine Basin between the early 1990’s and the mid-2010’s (orange, from Desbruyères et al, 2016).
(B) Temperature trends in the Brazil Basin computed by comparing all pairs of Deep Argo profiles reported from May 2019 to April 2023 within
nearby WOCE profiles from 1989-1995 (blue, updated following Johnson et al., 2021) and computed from repeat hydrography sections carried out
in the Brazil Basin between the early 1990’s and the mid-2010’s (orange, from Desbruyères et al., 2016). (C) Temperature trends in the Southwest
Pacific Basin evaluated from Deep Argo data collected from June 2014 to April 2023 (updated from Johnson et al., 2019). (D) Temperature trends in
the Irminger Sea evaluated from Deep Argo during 2016 – 2021 (from Desbruyères et al., 2022). This last trend is density-compensated and only the
layer > 36.94 m-3 occupied by Lower North Atlantic Deep Water is considered (note the different x-axis scale).
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above deep boundary currents near topography, has proven an

effective way to limit horizontal displacement during parking

(Zilberman et al., 2020). Floats may also be programmed to park at

the core depth of local deep water masses in order to assess regional

circulation (Racapé et al., 2019). Once a global array is achieved, it is

recommended that all Deep Argo floats should park at 1000 m in

order to facilitate homogeneous float sampling (Roemmich et al.,

2019a) and increase the velocity database from Argo float trajectories

to reduce sampling error (Zilberman et al., 2023).
5 Ongoing evolution of the
Deep Argo array

Sensors to measure ocean properties additional to temperature,

salinity, and pressure are under testing to assess their performance

in the field and increase value of the Deep Argo data set. Any

additional sensors should be compatible with the Deep Argo float

longevity target and should not impede the achievement of a global

Deep Argo array. The opportunistic measurement of bathymetry

from Deep Argo floats, which does not require supplementary

sensor measurements, is under evaluation.
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5.1 Dissolved oxygen

Full-depth Deep Argo DO data can help constrain oceanic sources

and sinks of oxygen (Riser and Johnson, 2008) and provide better

assessments and predictions of global ocean deoxygenation (Schmidtko

et al., 2017). Combined with Deep Argo temperature and salinity, DO

measurements can improve our understanding of water-mass

formation (e.g., Johnson, 2008), ocean ventilation (Piron et al., 2016),

ocean circulation and mixing (Racapé et al., 2019) and the impact of

these processes on oxygen change in the deep ocean (Coppola et al.,

2017; Ulses et al., 2021). Using temperature, salinity, and DO in

transfer functions allows estimates of concentrations of nutrients,

carbonate system parameters (Sauzède et al., 2017), and ultimately

anthropogenic carbon storage and export. About 30% of active Deep

Argo floats are equipped with DO sensors. The best accuracy reached

in the field by Deep Argo DO sensors is 1-2 µmol kg-1 and requires a

careful correction of the data to account for sensor drift (Bittig et al.,

2018; Bittig et al., 2019), time response (Gordon et al., 2020) and

pressure dependent response of the sensor (Bittig et al., 2018; Racapé

et al., 2019). The current accuracy of Deep Argo DO sensors is suitable

for all the above-mentioned applications, but needs to be increased to

0.5 µmol kg-1 to resolve deoxygenation trends (Grégoire et al, 2021).
B

C

A

FIGURE 4

Spatial structure and seasonal variability of the deep-ocean circulation in the Southwest Pacific Ocean using Deep Argo. (A) Positions of Deep Argo
profiles collected from January 2016 to December 2019 are indicated in squared red symbols. The shaded gray color indicates bottom depth
shallower than 4800‐m depth, and the white background color shows regions deeper than 4800 m. The Samoan Islands (SI), Samoan Basin (SB),
Manihiki Plateau (MP), Penrhyn Basin (PB), Louisville Ridge (LR, thin black line), Tonga Kermadec Ridge (TKR, thick black line), Hikurangi Plateau (HP),
Chatham Rise (CR, dashed black line), and New Zealand are indicated (from Zilberman et al., 2020). (B) Absolute transport function integrated
between 1800 and 4100 dbar for 2016–2019. The white background color indicates regions shallower than 4800 m (from Zilberman et al., 2020).
(C) Seasonal variability of dynamic height referenced to 4800 dbar between 0 and 4800 dbar between 46° and 11°S for 2016–2019 (from Zilberman
et al., 2020).
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Work is underway to bring DO accuracy to this target and to

determine through observing system simulation experiments (OSSEs)

an optimal deployment strategy, and the required amount of Deep

Argo floats equipped with DO sensors. Deep Argo will supplement DO

data from repeat shipboard hydrography (Testor et al., 2018), and in

return, shipboard observations will help validate and calibrate Deep

Argo profiles (Racapé et al., 2019). It is expected that Deep Argo floats

with DO sensors could play a key role in the expansion of the Global

Ocean Oxygen Database and Atlas (Grégoire et al, 2021).
5.2 Bathymetry

Ocean bathymetry has a fundamental impact on the pathway and

strength of ocean currents (Wilson et al., 2022), and amplitude of ocean

mixing (Mashayek et al., 2017), and can influence heat and freshwater

exchange between the ocean and atmosphere (de Boer et al., 2022).

Variations in the shape of the seafloor can dictate the magnitude and

frequency of earthquakes (Passarelli et al., 2022) and the generation and

propagation of tsunamis (Salaree and Okal, 2020). Less than 24% of the

seafloor topography from the General Bathymetric Chart of the Ocean

(GEBCO) dataset is constrained by shipboard sounding measurements

or other direct measurements, and is limited mostly to Exclusive

Economic Zones (Tozer et al., 2019; Wölfl et al., 2019; GEBCO

Bathymetric Compilation Group, 2022). Deep Argo floats are not

equipped with an echosounder, but bottom depth can be estimated

when near-constant pressure values are recorded over a set period of

time when the float contacts the seafloor. The main challenge in

estimating Argo-based bathymetry is the horizontal displacement that

occurs between the grounding position at depth and the position

obtained at the surface, once a connection between the float and

satellite positioning system is established (Ollitrault and Rannou,

2013). Estimated horizontal errors using the Bluelink ReANalysis

2020 (BRAN2020; Chamberlain et al., 2021) and GLobal Ocean

ReanalYsiS (GLORYS12; Lellouche et al., 2021) ocean reanalyzes are

1-2 km in widespread regions of the deep-ocean interior, 2-8 km in

equatorial regions, and reach 8-18 km at ocean western boundaries and

near topography where ocean currents are strongest. Preliminary

comparisons between historical Argo and GEBCO bathymetry

sourced from echo sounding measurements show encouraging

agreement (van Wijk et al., 2022). Based on the averaged Deep Argo

float grounding rate of 60% over the past 4 years, a 1200-float array

could contribute over 25,000 additional deep-ocean bathymetry

measurements every year to global bathymetry datasets such as the

Nippon Foundation –GEBCO Seabed 2030 Project (Mayer et al., 2018).
5.3 Ocean mixing

Ocean mixing controls the vertical transport of water masses

within the meridional overturning circulation and therefore strongly

affects the oceanic uptake of heat, oxygen, and anthropogenic carbon

(Cimoli et al., 2023). Upcoming work includes testing the ability of pilot

temperature and velocity shear microstructure sensors mounted on

Deep Argo floats to improve deep-ocean mixing estimates. At present,

deep ocean mixing is measured from either extremely sparse focused
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process studies using tracer, moorings, and microstructure

measurements (Waterhouse et al., 2014; Ferron et al., 2017;

MacKinnon et al., 2017) or from fine-scale parameterizations using

Argo and ship-based CTD profiles (Whalen et al., 2015; Ferron et al.,

2016). However, these parametrizations rely on assumptions that may

not be valid for all ocean dynamics (Vladoiu et al., 2021) leading to

systematic biases in some areas of the ocean (Lele et al., 2021),

particularly close to seafloor topography. Modern turbulent packages

offer low-power, inexpensive options (e.g., Le Boyer, 2021) that have

already successfully been integrated onto upper 2000 m ocean

observing platforms (e.g., Nagai et al., 2015). The slow profiling

speeds of Deep Argo floats and limited turbulence noise induced by

the float-sensor apparatus, coupled with new technology and vetted

onboard processing (e.g., Hughes et al., 2023) have reduced the amount

of transmitted data required to compute mixing estimates reliably.
5.4 Optical scattering

Deep scattering measurements are needed to improve our

understanding of the fate of sinking particles produced at the surface

and their role in burying organic carbon in sediments, to quantify

sediment resuspension and transport near the ocean bottom, and to

measure transport and redistribution of trace metals (Lam and Bishop,

2008; Estapa et al., 2015). Another application of deep-ocean scattering

data is to assess the environmental impacts of deep-sea mining by

establishing a baseline for the concentration of particles present below

2000 m and inferring variations from this baseline due to mining

operations. Emerging plans involve testing the performance of pilot

optical scattering sensors (Gardner et al., 2018) on Deep Argo floats to

measure the concentration of particles present in deep-sea water. Deep-

rated optical scattering sensors are commercially available and have

been field tested to 6000 m (e.g., Gardner et al., 2018; Ray et al., 2020),

but have not yet been implemented on Deep Argo floats. The high

sensitivity of optical scattering to minerals and large particles (Briggs

et al., 2020) implies that no increase in sensor sensitivity nor accuracy is

needed to quantitatively resolve the deep-ocean signal. Sensor

calibration and data quality control will be studied to address and

correct the effect of pressure cycling on the accuracy and stability of

optical scattering measurements (Hu et al., 2019).
6 Conclusion

Deep Argo floats are autonomous profilers with limited carbon

footprint and environmental impact, and are rapidly improving deep-

ocean sampling coverage. A strategy to implement the global 1200Deep

Argo float array has been carefully designed to resolve regional-to-

global variations of temperature and salinity over the full-ocean depth at

subseasonal-to-decadal time scale. Ongoing challenges are to increase

the diversity of Deep Argo floats and CTD sensor models, extend the

averaged Deep Argo float longevity to > 4 years, improve sensor

performance and refine real-time and delayed-mode Deep Argo data

quality control procedures to achieve targeted values of temperature,

salinity, and pressure accuracies across all CTD sensors. Concurrent

observations from Core and Deep Argo, repeat hydrography, and
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satellite networks will enable identification and correction of bias and

drift in sea level anomalies measured from satellite altimeters, ocean

mass addition from space gravimetry, and salinity measurements from

Argo CTD sensors. The deployment of the global Deep Argo array,

combined with Core Argo, repeat hydrography and satellite altimetry

and gravimetry missions, has the capacity to improve assessments and

projections of the global planetary heat, freshwater, and sea level

budgets, and strength of the overturning circulation. While Deep

Argo’s priority is the full implementation of the backbone 1200-float

array extending Argo temperature and salinity profiling to the abyssal

ocean, emerging projects are under evaluation to address ocean

deoxygenation and carbon sequestration, ocean mixing, sediment

transport, and improve bathymetry estimates.
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